1
|
Ugbaja S, Lawal I, Kumalo H, Lawal M. Alzheimer's Disease and β-Secretase Inhibition: An Update With a Focus on Computer-Aided Inhibitor Design. Curr Drug Targets 2021; 23:266-285. [PMID: 34370634 DOI: 10.2174/1389450122666210809100050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is an intensifying neurodegenerative illness due to its irreversible nature. Identification of β-site amyloid precursor protein (APP) cleaving enzyme1 (BACE1) has been a significant medicinal focus towards AD treatment, and this has opened ground for several investigations. Despite the numerous works in this direction, no BACE1 inhibitor has made it to the final approval stage as an anti-AD drug. METHOD We provide an introductory background of the subject with a general overview of the pathogenesis of AD. The review features BACE1 inhibitor design and development with a focus on some clinical trials and discontinued drugs. Using the topical keywords BACE1, inhibitor design, and computational/theoretical study in the Web of Science and Scopus database, we retrieved over 49 relevant articles. The search years are from 2010 and 2020, with analysis conducted from May 2020 to March 2021. RESULTS AND DISCUSSION Researchers have employed computational methodologies to unravel potential BACE1 inhibitors with a significant outcome. The most used computer-aided approach in BACE1 inhibitor design and binding/interaction studies are pharmacophore development, quantitative structure-activity relationship (QSAR), virtual screening, docking, and molecular dynamics (MD) simulations. These methods, plus more advanced ones including quantum mechanics/molecular mechanics (QM/MM) and QM, have proven substantial in the computational framework for BACE1 inhibitor design. Computational chemists have embraced the incorporation of in vitro assay to provide insight into the inhibition performance of identified molecules with potential inhibition towards BACE1. Significant IC50 values up to 50 nM, better than clinical trial compounds, are available in the literature. CONCLUSION The continuous failure of potent BACE1 inhibitors at clinical trials is attracting many queries prompting researchers to investigate newer concepts necessary for effective inhibitor design. The considered properties for efficient BACE1 inhibitor design seem enormous and require thorough scrutiny. Lately, researchers noticed that besides appreciable binding affinity and blood-brain barrier (BBB) permeation, BACE1 inhibitor must show low or no affinity for permeability-glycoprotein. Computational modeling methods have profound applications in drug discovery strategy. With the volume of recent in silico studies on BACE1 inhibition, the prospect of identifying potent molecules that would reach the approved level is feasible. Investigators should try pushing many of the identified BACE1 compounds with significant anti-AD properties to preclinical and clinical trial stages. We also advise computational research on allosteric inhibitor design, exosite modeling, and multisite inhibition of BACE1. These alternatives might be a solution to BACE1 drug discovery in AD therapy.
Collapse
Affiliation(s)
- Samuel Ugbaja
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, Saudi Arabia
| | - Isiaka Lawal
- Chemistry Department, Faculty of Applied and Computer Science, Vaal University of Technology, Vanderbijlpark Campus, Boulevard, 1900, Vanderbijlpark, Saudi Arabia
| | - Hezekiel Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, Saudi Arabia
| | - Monsurat Lawal
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, Saudi Arabia
| |
Collapse
|
2
|
Kaushik S, Chang CEA. Molecular Mechanics Study of Flow and Surface Influence in Ligand-Protein Association. Front Mol Biosci 2021; 8:659687. [PMID: 34041265 PMCID: PMC8142692 DOI: 10.3389/fmolb.2021.659687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Ligand–protein association is the first and critical step for many biological and chemical processes. This study investigated the molecular association processes under different environments. In biology, cells have different compartments where ligand–protein binding may occur on a membrane. In experiments involving ligand–protein binding, such as the surface plasmon resonance and continuous flow biosynthesis, a substrate flow and surface are required in experimental settings. As compared with a simple binding condition, which includes only the ligand, protein, and solvent, the association rate and processes may be affected by additional ligand transporting forces and other intermolecular interactions between the ligand and environmental objects. We evaluated these environmental factors by using a ligand xk263 binding to HIV protease (HIVp) with atomistic details. Using Brownian dynamics simulations, we modeled xk263 and HIVp association time and probability when a system has xk263 diffusion flux and a non-polar self-assembled monolayer surface. We also examined different protein orientations and accessible surfaces for xk263. To allow xk263 to access to the dimer interface of immobilized HIVp, we simulated the system by placing the protein 20Å above the surface because immobilizing HIVp on a surface prevented xk263 from contacting with the interface. The non-specific interactions increased the binding probability while the association time remained unchanged. When the xk263 diffusion flux increased, the effective xk263 concentration around HIVp, xk263–HIVp association time and binding probability decreased non-linearly regardless of interacting with the self-assembled monolayer surface or not. The work sheds light on the effects of the solvent flow and surface environment on ligand–protein associations and provides a perspective on experimental design.
Collapse
Affiliation(s)
- Shivansh Kaushik
- Department of Chemistry, University of Chemistry, Riverside, CA, United States
| | - Chia-En A Chang
- Department of Chemistry, University of Chemistry, Riverside, CA, United States
| |
Collapse
|
3
|
Li D, Ji B. Protein conformational transitions coupling with ligand interactions: Simulations from molecules to medicine. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2019. [DOI: 10.1016/j.medntd.2019.100026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
4
|
Huang YMM, Raymundo MAV, Chen W, Chang CEA. Mechanism of the Association Pathways for a Pair of Fast and Slow Binding Ligands of HIV-1 Protease. Biochemistry 2017; 56:1311-1323. [PMID: 28060481 DOI: 10.1021/acs.biochem.6b01112] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Equilibrium constants, together with kinetic rate constants of binding, are key factors in the efficacy and safety of drug compounds, informing drug design. However, the association pathways of protein-ligand binding, which contribute to their kinetic behaviors, are little understood. In this work, we used unbiased all-atom molecular dynamics (MD) simulations with an explicit solvent model to study the association processes of protein-ligand binding. Using the HIV protease (HIVp)-xk263 and HIVp-ritonavir protein-ligand systems as cases, we observed that ligand association is a multistep process involving diffusion, localization, and conformational rearrangements of the protein, ligand, and water molecules. Moreover, these two ligands preferred different routes of binding, which reflect two well-known binding mechanisms: induced-fit and conformation selection models. Our study shows that xk263 has a stronger capacity for desolvating surrounding water molecules, thereby inducing a semiopen conformation of the HIVp flaps (induced-fit model). In contrast, the slow dehydration characteristic of ritonavir allows for gradual association with the binding pocket of HIVp when the protein's flap conformation is fully open (conformation selection model). By studying the mechanism of ligand association and understanding the role of solvent molecules during the binding event, we can obtain a different perspective on the mechanism of macromolecule recognition, providing insights into drug discovery.
Collapse
Affiliation(s)
- Yu-Ming M Huang
- Department of Chemistry, University of California, Riverside , Riverside, California 92521, United States
| | - Mark Anthony V Raymundo
- Department of Chemistry, University of California, Riverside , Riverside, California 92521, United States
| | - Wei Chen
- Department of Chemistry, University of California, Riverside , Riverside, California 92521, United States.,ChemConsulting LLC , Frederick, Maryland 21704, United States
| | - Chia-En A Chang
- Department of Chemistry, University of California, Riverside , Riverside, California 92521, United States
| |
Collapse
|
5
|
Kumar R, Gupta D. Identification of CYP1B1-specific candidate inhibitors using combination ofin silicoscreening, integrated knowledge-based filtering, and molecular dynamics simulations. Chem Biol Drug Des 2016; 88:730-739. [DOI: 10.1111/cbdd.12803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/09/2016] [Accepted: 06/12/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Rakesh Kumar
- Translational Bioinformatics Group; International Centre for Genetic Engineering and Biotechnology (ICGEB); New Delhi Delhi India
| | - Dinesh Gupta
- Translational Bioinformatics Group; International Centre for Genetic Engineering and Biotechnology (ICGEB); New Delhi Delhi India
| |
Collapse
|
6
|
Liu Z, Casey TM, Blackburn ME, Huang X, Pham L, de Vera IMS, Carter JD, Kear-Scott JL, Veloro AM, Galiano L, Fanucci GE. Pulsed EPR characterization of HIV-1 protease conformational sampling and inhibitor-induced population shifts. Phys Chem Chem Phys 2016; 18:5819-31. [PMID: 26489725 PMCID: PMC4758878 DOI: 10.1039/c5cp04556h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The conformational landscape of HIV-1 protease (PR) can be experimentally characterized by pulsed-EPR double electron-electron resonance (DEER). For this characterization, nitroxide spin labels are attached to an engineered cysteine residue in the flap region of HIV-1 PR. DEER distance measurements from spin-labels contained within each flap of the homodimer provide a detailed description of the conformational sampling of apo-enzyme as well as induced conformational shifts as a function of inhibitor binding. The distance distribution profiles are further interpreted in terms of a conformational ensemble scheme that consists of four unique states termed "curled/tucked", "closed", "semi-open" and "wide-open" conformations. Reported here are the DEER results for a drug-resistant variant clinical isolate sequence, V6, in the presence of FDA approved protease inhibitors (PIs) as well as a non-hydrolyzable substrate mimic, CaP2. Results are interpreted in the context of the current understanding of the relationship between conformational sampling, drug resistance, and kinetic efficiency of HIV-1PR as derived from previous DEER and kinetic data for a series of HIV-1PR constructs that contain drug-pressure selected mutations or natural polymorphisms. Specifically, these collective results support the notion that inhibitor-induced closure of the flaps correlates with inhibitor efficiency and drug resistance. This body of work also suggests DEER as a tool for studying conformational sampling in flexible enzymes as it relates to function.
Collapse
Affiliation(s)
- Zhanglong Liu
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Thomas M Casey
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Mandy E Blackburn
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Xi Huang
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Linh Pham
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Ian Mitchelle S de Vera
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Jeffrey D Carter
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Jamie L Kear-Scott
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Angelo M Veloro
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Luis Galiano
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Gail E Fanucci
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| |
Collapse
|
7
|
Zhan P, Pannecouque C, De Clercq E, Liu X. Anti-HIV Drug Discovery and Development: Current Innovations and Future Trends. J Med Chem 2015; 59:2849-78. [PMID: 26509831 DOI: 10.1021/acs.jmedchem.5b00497] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The early effectiveness of combinatorial antiretroviral therapy (cART) in the treatment of HIV infection has been compromised to some extent by rapid development of multidrug-resistant HIV strains, poor bioavailability, and cumulative toxicities, and so there is a need for alternative strategies of antiretroviral drug discovery and additional therapeutic agents with novel action modes or targets. From this perspective, we first review current strategies of antiretroviral drug discovery and optimization, with the aid of selected examples from the recent literature. We highlight the development of phosphate ester-based prodrugs as a means to improve the aqueous solubility of HIV inhibitors, and the introduction of the substrate envelope hypothesis as a new approach for overcoming HIV drug resistance. Finally, we discuss future directions for research, including opportunities for exploitation of novel antiretroviral targets, and the strategy of activation of latent HIV reservoirs as a means to eradicate the virus.
Collapse
Affiliation(s)
- Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Katholieke Universiteit Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China
| |
Collapse
|
8
|
Kiani-Anbouhi R, Ganjali MR, Norouzi P. Application of QSPR for prediction of the complexation stabilities of Sm(III) with ionophores applied in lanthanoid sensors. J INCL PHENOM MACRO 2015. [DOI: 10.1007/s10847-014-0472-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Morales-Camilo N, Salas CO, Sanhueza C, Espinosa-Bustos C, Sepúlveda-Boza S, Reyes-Parada M, Gonzalez-Nilo F, Caroli-Rezende M, Fierro A. Synthesis, Biological Evaluation, and Molecular Simulation of Chalcones and Aurones as Selective MAO-B Inhibitors. Chem Biol Drug Des 2014; 85:685-95. [PMID: 25346162 DOI: 10.1111/cbdd.12458] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/11/2014] [Accepted: 10/12/2014] [Indexed: 11/28/2022]
Abstract
A series of chalcones and aurones were synthesized and evaluated in vitro as monoamine oxidase inhibitors (MAOi). Our results show that aurones, which had not been previously reported as MAOi, are MAO-B inhibitors. Thus, both families inhibited selectively the B isoform of MAO in the micromolar range, offering novel scaffolds for the design of new and potent MAO inhibitors. The main structural requirements for their activity were characterized with the aid of 3D-QSAR and docking studies.
Collapse
Affiliation(s)
- Nicole Morales-Camilo
- Departamento de Química Orgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago de Chile, 702843, Chile
| | - Cristian O Salas
- Departamento de Química Orgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago de Chile, 702843, Chile
| | - Claudia Sanhueza
- Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago, Casilla 442, Correo 2, Santiago, Chile
| | - Christian Espinosa-Bustos
- Departamento de Química Orgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago de Chile, 702843, Chile
| | - Silvia Sepúlveda-Boza
- Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago, Casilla 442, Correo 2, Santiago, Chile
| | - Miguel Reyes-Parada
- Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago, Casilla 442, Correo 2, Santiago, Chile.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910124, Chile
| | - Fernando Gonzalez-Nilo
- Universidad Andrés Bello, Facultad de Ciencias Biológicas, Centro de Bioinformática y Biología Integrativa, Santiago 8370146, Chile
| | - Marcos Caroli-Rezende
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago, 9170022, Chile
| | - Angélica Fierro
- Departamento de Química Orgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago de Chile, 702843, Chile
| |
Collapse
|
10
|
Prediction of the complexation stabilities of La3+ ion with ionophores applied in lanthanoid sensors. J INCL PHENOM MACRO 2013. [DOI: 10.1007/s10847-013-0303-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|