1
|
Garsi JB, Hocine S, Hensienne R, Moitessier M, Denton H, Major LL, Smith TK, Hanessian S. Revisiting the dipeptidyl carboxypeptidase inhibitor captopril as a source of pan anti-trypanosomatid agents. Bioorg Med Chem Lett 2024; 110:129883. [PMID: 39013490 DOI: 10.1016/j.bmcl.2024.129883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
The protozoan parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. are responsible for continued propagation of neglected tropical diseases such as African sleeping sickness, Chagas disease and leishmaniasis respectively. Following a report that captopril targets Leishmania donovani dipeptidyl carboxypeptidase, a series of simple proline amides and captopril analogues were synthesized and found to exhibit 1-2 μM in vitro inhibition and selectivity against Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. The results were corroborated with computational docking studies. Arguably, the synthetic proline amides represent the structurally simplest examples of in vitro pan antiprotozoal compounds.
Collapse
Affiliation(s)
- Jean-Baptiste Garsi
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C.P. 6128, Montreal, QC H3C 3J7, Canada
| | - Sofiane Hocine
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C.P. 6128, Montreal, QC H3C 3J7, Canada
| | - Raphaël Hensienne
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C.P. 6128, Montreal, QC H3C 3J7, Canada
| | - Matthieu Moitessier
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C.P. 6128, Montreal, QC H3C 3J7, Canada
| | - Helen Denton
- Schools of Biology and Chemistry, Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, Fife, Scotland KY16 9ST, UK
| | - Louise L Major
- Schools of Biology and Chemistry, Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, Fife, Scotland KY16 9ST, UK
| | - Terry K Smith
- Schools of Biology and Chemistry, Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, Fife, Scotland KY16 9ST, UK.
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C.P. 6128, Montreal, QC H3C 3J7, Canada.
| |
Collapse
|
2
|
Ghosh S, Kumar V, Verma A, Sharma T, Pradhan D, Selvapandiyan A, Salotra P, Singh R. Genome-wide analysis reveals allelic variation and chromosome copy number variation in paromomycin-resistant Leishmania donovani. Parasitol Res 2022; 121:3121-3132. [PMID: 36056959 DOI: 10.1007/s00436-022-07645-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
Abstract
In the absence of adequate diagnosis and treatment, leishmaniasis remains a major public health concern on a global scale. Drug resistance remains a key obstacle in controlling and eliminating visceral leishmaniasis. The therapeutic gap due to lack of target-specific medicine and vaccine can be minimized by obtaining parasite's genomic information. This study compared whole-genome sequence of paromomycin-resistant parasite (K133PMM) developed through in vitro adaptation and selection with sensitive Leishmania clinical isolate (K133WT). We found a large number of upstream and intergenic gene variations in K133PMM. There were 259 single nucleotide polymorphisms (SNPs), 187 insertion-deletion (InDels), and 546 copy number variations (CNVs) identified. Most of the genomic variations were found in the gene's upstream and non-coding regions. Ploidy estimation revealed chromosome 5 in tetrasomy and 6, 9, and 12 in trisomy, uniquely in K133PMM. These contain the genes for protein degradation, parasite motility, autophagy, cell cycle maintenance, and drug efflux membrane transporters. Furthermore, we also observed reduction in ploidy of chromosomes 15, 20, and 23, in the resistant parasite containing mostly the genes for hypothetical proteins and membrane transporters. We chronicled correlated genomic conversion and aneuploidy in parasites and hypothesize that this led to rapid evolutionary changes in response to drug induced pressure, which causes them to become resistant.
Collapse
Affiliation(s)
- Sushmita Ghosh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India.,Department of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Vinay Kumar
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Aditya Verma
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Tanya Sharma
- ICMR-AIIMS Computational Genomics Centre, Indian Council of Medical Research, New Delhi, 110029, India
| | - Dibyabhaba Pradhan
- ICMR-AIIMS Computational Genomics Centre, Indian Council of Medical Research, New Delhi, 110029, India
| | | | - Poonam Salotra
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Ruchi Singh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India.
| |
Collapse
|
3
|
Ramalingam K, Gangwar S, Balodi DC, Anand A, Yadav S, Biswas S, Karunakaran Sasikala AK, Gupta KC, Batra S, Goyal N. Leishmania donovani Dipeptidylcarboxypeptidase Inhibitor as a Potential Oral Treatment for Visceral Leishmaniasis. Antimicrob Agents Chemother 2022; 66:e0236121. [PMID: 35852367 PMCID: PMC9380552 DOI: 10.1128/aac.02361-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/15/2022] [Indexed: 01/21/2023] Open
Abstract
Chemotherapy is the key intervention to control visceral leishmaniasis (VL), a neglected tropical disease. Current regimens include not only a few drugs but also present several drawbacks, including moderate to severe toxicity, cost, long-term administration, patient compliance, and growing drug resistance. Thus, the need for better treatment options against VL is a priority. In an endeavor to find an orally active and affordable antileishmanial agent, we evaluated the therapeutic potential of compounds belonging to the (2Z,2'Z)-3,3'-(ethane-1,2-diylbis(azanediyl))bis(1-(4-halophenyl)-6-hydroxyhex-2-en-1-ones) series, identified as inhibitor(s) of Leishmania donovani dipeptidylcarboxypeptidase, a novel drug target. Among them, compound 3c exhibited best in vivo antileishmanial efficacy via both intraperitoneal and oral routes. Therefore, the present study led to the identification of compound 3c as the lead candidate for treating VL.
Collapse
Affiliation(s)
- Karthik Ramalingam
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sonali Gangwar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, Ghaziabad, Uttar Pradesh, India
| | - Deep Chandra Balodi
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, Ghaziabad, Uttar Pradesh, India
| | - Apeksha Anand
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, Ghaziabad, Uttar Pradesh, India
| | - Shailendra Yadav
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, Ghaziabad, Uttar Pradesh, India
| | - Subhasish Biswas
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | | | | | - Sanjay Batra
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, Ghaziabad, Uttar Pradesh, India
| | - Neena Goyal
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
4
|
Dipeptidylcarboxypeptidase of Leishmania donovani: A potential vaccine molecule against experimental visceral leishmaniasis. Cell Immunol 2022; 375:104529. [DOI: 10.1016/j.cellimm.2022.104529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022]
|
5
|
Dahatonde DJ, Ghosh A, Batra S. Metal‐Free Synthesis of Alkenylazaarenes and 2‐Aminoquinolines through Base‐Mediated Aerobic Oxidative Dehydrogenation of Benzyl Alcohols. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dipak J. Dahatonde
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute BS-10, Jankipuram Extension, Sitapur Road Lucknow 226031, Uttar Pradesh India
| | - Aritra Ghosh
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute BS-10, Jankipuram Extension, Sitapur Road Lucknow 226031, Uttar Pradesh India
- Academy of Scientific and Innovative Research CSIR – Human Resource Development Centre, (CSIR-HRDC) Campus Sector 19, Kamla Nehru Nagar Ghaziabad 201002, Uttar Pradesh India
| | - Sanjay Batra
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute BS-10, Jankipuram Extension, Sitapur Road Lucknow 226031, Uttar Pradesh India
- Academy of Scientific and Innovative Research CSIR – Human Resource Development Centre, (CSIR-HRDC) Campus Sector 19, Kamla Nehru Nagar Ghaziabad 201002, Uttar Pradesh India
| |
Collapse
|
6
|
Mukhopadhyay S, Barak DS, Karthik R, Verma SK, Bhatta RS, Goyal N, Batra S. Antileishmanial assessment of isoxazole derivatives against L. donovani. RSC Med Chem 2020; 11:1053-1062. [PMID: 33479698 DOI: 10.1039/d0md00083c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/23/2020] [Indexed: 11/21/2022] Open
Abstract
A chemical library comprising substituted 3-nitroisoxazoles and 3-aminoisoxazoles was prepared and screened for their antileishmanial activity against L. donovani. As compared to Miltefosine, the standard drug used in bioassays, several compounds displayed remarkably better inhibition of the promastigote and amastigote stages of parasites. The in vivo evaluation of a few compounds in a golden hamster model showed significant reduction of the parasite load post treatment via the intraperitoneal route by several compounds. The preliminary pharmacokinetic evaluation of a representative compound 4mf via the oral route, however, indicated high systemic clearance from the body.
Collapse
Affiliation(s)
- Sushobhan Mukhopadhyay
- Medicinal and Process Chemistry Division , CSIR-Central Drug Research Institute , Sector 10, Jankipuram Extension, Sitapur Road , Lucknow 226031 , India . ;
| | - Dinesh S Barak
- Medicinal and Process Chemistry Division , CSIR-Central Drug Research Institute , Sector 10, Jankipuram Extension, Sitapur Road , Lucknow 226031 , India . ;
| | - R Karthik
- Biochemistry Division , CSIR-Central Drug Research Institute , Sector 10, Jankipuram Extension, Sitapur Road , Lucknow 226031 , India .
| | - Sarvesh K Verma
- Pharmacokinetics Division , CSIR-Central Drug Research Institute , Sector 10, Jankipuram Extension, Sitapur Road , Lucknow 226031 , India
| | - Rabi S Bhatta
- Pharmacokinetics Division , CSIR-Central Drug Research Institute , Sector 10, Jankipuram Extension, Sitapur Road , Lucknow 226031 , India.,Academy of Scientific and Innovative Research , CSIR- Human Resource Development Centre , (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar , Ghaziabad-201002 , India
| | - Neena Goyal
- Biochemistry Division , CSIR-Central Drug Research Institute , Sector 10, Jankipuram Extension, Sitapur Road , Lucknow 226031 , India . .,Academy of Scientific and Innovative Research , CSIR- Human Resource Development Centre , (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar , Ghaziabad-201002 , India
| | - Sanjay Batra
- Medicinal and Process Chemistry Division , CSIR-Central Drug Research Institute , Sector 10, Jankipuram Extension, Sitapur Road , Lucknow 226031 , India . ; .,Academy of Scientific and Innovative Research , CSIR- Human Resource Development Centre , (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar , Ghaziabad-201002 , India
| |
Collapse
|
7
|
Vendruscolo MH, das Neves GM, Kagami LP, Rodrigues Junior LC, Nunes Diehl ML, Gnoatto SCB, de Loreto Bordignon SA, Romão PRT, Eifler-Lima VL, von Poser GL. In vitro and in silico Activity of Iridoids Against Leishmania amazonensis. Curr Drug Discov Technol 2020; 16:173-183. [PMID: 28969568 DOI: 10.2174/1570163814666171002102058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/18/2017] [Accepted: 09/18/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Leishmaniasis reaches millions of people around the world. The control of the disease is difficult due to the restricted access to the diagnosis and medication, and low adherence to the treatment. Thus, more efficient drugs are needed and natural products are good alternatives. Iridoids, natural products with reported leishmanicidal activity, can be exploited for the development of anti- Leishmania drugs. The aim of this study was to isolate and to investigate the in vitro activity of iridoids against Leishmania amazonensis and to compare the activity in silico of these compounds with those reported as active against this parasite. METHODS Iridoids were isolated by chromatographic methods. The in vitro activity of asperuloside (1) and geniposide (2) from Escalonia bifida, galiridoside (3) from Angelonia integerrima and theveridoside (4) and ipolamiide (5) from Amphilophium crucigerum was investigated against promastigote forms of Leishmania amazonensis. Molecular modeling studies of 1-5 and iridoids cited as active against Leishmania spp. were performed. RESULTS Compounds 1-5 (5-100 µM) did not inhibit the parasite survival. Physicochemical parameters predicted for 1-5 did not show differences compared to those described in literature. The SAR and the pharmacophoric model confirmed the importance of maintaining the cyclopentane[C]pyran ring of the iridoid, of oxygen-linked substituents at the C1 and C6 positions and of bulky substituents attached to the iridoid ring to present leishmanicidal activity. CONCLUSION The results obtained in this study indicate that iridoids are a promising group of secondary metabolites and should be further investigated in the search for new anti-Leishmania drugs.
Collapse
Affiliation(s)
- Maria Helena Vendruscolo
- Post-graduate Program in Pharmaceutical Sciences, College of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Gustavo Machado das Neves
- Post-graduate Program in Pharmaceutical Sciences, College of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luciano Porto Kagami
- Post-graduate Program in Pharmaceutical Sciences, College of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luiz Carlos Rodrigues Junior
- Post-Graduate Program in Health Sciences, Department of Basic Health Sciences, College of Pharmacy, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Maria Luísa Nunes Diehl
- Post-graduate Program in Pharmaceutical Sciences, College of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Simone Cristina Baggio Gnoatto
- Post-graduate Program in Pharmaceutical Sciences, College of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Pedro Roosevelt Torres Romão
- Post-Graduate Program in Health Sciences, Department of Basic Health Sciences, College of Pharmacy, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Vera Lucia Eifler-Lima
- Post-graduate Program in Pharmaceutical Sciences, College of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Gilsane Lino von Poser
- Post-graduate Program in Pharmaceutical Sciences, College of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
8
|
Pereira CA, Sayé M, Reigada C, Silber AM, Labadie GR, Miranda MR, Valera-Vera E. Computational approaches for drug discovery against trypanosomatid-caused diseases. Parasitology 2020; 147:611-633. [PMID: 32046803 PMCID: PMC10317681 DOI: 10.1017/s0031182020000207] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
During three decades, only about 20 new drugs have been developed for malaria, tuberculosis and all neglected tropical diseases (NTDs). This critical situation was reached because NTDs represent only 10% of health research investments; however, they comprise about 90% of the global disease burden. Computational simulations applied in virtual screening (VS) strategies are very efficient tools to identify pharmacologically active compounds or new indications for drugs already administered for other diseases. One of the advantages of this approach is the low time-consuming and low-budget first stage, which filters for testing experimentally a group of candidate compounds with high chances of binding to the target and present trypanocidal activity. In this work, we review the most common VS strategies that have been used for the identification of new drugs with special emphasis on those applied to trypanosomiasis and leishmaniasis. Computational simulations based on the selected protein targets or their ligands are explained, including the method selection criteria, examples of successful VS campaigns applied to NTDs, a list of validated molecular targets for drug development and repositioned drugs for trypanosomatid-caused diseases. Thereby, here we present the state-of-the-art of VS and drug repurposing to conclude pointing out the future perspectives in the field.
Collapse
Affiliation(s)
- Claudio A. Pereira
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Melisa Sayé
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Chantal Reigada
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Ariel M. Silber
- Laboratory of Biochemistry of Tryps – LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Guillermo R. Labadie
- Instituto de Química Rosario (IQUIR-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Mariana R. Miranda
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Edward Valera-Vera
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| |
Collapse
|
9
|
Scotti MT, Monteiro AFM, de Oliveira Viana J, Bezerra Mendonça Junior FJ, Ishiki HM, Tchouboun EN, De Araújo RSA, Scotti L. Recent Theoretical Studies Concerning Important Tropical Infections. Curr Med Chem 2020; 27:795-834. [DOI: 10.2174/0929867326666190711121418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/20/2018] [Accepted: 04/12/2019] [Indexed: 01/02/2023]
Abstract
Neglected Tropical Diseases (NTDs) form a group of diseases that are strongly associated
with poverty, flourish in impoverished environments, and thrive best in tropical areas,
where they tend to present overlap. They comprise several diseases, and the symptoms
vary dramatically from disease to disease, often causing from extreme pain, and untold misery
that anchors populations to poverty, permanent disability, and death. They affect more than 1
billion people worldwide; mostly in poor populations living in tropical and subtropical climates.
In this review, several complementary in silico approaches are presented; including
identification of new therapeutic targets, novel mechanisms of activity, high-throughput
screening of small-molecule libraries, as well as in silico quantitative structure-activity relationship
and recent molecular docking studies. Current and active research against Sleeping
Sickness, American trypanosomiasis, Leishmaniasis and Schistosomiasis infections will hopefully
lead to safer, more effective, less costly and more widely available treatments against
these parasitic forms of Neglected Tropical Diseases (NTDs) in the near future.
Collapse
Affiliation(s)
- Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Alex France Messias Monteiro
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Jéssika de Oliveira Viana
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | | | - Hamilton M. Ishiki
- University of Western Sao Paulo (Unoeste), Presidente Prudente, SP, Brazil
| | | | - Rodrigo Santos A. De Araújo
- Laboratory of Synthesis and Drug Delivery, Department of Biological Science, State University of Paraiba, Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| |
Collapse
|
10
|
Roca C, Sebastián-Pérez V, Campillo NE. In silico Tools for Target Identification and Drug Molecular Docking in Leishmania. DRUG DISCOVERY FOR LEISHMANIASIS 2017. [DOI: 10.1039/9781788010177-00130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Neglected tropical diseases represent a significant health burden in large parts of the world. Drug discovery is currently a key bottleneck in the pipeline of these diseases. In this chapter, the in silico approaches used for the processes involved in drug discovery, identification and validation of druggable Leishmania targets, and design and optimisation of new anti-leishmanial drugs are discussed. We also provide a general view of the different computational tools that can be employed in pursuit of this aim, along with the most interesting cases found in the literature.
Collapse
Affiliation(s)
- Carlos Roca
- Centro de Investigaciones Biológicas (CSIC) Ramiro de Maeztu 9 28040 Madrid Spain
| | | | - Nuria E. Campillo
- Centro de Investigaciones Biológicas (CSIC) Ramiro de Maeztu 9 28040 Madrid Spain
| |
Collapse
|
11
|
Abstract
Cutaneous and visceral leishmaniasis are amongst the most devastating infectious diseases of our time, affecting millions of people worldwide. The treatment of these serious diseases rely on a few chemotherapeutic agents, most of which are of parenteral use and induce severe side-effects. Furthermore, rates of treatment failure are high and have been linked to drug resistance in some areas. Here, we reviewed data on current chemotherapy practice in leishmaniasis. Drug resistance and mechanisms of resistance are described as well as the prospects for applying drug combinations for leishmaniasis chemotherapy. It is clear that efforts for discovering new drugs applicable to leishmaniasis chemotherapy are essential. The main aspects on the various steps of drug discovery in the field are discussed.
Collapse
|
12
|
In silico and in vitro comparative activity of novel experimental derivatives against Leishmania major and Leishmania infantum promastigotes. Exp Parasitol 2013; 135:208-16. [DOI: 10.1016/j.exppara.2013.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/20/2013] [Accepted: 07/08/2013] [Indexed: 11/18/2022]
|
13
|
Goyal N. Novel approaches for the identification of inhibitors of leishmanial dipeptidylcarboxypeptidase. Expert Opin Drug Discov 2013; 8:1127-34. [PMID: 23745836 DOI: 10.1517/17460441.2013.807247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Leishmaniasis imposes a substantial burden of mortality and morbidity affecting 12 million globally and continues to be a neglected tropical disease. Control of the disease is mainly based on chemotherapy, which relies on a handful of drugs with serious limitations. Over the last decade, target-based drug discovery is also being employed in addition to the random screening of compounds. Leishmanial dipeptidylcarboxypeptidase (LDCP), an angiotensin converting enzyme (ACE) related metallopeptidase, has been recently identified as a novel drug target for antileishmanial chemotherapy. AREAS COVERED This article examines dipeptidylcarboxypeptidase (DCP) of Leishmania donovani and of other sources from the international literature regarding their biochemical and structural characterization in comparison to mammalian ACE. Furthermore, the author discusses the identification of LdDCP specific inhibitors by virtual screening and their effect on parasite multiplication. Finally, the review looks ahead at areas for further exploration of DCP inhibitors in Leishmania chemotherapy. EXPERT OPINION The first step in targeted screening is to identify a suitable drug target and its validation followed by its use in high throughput screening of compounds. Limited studies on LDCP inhibitors have established a good correlation between parasite enzyme inhibition and their biological activity. This suggests that there is a potential for LDCP inhibitors as new antileishmanial drugs.
Collapse
Affiliation(s)
- Neena Goyal
- CSIR-Central Drug Research Institute, Division of Biochemistry, Chattar Manzil Palace, PO Box 173, Lucknow-226001 (UP), India.
| |
Collapse
|
14
|
Ravinder, Bhaskar, Gangwar S, Goyal N. Development of luciferase expressing Leishmania donovani axenic amastigotes as primary model for in vitro screening of antileishmanial compounds. Curr Microbiol 2012; 65:696-700. [PMID: 22945482 DOI: 10.1007/s00284-012-0209-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/24/2012] [Indexed: 10/27/2022]
Abstract
The development of new therapeutic leads against leishmaniasis relies primarily on screening of a large number of compounds on multiplication of clinically irrelevant transgenic promastigotes. The advent of the successful in vitro culture of axenic amastigotes allows the development of transgenic axenic amastigotes as a primary screen which can test compounds in a high throughput mode like promastigotes, still representative of the clinically relevant mammalian amastigotes stage. The present study reports the development of luciferase-tagged axenic amastigotes of Leishmania donovani, the causative agent of Indian Kala-azar, for in vitro drug screening. Luciferase expressing promastigotes were transformed to axenic amastigotes at a low pH and high temperature without the loss of luciferase expression. As compared to transgenic promastigotes, the luciferase expressing axenic amastigotes exhibited more sensitivity to antileishmanial drugs, particularly to pentavalent antimony (~2.8-fold) and also to the test compounds. Hence, the developed luciferase expressing axenic amastigotes make an ideal choice for high throughput drug screening for antileishmanial compounds.
Collapse
Affiliation(s)
- Ravinder
- Division of Biochemistry, CSIR-Central Drug Research Institute, Chattar Manzil Palace, Lucknow 226001, UP, India
| | | | | | | |
Collapse
|