1
|
Kalita K, Phukan SJ, Garai S, Sankaranarayanan K. Polyoxometalates Mediated Amyloid Fibrillation Dynamics and Restoration of Enzyme Activity of Hen Egg White Lysozyme Treated under Cold Atmospheric Pressure Plasma. ACS OMEGA 2024; 9:3423-3429. [PMID: 38284079 PMCID: PMC10809371 DOI: 10.1021/acsomega.3c06921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 01/30/2024]
Abstract
Neurodegenerative disorders are one of the most devastating disorders worldwide. Although a definite mechanistic pathway of neurodegenerative disorders is still not clear, it is almost clear that these diseases are initiated by protein misfolding. Hen Egg White Lysozyme (Lyz) can be converted to highly arranged amyloid fibrils and is therefore considered a good model protein for studying protein aggregation in connection to neurodegeneration. In this study, Lyz has been converted to fibrils using He-air gas fed single jet cold atmospheric plasma (CAP). The reactive oxygen species and the reactive nitrogen species produced by the plasma jet interact with the protein molecules and enhance the fibril formation. We monitored the fibrillation kinetics with the Thioflavin T (ThT) assay and observed that fibrils are formed when the samples are treated for 10 min with He-air gas fed CAP. Further, we studied the role of a special class of inorganic nanomaterials called polyoxometalates (POMs) in the process of the Lyz fibrillation using various biophysical techniques. The Keggin POMs used in this study are phosphomolybdic acid (PMA) and silico molybdic acid (SMA). Keggin POMs bring in structural self-assembly of the protein and disrupt the fibrils as evidenced in the ThT assay and TEM analysis. Molecular docking studies together with electrokinetic potential studies show the interactions between POMs and Lyz dominated via hydrogen bonding and electrostatic interactions. The enzyme activity of Lyz was assessed using the substrate Micrococcus lysodeikticus and after treatment with POMs results showed a significant increase in the activity. This study could pave way for looking into Keggin POMs for possible application in neurodegeneration.
Collapse
Affiliation(s)
- Kaberi Kalita
- Physical
Sciences Division, Institute of Advanced
Study in Science and Technology (An Autonomous Institute Under DST,
Government of India), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035, India
| | - Shankab J. Phukan
- Department
of Chemistry, Institute of Science, Banaras
Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Somenath Garai
- Department
of Chemistry, Institute of Science, Banaras
Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Kamatchi Sankaranarayanan
- Physical
Sciences Division, Institute of Advanced
Study in Science and Technology (An Autonomous Institute Under DST,
Government of India), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035, India
| |
Collapse
|
2
|
Hao X, Zheng J, Sun Y, Dong X. Seeding and Cross-Seeding Aggregations of Aβ 40 and Its N-Terminal-Truncated Peptide Aβ 11-40. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2821-2831. [PMID: 30681866 DOI: 10.1021/acs.langmuir.8b03599] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In the amyloid plaques of Alzheimer's disease (AD) patients, a large number of N-terminal-truncated amyloid β (Aβ) peptides such as Aβ11-40 have been identified in addition to the full-length Aβ peptides. However, little is known about the roles of the N-terminal-truncated peptides in AD pathological process. Herein, seeding and cross-seeding aggregations of Aβ40 and its N-terminal-truncated Aβ11-40 were investigated in the solution and on the surfaces of chips with immobilized seeds by extensive biophysical and biological analyses. The results showed that Aβ40 and Aβ11-40 aggregates could seed both homologous and heterologous aggregations of the two monomers. However, the capability and characteristics of the seeding (homologous aggregation) and cross-seeding (heterologous aggregation) were significantly different. Aβ40 seeds showed stronger acceleration effects on the aggregations than Aβ11-40 seeds and induced β-sheet-rich fibrous aggregates of similar cytotoxicities for the two monomers. This indicates that Aβ40 and Aβ11-40 had similar aggregation pathways in the seeding and cross-seeding on Aβ40 seeds. By contrast, Aβ11-40 seeds led to different aggregation pathways of Aβ40 and Aβ11-40. Pure Aβ11-40 aggregates had higher toxicity than Aβ40 aggregates, and as seeds, Aβ11-40 seeds induced Aβ40 to form aggregates of higher cytotoxicity. However, homologous Aβ11-40 aggregates induced by Aβ11-40 seeds showed lower cytotoxicity than pure Aβ11-40 aggregates. The results suggest that Aβ11-40 plays an important role in the pathological process of AD.
Collapse
Affiliation(s)
- Xiuping Hao
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering , The University of Akron , Akron , Ohio 44325 , United States
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
| |
Collapse
|
3
|
Carbone ME, Ciriello R, Moscarelli P, Boraldi F, Bianco G, Guerrieri A, Bochicchio B, Pepe A, Quaglino D, Salvi AM. Interactions between elastin-like peptides and an insulating poly(ortho-aminophenol) membrane investigated by AFM and XPS. Anal Bioanal Chem 2018; 410:4925-4941. [DOI: 10.1007/s00216-018-1142-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/19/2018] [Accepted: 05/14/2018] [Indexed: 01/04/2023]
|
4
|
Li D, Scarano S, Lisi S, Palladino P, Minunni M. Real-Time Tau Protein Detection by Sandwich-Based Piezoelectric Biosensing: Exploring Tubulin as a Mass Enhancer. SENSORS 2018; 18:s18040946. [PMID: 29565824 PMCID: PMC5948773 DOI: 10.3390/s18040946] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 02/01/2023]
Abstract
Human tau protein is one of the most advanced and accepted biomarkers for AD and tauopathies diagnosis in general. In this work, a quartz crystal balance (QCM) immunosensor was developed for the detection of human tau protein in buffer and artificial cerebrospinal fluid (aCSF), through both direct and sandwich assays. Starting from a conventional immuno-based sandwich strategy, two monoclonal antibodies recognizing different epitopes of tau protein were used, achieving a detection limit for the direct assay in nanomolar range both in HBES-EP and aCSF. Afterward, for exploring alternative specific receptors as secondary recognition elements for tau protein biosensing, we tested tubulin and compared its behavior to a conventional secondary antibody in the sandwich assay. Tau–tubulin binding has shown an extended working range coupled to a signal improvement in comparison with the conventional secondary antibody-based approach, showing a dose–response trend at lower tau concentration than is usually investigated and closer to the physiological levels in the reference matrix for protein tau biomarker. Our results open up new and encouraging perspectives for the use of tubulin as an alternative receptor for tau protein with interesting features due to the possibility of taking advantage of its polymerization and reversible binding to this key hallmark of Alzheimer’s disease.
Collapse
Affiliation(s)
- Dujuan Li
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, 115 Wenyi Rd, Hangzhou 310000, China.
| | - Simona Scarano
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3-13, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Samuele Lisi
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3-13, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Pasquale Palladino
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3-13, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Maria Minunni
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3-13, Sesto Fiorentino, 50019 Firenze, Italy.
| |
Collapse
|
5
|
Hilt S, Rojalin T, Viitala T, Koivuniemi A, Bunker A, Hogiu SW, Kálai T, Hideg K, Yliperttula M, Voss JC. Oligomerization Alters Binding Affinity Between Amyloid Beta and a Modulator of Peptide Aggregation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:23974-23987. [PMID: 30214656 PMCID: PMC6130836 DOI: 10.1021/acs.jpcc.7b06164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The soluble oligomeric form of the amyloid beta (Aβ) peptide is the major causative agent in the molecular pathogenesis of Alzheimer's disease (AD). We have previously developed a pyrroline-nitroxyl fluorene compound (SLF) that blocks the toxicity of Aβ. Here we introduce the multi-parametric surface plasmon resonance (MP-SPR) approach to quantify SLF binding and effect on the self-association of the peptide via a label-free, real-time approach. Kinetic analysis of SLF binding to Aβ and measurements of layer thickness alterations inform on the mechanism underlying the ability of SLF to inhibit Aβ toxicity and its progression towards larger oligomeric assemblies. Depending on the oligomeric state of Aβ, distinct binding affinities for SLF are revealed. The Aβ monomer and dimer uniquely possess sub-nanomolar affinity for SLF via a non-specific mode of binding. SLF binding is weaker in oligomeric Aβ, which displays an affinity for SLF on the order of 100 μM. To complement these experiments we carried out molecular docking and molecular dynamics simulations to explore how SLF interacts with the Aβ peptide. The MP-SPR results together with in silico modeling provide affinity data for the SLF-Aβ interaction and allow us to develop a new general method for examining protein aggregation.
Collapse
Affiliation(s)
- Silvia Hilt
- Department of Biochemistry & Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Tatu Rojalin
- Department of Pathology and Laboratory Medicine, and Center for Biophotonics, University of California Davis, USA
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
| | - Tapani Viitala
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
| | - Artturi Koivuniemi
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
| | - Alex Bunker
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
| | - Sebastian Wachsmann Hogiu
- Department of Pathology and Laboratory Medicine, and Center for Biophotonics, University of California Davis, USA
- Intellectual Ventures/Global Good, Bellevue, WA, USA
| | - Tamás Kálai
- Institute of Organic and Medicinal Chemistry, University of Pécs, H 7624 Pécs, Szigeti st. 12. Pécs, Hungary
| | - Kálmán Hideg
- Institute of Organic and Medicinal Chemistry, University of Pécs, H 7624 Pécs, Szigeti st. 12. Pécs, Hungary
| | - Marjo Yliperttula
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
- Department of Pharmaceutical Sciences, University of Padova, Italy
| | - John C. Voss
- Department of Biochemistry & Molecular Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
6
|
Mehrazma B, Petoyan A, Opare SK, Rauk A. Interaction of the N-AcAβ(13–23)NH2 segment of the beta amyloid peptide with beta-sheet-blocking peptides: site and edge specificity. CAN J CHEM 2016. [DOI: 10.1139/cjc-2016-0033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The region encompassing residues 13–23 of the amyloid beta peptide (Aβ(13–23)) of Alzheimer’s disease is the self-recognition site that initiates toxic oligomerization and fibrillization and also is the site of interaction of Aβ with many other proteins. We describe herein a study by molecular dynamics of the complexes formed by R (= N-AcAβ(13–23)NH2(N-CH3C(O)HHQKLVFFAEDNH2)) with several pseudopeptides designed to form β-sheets with Aβ(1-40,42) and prevent oligomer and fibril formation. Adhesion to both edges of the R β-strand is examined by structure analysis. Umbrella sampling along a dissociation pathway reveals approximate free energies of binding in the submicromolar range. One of the three pseudopeptides binds strongly to one edge of the R β-strand and another to the opposite edge, while the third displays strong binding to both edges. It is desirable to block both edges of the self-recognition site of Aβ to prevent oligomer formation. The study reveals that this may be accomplished by a single pseudopeptide or two in combination. Thus the pseudopeptides, used singly or in pairs, may be competitive inhibitors of Aβ oligomerization at stoichiometric concentrations.
Collapse
Affiliation(s)
- Banafsheh Mehrazma
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Anahit Petoyan
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Stanley K.A. Opare
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Arvi Rauk
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
7
|
Paleček E, Tkáč J, Bartošík M, Bertók T, Ostatná V, Paleček J. Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chem Rev 2015; 115:2045-108. [PMID: 25659975 PMCID: PMC4360380 DOI: 10.1021/cr500279h] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Emil Paleček
- Institute
of Biophysics Academy of Science of the Czech Republic, v.v.i., Královopolská
135, 612 65 Brno, Czech Republic
| | - Jan Tkáč
- Institute
of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Martin Bartošík
- Regional
Centre for Applied Molecular Oncology, Masaryk
Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| | - Tomáš Bertók
- Institute
of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Veronika Ostatná
- Institute
of Biophysics Academy of Science of the Czech Republic, v.v.i., Královopolská
135, 612 65 Brno, Czech Republic
| | - Jan Paleček
- Central
European Institute of Technology, Masaryk
University, Kamenice
5, 625 00 Brno, Czech Republic
| |
Collapse
|
8
|
Wang C, Xu L, Cheng F, Wang H, Jia L. Curcumin induces structural change and reduces the growth of amyloid-β fibrils: a QCM-D study. RSC Adv 2015. [DOI: 10.1039/c5ra02314a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Curcumin inhibited Aβ fibril growth through leading to the structural conversion of the growing fibril to a more loosely constructed aggregate.
Collapse
Affiliation(s)
- Conggang Wang
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian 116023
- P. R. China
| | - Li Xu
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian 116023
- P. R. China
| | - Fang Cheng
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian 116023
- P. R. China
| | - Hanqi Wang
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian 116023
- P. R. China
| | - Lingyun Jia
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian 116023
- P. R. China
| |
Collapse
|
9
|
Kurzątkowska K, Ostatná V, Hamley IW, Doneux T, Paleček E. Electrochemical sensing of 2D condensation in amyloid peptides. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.05.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
10
|
Suzuki H, Ishigami A, Orimoto A, Matsuyama A, Handa S, Maruyama N, Yokoyama Y, Okuno H, Nakakoshi M. Development of a New Distyrylbenzene-Derivative Amyloid-β-aggregation and Fibril Formation Inhibitor. Chem Pharm Bull (Tokyo) 2012; 60:1164-70. [DOI: 10.1248/cpb.c12-00365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology
| | | | | | - Setsuko Handa
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology
| | - Naoki Maruyama
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology
| | | | | | | |
Collapse
|
11
|
Becker B, Cooper MA. A survey of the 2006-2009 quartz crystal microbalance biosensor literature. J Mol Recognit 2011; 24:754-87. [DOI: 10.1002/jmr.1117] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Alzheimer's disease drug candidates stabilize A-β protein native structure by interacting with the hydrophobic core. Biophys J 2011; 100:1076-82. [PMID: 21320453 DOI: 10.1016/j.bpj.2010.12.3741] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 12/15/2010] [Accepted: 12/22/2010] [Indexed: 02/07/2023] Open
Abstract
Deposition of amyloid fibrils, consisting primarily of Aβ(40) and Aβ(42) peptides, in the extracellular space in the brain is a major characteristic of Alzheimer's disease (AD). We recently developed new (to our knowledge) drug candidates for AD that inhibit the fibril formation of Aβ peptides and eliminate their neurotoxicity. We performed all-atom molecular-dynamics simulations on the Aβ(42) monomer at its α-helical conformation and a pentamer fibril fragment of Aβ(42) peptide with or without LRL and fluorene series compounds to investigate the mechanism of inhibition. The results show that the active drug candidates, LRL22 (EC(50) = 0.734 μM) and K162 (EC(50) = 0.080 μM), stabilize hydrophobic core I of Aβ(42) peptide (residues 17-21) to its α-helical conformation by interacting specifically in this region. The nonactive drug candidates, LRL27 (EC(50) > 10 μM) and K182 (EC(50) > 5 μM), have little to no similar effect. This explains the different behavior of the drug candidates in experiments. Of more importance, this phenomenon indicates that hydrophobic core I of the Aβ(42) peptide plays a major mechanistic role in the formation of amyloid fibrils, and paves the way for the development of new drugs against AD.
Collapse
|
13
|
Zhang H, Xu LQ, Perrett S. Studying the effects of chaperones on amyloid fibril formation. Methods 2010; 53:285-94. [PMID: 21144901 DOI: 10.1016/j.ymeth.2010.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 11/29/2010] [Accepted: 11/30/2010] [Indexed: 01/02/2023] Open
Abstract
The results of cell and animal model studies demonstrate that molecular chaperones play an important role in controlling the processes of protein misfolding and amyloid formation in vivo. In addition, chaperones are involved in the appearance, propagation and clearance of prion phenotypes in yeast. The effect of chaperones on amyloid formation has been studied in great detail in recent years in order to elucidate the underlying mechanisms. An important approach is the direct study of effects of chaperones on amyloid fibril formation in vitro. This review introduces the methods and techniques that are commonly used to control and monitor the time course of fibril formation, and to detect interactions between chaperones and fibril-forming proteins. The techniques we address include thioflavin T binding fluorescence and filter retardation assays, size-exclusion chromatography, dynamic light scattering, and biosensor assays. Our aim in this review is to provide guidance on how to embark on study of the effect of chaperones on amyloid fibril formation, and how to avoid common problems that may be encountered, using examples and experience from the authors' lab and from the wider literature.
Collapse
Affiliation(s)
- Hong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | | | | |
Collapse
|
14
|
Buell AK, White DA, Meier C, Welland ME, Knowles TPJ, Dobson CM. Surface Attachment of Protein Fibrils via Covalent Modification Strategies. J Phys Chem B 2010; 114:10925-38. [DOI: 10.1021/jp101579n] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Alexander K. Buell
- Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, CB3 0FF, U.K., and Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, U.K
| | - Duncan A. White
- Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, CB3 0FF, U.K., and Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, U.K
| | - Christoph Meier
- Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, CB3 0FF, U.K., and Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, U.K
| | - Mark E. Welland
- Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, CB3 0FF, U.K., and Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, U.K
| | - Tuomas P. J. Knowles
- Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, CB3 0FF, U.K., and Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, U.K
| | - Christopher M. Dobson
- Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, CB3 0FF, U.K., and Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, U.K
| |
Collapse
|
15
|
Impact of phospholipid bilayer saturation on amyloid-beta protein aggregation intermediate growth: a quartz crystal microbalance analysis. Anal Biochem 2009; 399:30-8. [PMID: 20018160 DOI: 10.1016/j.ab.2009.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 11/23/2009] [Accepted: 12/08/2009] [Indexed: 11/20/2022]
Abstract
Evidence that membrane-associated amyloid aggregate growth can impart membrane damage represents one possible mechanism for the neurodegeneration associated with deposited amyloid-beta protein (Abeta) aggregates in the brains of Alzheimer's disease (AD) patients. This potential pathogenic event necessitates an understanding of the impact that cellular membrane composition may have on Abeta aggregate growth. In the current study, a quartz crystal microbalance (QCM) was employed to examine the growth of Abeta(1-40) aggregation intermediates on supported phospholipid bilayers (SPBs) assembled at the crystal surface. These surface-specific measurements illustrate that zwitterionic SPBs selectively bind aggregated but not monomeric protein, and these bound aggregates are capable of supporting nonsaturable reversible growth via monomer addition. Growth-capable Abeta(1-40) aggregation intermediates more readily bind SPBs composed of phospholipids with a greater degree of carbon saturation. Furthermore, kinetic analysis afforded by the quantitative real-time QCM measurements reveals that SPBs with greater saturation also better support the growth of bound Abeta(1-40) aggregation intermediates as a result of the slower dissociation of bound monomer rather than more efficient recognition between aggregate and monomeric protein. These findings correlate with epidemiological and experimental evidence that links increased dietary intake of polyunsaturated fatty acids to a reduced risk of AD.
Collapse
|
16
|
White DA, Buell AK, Dobson CM, Welland ME, Knowles TP. Biosensor-based label-free assays of amyloid growth. FEBS Lett 2009; 583:2587-92. [DOI: 10.1016/j.febslet.2009.06.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 06/04/2009] [Indexed: 12/17/2022]
|
17
|
Ovine colostrum nanopeptide affects amyloid beta aggregation. FEBS Lett 2008; 583:190-6. [PMID: 19084010 DOI: 10.1016/j.febslet.2008.11.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 11/05/2008] [Accepted: 11/27/2008] [Indexed: 11/23/2022]
Abstract
A colostral proline-rich polypeptide complex (PRP) consisting of over 30 peptides shows beneficial effects in Alzheimer's disease (AD) patients when administered in the form of sublinqual tablets called Colostrinin. The aim of the present studies was to investigate whether nanopeptide fragment of PRP (NP) - one of the PRP complex components can affect aggregation of amyloid beta (Abeta1-42). The effect of NP on Abeta aggregation was studied using Thioflavin T (ThT) binding, atomic force microscopy, and analyzing circular dichroism spectra. Results presented suggest that NP can directly interact with amyloid beta, inhibit its aggregation and disrupt existing aggregates acting as a beta sheet breaker and reduce toxicity induced by aggregated forms of Abeta.
Collapse
|
18
|
Knowles TPJ, Shu W, Huber F, Lang HP, Gerber C, Dobson CM, Welland ME. Label-free detection of amyloid growth with microcantilever sensors. NANOTECHNOLOGY 2008; 19:384007. [PMID: 21832567 DOI: 10.1088/0957-4484/19/38/384007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We present an approach for sensing protein aggregation using microcantilever systems. Results from both single cantilever experiments with internal reference and multicantilever array measurements with dedicated reference cantilevers are discussed. We show that in both cases protein aggregation on the sensor can be detected through associated changes in surface stress.
Collapse
Affiliation(s)
- Tuomas P J Knowles
- Nanoscience Centre, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0FF, UK
| | | | | | | | | | | | | |
Collapse
|