1
|
Román J, Lagos A, Mahn A, Quintero J. The Effect of Broccoli Glucosinolates Hydrolysis Products on Botrytis cinerea: A Potential New Antifungal Agent. Int J Mol Sci 2024; 25:7945. [PMID: 39063186 PMCID: PMC11277183 DOI: 10.3390/ijms25147945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The present study investigates the interactions between eight glucosinolate hydrolysis products (GHPs) sourced from broccoli by-products and the detoxifying enzymes of Botrytis cinerea, namely eburicol 14-alpha-demethylase (CYP51) and glutathione-S-transferase (GST), through in silico analysis. Additionally, in vitro assays were conducted to explore the impact of these compounds on fungal growth. Our findings reveal that GHPs exhibit greater efficacy in inhibiting conidia germination compared to mycelium growth. Furthermore, the results demonstrate the antifungal activity of glucosinolate hydrolysis products derived from various parts of the broccoli plant, including inflorescences, leaves, and stems, against B. cinerea. Importantly, the results suggest that these hydrolysis products interact with the detoxifying enzymes of the fungus, potentially contributing to their antifungal properties. Extracts rich in GHPs, particularly iberin and indole-GHPs, derived from broccoli by-products emerge as promising candidates for biofungicidal applications, offering a sustainable and novel approach to plant protection by harnessing bioactive compounds from agricultural residues.
Collapse
Affiliation(s)
- Juan Román
- Correspondence: (J.R.); (J.Q.); Tel.: +56-412203822 (J.R.); +56-227181859 (J.Q.)
| | | | | | - Julián Quintero
- Department of Chemical Engineering, University of Santiago, Chile, Avenida Libertador Bernardo O’Higgins 3363, Estación Central, Santiago 9170019, Chile; (A.L.); (A.M.)
| |
Collapse
|
2
|
Barrera-Téllez FJ, Prieto-Martínez FD, Hernández-Campos A, Martínez-Mayorga K, Castillo-Bocanegra R. In Silico Exploration of the Trypanothione Reductase (TryR) of L. mexicana. Int J Mol Sci 2023; 24:16046. [PMID: 38003236 PMCID: PMC10671491 DOI: 10.3390/ijms242216046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Human leishmaniasis is a neglected tropical disease which affects nearly 1.5 million people every year, with Mexico being an important endemic region. One of the major defense mechanisms of these parasites is based in the polyamine metabolic pathway, as it provides the necessary compounds for its survival. Among the enzymes in this route, trypanothione reductase (TryR), an oxidoreductase enzyme, is crucial for the Leishmania genus' survival against oxidative stress. Thus, it poses as an attractive drug target, yet due to the size and features of its catalytic pocket, modeling techniques such as molecular docking focusing on that region is not convenient. Herein, we present a computational study using several structure-based approaches to assess the druggability of TryR from L. mexicana, the predominant Leishmania species in Mexico, beyond its catalytic site. Using this consensus methodology, three relevant pockets were found, of which the one we call σ-site promises to be the most favorable one. These findings may help the design of new drugs of trypanothione-related diseases.
Collapse
Affiliation(s)
- Francisco J. Barrera-Téllez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Fernando D. Prieto-Martínez
- Instituto de Química, Unidad Mérida, Universidad Nacional Autónoma de México, Carretera Mérida-Tetiz, Km. 4.5, Ucú 97357, Mexico
| | - Alicia Hernández-Campos
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Karina Martínez-Mayorga
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Unidad Mérida, Universidad Nacional Autónoma de México, Sierra Papacal, Mérida 97302, Mexico
| | - Rafael Castillo-Bocanegra
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
3
|
Coro-Bermello J, López-Rodríguez ER, Alfonso-Ramos JE, Alonso D, Ojeda-Carralero GM, Prado GA, Moreno-Castillo E. Identification of novel thiadiazin derivatives as potentially selective inhibitors towards trypanothione reductase from Trypanosoma cruzi by molecular docking using the numerical index poses ratio Pr and the binding mode analysis. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04375-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Abstract
Chagas disease is a serious health problem in Central and South America for which effective treatment is not currently available. This illness is caused by the protozoa Trypanosoma cruzi, a species that relies on a thiol-based metabolism to regulate oxidative stress. Trypanothione reductase enzyme plays a central role in the metabolic pathway of the parasite. In this work, a virtual screening of a library of novel thiadiazine derivatives against trypanothione reductase using molecular docking was performed. Four different series of hybrid ligands having in the structure one or two peptoid moieties (series I and II) or the tetrazole ring (series III and IV) were considered. An ad hoc numerical index called poses ratio was introduced to interpret the results of the docking analysis and to establish relevant structure-interaction relationships. In addition, six binding modes were found for the ligands with the highest populated conformational clusters after applying contact-based analysis. The most regular and relevant were binding modes I and II, found mainly for ligands from series I. A subsequent molecular docking on human glutathione reductase enzyme allowed to assess the possible cytotoxicity of the ligands towards human cells. A selective binding profile was found for ligands with interactions in the Hydrophobic cleft, the spermidine and the Z subsites inside the active site of trypanothione reductase. At the end of the study, new thiadiazine-based compounds were identified as plausible candidates to selectively inhibit the parasitic enzyme.
Graphic abstract
Collapse
|
4
|
do Carmo Santos N, da Paixão VG, da Rocha Pita SS. New Trypanosoma cruzi Trypanothione Reductase Inhibitors Identification using the Virtual Screening in Database of Nucleus Bioassay, Biosynthesis and Ecophysiology (NuBBE). ACTA ACUST UNITED AC 2019. [DOI: 10.2174/2211352516666180928130031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background:
American trypanosomiasis, also known as Chagas disease, is caused by
the protozoan Trypanosoma cruzi (T. cruzi) and affects approximately 10 to 12 million, primarily
in Latin America. Since its discovery in 1909, there is no effective treatment for its chronic phase,
with benzonidazole being the only anti-trypanosoma drug used in Brazil, despite the absence of
conclusive evidence to prove its efficacy and safety. Thus, it is necessary to develop new drugs that
are more effective and selective against Trypanosoma cruzi.
Methods:
The T. cruzi enzyme Trypanothione Reductase (TcTR) is a validated target for the discovery
of new antiprotozoal compounds and we employed the Virtual Screening technique on the
database of Nucleus of Bioassays, Biosynthesis and Ecophysiology (NuBBE), aiming to search for
new chemical moieties against T. cruzi. From these we selected the 10 best ligand energies interactions
and verified their interaction profile with the main TcTR sites through the AuPosSOM server
(https://www.biomedicale.univ-paris5.fr/aupossom).
Results and Conclusion:
Finally, we analyzed some pharmacokinetics and toxicological information
through the servers Aggregator Advisor (http://advisor.bkslab.org), Pred-hERG 4.0
(http://labmol.com.br/predherg) and pkCSM (http://biosig.unimelb.edu.au/pkcsm/prediction) which
we expect will be useful in in vitro preclinical trials.</P>
Collapse
Affiliation(s)
- Nelcí do Carmo Santos
- Bioinformatics and Molecular Modeling Laboratory (LaBiMM), Pharmacy College, Federal University of Bahia, Salvador-BA, Brazil
| | - Vinícius G. da Paixão
- Bioinformatics and Molecular Modeling Laboratory (LaBiMM), Pharmacy College, Federal University of Bahia, Salvador-BA, Brazil
| | - Samuel S. da Rocha Pita
- Bioinformatics and Molecular Modeling Laboratory (LaBiMM), Pharmacy College, Federal University of Bahia, Salvador-BA, Brazil
| |
Collapse
|
5
|
da Paixão VG, Pita SSDR. In silico identification and evaluation of new Trypanosoma cruzi trypanothione reductase (TcTR) inhibitors obtained from natural products database of the Bahia semi-arid region (NatProDB). Comput Biol Chem 2019; 79:36-47. [PMID: 30710804 DOI: 10.1016/j.compbiolchem.2019.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 11/17/2022]
Abstract
Trypanosoma cruzi Trypanothione Reductase (TcTR) is one of the therapeutic targets studied in the development of new drugs against Chagas' disease. Due to its biodiversity, Brazil has several compounds of natural origin that were not yet properly explored in drug discovery. Therefore, we employed the Virtual Screening against TcTR aiming to discover new inhibitors from the Natural Products Database of the Bahia Semi-Arid region (NatProDB). This database has a wide chemical diversity favoring the discovery of new chemical entities. Subsequently, we analyzed the best docking conformations using self-organizing maps (AuPosSOM) aiming to verify their interaction sites at TcTR. Finally, the Pred-hERG, the Aggregator Advisor, the FAF-DRUGS and the pkCSM results allowed us to evaluate, respectively, the cardiotoxicity, aggregation capacity, presence of false positives (PAINS) and its toxicity. Thus, we selected three molecules that could be tested in in vitro assays in the hope that the computational results reported here would favor the development of new anti-chagasic drugs.
Collapse
Affiliation(s)
- Vinícius Guimarães da Paixão
- Laboratório de Bioinformática e Modelagem Molecular (LaBiMM), Universidade Federal da Bahia, Av. Barão de Jeremoabo, 147, Faculdade de Farmácia, Ondina, 40170-115, Salvador, BA, Brazil
| | - Samuel Silva da Rocha Pita
- Laboratório de Bioinformática e Modelagem Molecular (LaBiMM), Universidade Federal da Bahia, Av. Barão de Jeremoabo, 147, Faculdade de Farmácia, Ondina, 40170-115, Salvador, BA, Brazil.
| |
Collapse
|
6
|
Rodríguez-Becerra J, Cáceres-Jensen L, Hernández-Ramos J, Barrientos L. Identification of potential trypanothione reductase inhibitors among commercially available
$$\upbeta $$
β
-carboline derivatives using chemical space, lead-like and drug-like filters, pharmacophore models and molecular docking. Mol Divers 2017; 21:697-711. [DOI: 10.1007/s11030-017-9747-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 04/16/2017] [Indexed: 10/19/2022]
|
7
|
Indazoles: a new top seed structure in the search of efficient drugs against Trypanosoma cruzi. Future Med Chem 2013; 5:1843-59. [DOI: 10.4155/fmc.13.144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
For years, Chagas disease treatment has been limited to only two drugs of highly questionable and controversial use (Nifurtimox® and Benznidazole®). In the search of effective drugs, many efforts have been made, but only a few structures have emerged as actual candidates. Heading into this, the multitarget-directed approach appears as the best choice. In this framework, indazoles were shown to be potent Trypanosoma cruzi growth inhibitors, being able to lead both the formation of reactive oxygen species and the inhibition of trypanothione reductase. Herein, we discuss the main structural factors that rule the anti-T. cruzi properties of indazoles, and how they would be involved in the biological properties as well as in the action mechanisms, attempting to make parallels between the old paradigms and current evidences in order to outline what could be the next steps to follow in regard to the future drug design for Chagas disease treatment.
Collapse
|
8
|
Flores Sandoval CA, Cuevas Hernández RI, Correa Basurto J, Beltrán Conde HI, Padilla Martínez II, Farfán García JN, Nogueda Torres B, Trujillo Ferrara JG. Synthesis and theoretic calculations of benzoxazoles and docking studies of their interactions with triosephosphate isomerase. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0264-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|