Carrera GVSM, Inês J, Bernardes CES, Klimenko K, Shimizu K, Canongia Lopes JN. The Solubility of Gases in Ionic Liquids: A Chemoinformatic Predictive and Interpretable Approach.
Chemphyschem 2021;
22:2190-2200. [PMID:
34464013 DOI:
10.1002/cphc.202100632]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 11/07/2022]
Abstract
This work comprises the study of solubilities of gases in ionic liquids (ILs) using a chemoinformatic approach. It is based on the codification, of the atomic inter-component interactions, cation/gas and anion/gas, which are used to obtain a pattern of activation in a Kohonen Neural Network (MOLMAP descriptors). A robust predictive model has been obtained with the Random Forest algorithm and used the maximum proximity as a confidence measure of a given chemical system compared to the training set. The encoding method has been validated with molecular dynamics. This encoding approach is a valuable estimator of attractive/repulsive interactions of a generical chemical system IL+gas. This method has been used as a fast/visual form of identification of the reasons behind the differences observed between the solubility of CO2 and O2 in 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM PF6 ) at identical temperature and pressure (TP) conditions, The effect of variable cation and anion effect has been evaluated.
Collapse