5
|
Vogelgesang A, Lange C, Blümke L, Laage G, Rümpel S, Langner S, Bröker BM, Dressel A, Ruhnau J. Ischaemic stroke and the recanalization drug tissue plasminogen activator interfere with antibacterial phagocyte function. J Neuroinflammation 2017; 14:140. [PMID: 28732504 PMCID: PMC5521108 DOI: 10.1186/s12974-017-0914-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/10/2017] [Indexed: 12/22/2022] Open
Abstract
Background Stroke induces immune alterations such as impaired oxidative burst and reduced release of neutrophil extracellular traps (NETs). We hypothesised that key enzymes of these defence mechanisms may be altered in ischaemic stroke. Therefore, we analysed the intra- and extracellular amounts of myeloperoxidase (MPO) and neutrophil elastase (NE) in patient sera and granulocytes and monocytes. Because the autonomous nervous system is thought to mediate stroke-induced immune alterations, we also studied the influence of stress hormones and acetylcholine on MPO and NE. Rapid recanalization by recombinant tissue plasminogen activator (r-tPA) is the only available treatment for ischaemic stroke besides thrombectomy, and its influence on antibacterial defence mechanisms of granulocytes and monocytes were addressed here. Methods Ex vivo: Intracellular and serum MPO and NE were measured on days 0, 1, 3 and 5 post-stroke by either flow cytometry or enzyme-linked immunosorbent assay (ELISA) and compared to controls. In vitro: Blood from healthy donors was incubated with catecholamines, dexamethasone and acetylcholine, and the percentage of NET-producing cells and the area covered by NETs were quantified immunohistochemically. Intra- and extracellular MPO and NE were quantified by flow cytometry or ELISA. Blood samples from healthy donors were incubated with r-tPA, and oxidative burst, phagocytosis, NETosis, cytokine release, MPO and NE were quantified by flow cytometry, ELISA and microscopy. Results MPO was reduced in granulocytes but increased in sera obtained from stroke patients compared to controls. NE was not altered intracellularly but was elevated in patient sera. The percentage of NET-producing neutrophils was decreased by stress hormones and increased by acetylcholine. Neither intracellular MPO nor NE was altered by hormone treatment; however, adrenaline and acetylcholine induced NE release. r-tPA led to reduced phagocytosis and oxidative burst in granulocytes and monocytes in vitro. NETosis, MPO release and cytokines were not altered, whereas NE release was enhanced by r-tPA. Conclusions Intracellular reduction of MPO might be responsible for reduced NETosis in stroke patients. The impact of enhanced MPO and NE serum levels in stroke patients should be addressed in future studies. r-tPA impaired antibacterial defence function in vitro. Therefore, patients who undergo unsuccessful recanalization therapy might be at higher risk for infection, which should be analysed in future investigations. Immune alterations due to r-tPA effects in stroke patients should also be investigated. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0914-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antje Vogelgesang
- Department of Neurology, University Medicine Greifswald, Fleischmannstraße 41, FC3, 17475, Greifswald, Germany.
| | - Claudia Lange
- Department of Neurology, University Medicine Greifswald, Fleischmannstraße 41, FC3, 17475, Greifswald, Germany
| | - Lara Blümke
- Department of Neurology, University Medicine Greifswald, Fleischmannstraße 41, FC3, 17475, Greifswald, Germany
| | - Georg Laage
- Department of Neurology, University Medicine Greifswald, Fleischmannstraße 41, FC3, 17475, Greifswald, Germany
| | - Sarah Rümpel
- Department of Neurology, University Medicine Greifswald, Fleischmannstraße 41, FC3, 17475, Greifswald, Germany
| | - Sönke Langner
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Barbara M Bröker
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Alexander Dressel
- Department of Neurology, University Medicine Greifswald, Fleischmannstraße 41, FC3, 17475, Greifswald, Germany.,Department of Neurology, Carl-Thiem Klinikum, Cottbus, Germany
| | - Johanna Ruhnau
- Department of Neurology, University Medicine Greifswald, Fleischmannstraße 41, FC3, 17475, Greifswald, Germany
| |
Collapse
|
7
|
Desilles JP, Loyau S, Syvannarath V, Gonzalez-Valcarcel J, Cantier M, Louedec L, Lapergue B, Amarenco P, Ajzenberg N, Jandrot-Perrus M, Michel JB, Ho-Tin-Noe B, Mazighi M. Alteplase Reduces Downstream Microvascular Thrombosis and Improves the Benefit of Large Artery Recanalization in Stroke. Stroke 2015; 46:3241-8. [PMID: 26443832 DOI: 10.1161/strokeaha.115.010721] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/02/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Downstream microvascular thrombosis (DMT) is known to be a contributing factor to incomplete reperfusion in acute ischemic stroke. The aim of this study was to determine the timing of DMT with intravital imaging and to test the hypothesis that intravenous alteplase infusion could reduce DMT in a transient middle cerebral artery occlusion (MCAO) rat stroke model. METHODS Rats were subjected to 60-minute transient MCAO. Alteplase (10 mg/kg) was administered 30 minutes after the beginning of MCAO. Real-time intravital fluorescence microscopy through a dura-sparing craniotomy was used to visualize circulating blood cells and fibrinogen. Cerebral microvessel patency was quantitatively evaluated by fluorescein isothiocyanate-dextran perfusion. RESULTS Immediately after MCAO, platelet and leukocyte accumulation were observed mostly in the venous compartment. Within 30 minutes after MCAO, microthrombi and parietal fibrin deposits were detected in postcapillary microvessels. Alteplase treatment significantly (P=0.006) reduced infarct volume and increased the percentage of perfused vessels during MCAO (P=0.02) compared with saline. Plasma levels of fibrinogen from alteplase-treated rats showed a rapid and profound hypofibrinogenemia. In vitro platelet aggregation demonstrated that alteplase reduced platelet aggregation (P=0.0001) and facilitated platelet disaggregation (P=0.001). These effects were reversible in the presence of exogenous fibrinogen. CONCLUSIONS Our data demonstrate that DMT is an early phenomenon initiated before recanalization. We further show that alteplase-dependent maintenance of downstream perfusion during MCAO improves acute ischemic stroke outcome through a fibrinogen-dependent platelet aggregation reduction. Our results indicate that early targeting of DMT represents a therapeutic strategy to improve the benefit of large artery recanalization in acute ischemic stroke.
Collapse
Affiliation(s)
- Jean-Philippe Desilles
- From the Univ Paris Diderot, Sorbonne Paris Cite, Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France (J.-P.D., S.L., V.S., J.G.-V., M.C., L.L., P.A., N.A., M.J.-P., J.-B.M., B.H.-T.-N., M.M.); Division of Neurology, Stroke Center, Foch Hospital, University Versailles Saint-Quentin en Yvelines, Paris, France (B.L.); Departments of Neurology and Stroke Center (P.A.) and Hematology (N.A.), AP-HP, Bichat Hospital, Paris, France; and Department of Neurology and Stroke Center, AP-HP, Lariboisière Hospital, DHU Neurovasc, Paris, France (M.M.).
| | - Stephane Loyau
- From the Univ Paris Diderot, Sorbonne Paris Cite, Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France (J.-P.D., S.L., V.S., J.G.-V., M.C., L.L., P.A., N.A., M.J.-P., J.-B.M., B.H.-T.-N., M.M.); Division of Neurology, Stroke Center, Foch Hospital, University Versailles Saint-Quentin en Yvelines, Paris, France (B.L.); Departments of Neurology and Stroke Center (P.A.) and Hematology (N.A.), AP-HP, Bichat Hospital, Paris, France; and Department of Neurology and Stroke Center, AP-HP, Lariboisière Hospital, DHU Neurovasc, Paris, France (M.M.)
| | - Varouna Syvannarath
- From the Univ Paris Diderot, Sorbonne Paris Cite, Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France (J.-P.D., S.L., V.S., J.G.-V., M.C., L.L., P.A., N.A., M.J.-P., J.-B.M., B.H.-T.-N., M.M.); Division of Neurology, Stroke Center, Foch Hospital, University Versailles Saint-Quentin en Yvelines, Paris, France (B.L.); Departments of Neurology and Stroke Center (P.A.) and Hematology (N.A.), AP-HP, Bichat Hospital, Paris, France; and Department of Neurology and Stroke Center, AP-HP, Lariboisière Hospital, DHU Neurovasc, Paris, France (M.M.)
| | - Jaime Gonzalez-Valcarcel
- From the Univ Paris Diderot, Sorbonne Paris Cite, Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France (J.-P.D., S.L., V.S., J.G.-V., M.C., L.L., P.A., N.A., M.J.-P., J.-B.M., B.H.-T.-N., M.M.); Division of Neurology, Stroke Center, Foch Hospital, University Versailles Saint-Quentin en Yvelines, Paris, France (B.L.); Departments of Neurology and Stroke Center (P.A.) and Hematology (N.A.), AP-HP, Bichat Hospital, Paris, France; and Department of Neurology and Stroke Center, AP-HP, Lariboisière Hospital, DHU Neurovasc, Paris, France (M.M.)
| | - Marie Cantier
- From the Univ Paris Diderot, Sorbonne Paris Cite, Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France (J.-P.D., S.L., V.S., J.G.-V., M.C., L.L., P.A., N.A., M.J.-P., J.-B.M., B.H.-T.-N., M.M.); Division of Neurology, Stroke Center, Foch Hospital, University Versailles Saint-Quentin en Yvelines, Paris, France (B.L.); Departments of Neurology and Stroke Center (P.A.) and Hematology (N.A.), AP-HP, Bichat Hospital, Paris, France; and Department of Neurology and Stroke Center, AP-HP, Lariboisière Hospital, DHU Neurovasc, Paris, France (M.M.)
| | - Liliane Louedec
- From the Univ Paris Diderot, Sorbonne Paris Cite, Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France (J.-P.D., S.L., V.S., J.G.-V., M.C., L.L., P.A., N.A., M.J.-P., J.-B.M., B.H.-T.-N., M.M.); Division of Neurology, Stroke Center, Foch Hospital, University Versailles Saint-Quentin en Yvelines, Paris, France (B.L.); Departments of Neurology and Stroke Center (P.A.) and Hematology (N.A.), AP-HP, Bichat Hospital, Paris, France; and Department of Neurology and Stroke Center, AP-HP, Lariboisière Hospital, DHU Neurovasc, Paris, France (M.M.)
| | - Bertrand Lapergue
- From the Univ Paris Diderot, Sorbonne Paris Cite, Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France (J.-P.D., S.L., V.S., J.G.-V., M.C., L.L., P.A., N.A., M.J.-P., J.-B.M., B.H.-T.-N., M.M.); Division of Neurology, Stroke Center, Foch Hospital, University Versailles Saint-Quentin en Yvelines, Paris, France (B.L.); Departments of Neurology and Stroke Center (P.A.) and Hematology (N.A.), AP-HP, Bichat Hospital, Paris, France; and Department of Neurology and Stroke Center, AP-HP, Lariboisière Hospital, DHU Neurovasc, Paris, France (M.M.)
| | - Pierre Amarenco
- From the Univ Paris Diderot, Sorbonne Paris Cite, Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France (J.-P.D., S.L., V.S., J.G.-V., M.C., L.L., P.A., N.A., M.J.-P., J.-B.M., B.H.-T.-N., M.M.); Division of Neurology, Stroke Center, Foch Hospital, University Versailles Saint-Quentin en Yvelines, Paris, France (B.L.); Departments of Neurology and Stroke Center (P.A.) and Hematology (N.A.), AP-HP, Bichat Hospital, Paris, France; and Department of Neurology and Stroke Center, AP-HP, Lariboisière Hospital, DHU Neurovasc, Paris, France (M.M.)
| | - Nadine Ajzenberg
- From the Univ Paris Diderot, Sorbonne Paris Cite, Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France (J.-P.D., S.L., V.S., J.G.-V., M.C., L.L., P.A., N.A., M.J.-P., J.-B.M., B.H.-T.-N., M.M.); Division of Neurology, Stroke Center, Foch Hospital, University Versailles Saint-Quentin en Yvelines, Paris, France (B.L.); Departments of Neurology and Stroke Center (P.A.) and Hematology (N.A.), AP-HP, Bichat Hospital, Paris, France; and Department of Neurology and Stroke Center, AP-HP, Lariboisière Hospital, DHU Neurovasc, Paris, France (M.M.)
| | - Martine Jandrot-Perrus
- From the Univ Paris Diderot, Sorbonne Paris Cite, Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France (J.-P.D., S.L., V.S., J.G.-V., M.C., L.L., P.A., N.A., M.J.-P., J.-B.M., B.H.-T.-N., M.M.); Division of Neurology, Stroke Center, Foch Hospital, University Versailles Saint-Quentin en Yvelines, Paris, France (B.L.); Departments of Neurology and Stroke Center (P.A.) and Hematology (N.A.), AP-HP, Bichat Hospital, Paris, France; and Department of Neurology and Stroke Center, AP-HP, Lariboisière Hospital, DHU Neurovasc, Paris, France (M.M.)
| | - Jean-Baptiste Michel
- From the Univ Paris Diderot, Sorbonne Paris Cite, Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France (J.-P.D., S.L., V.S., J.G.-V., M.C., L.L., P.A., N.A., M.J.-P., J.-B.M., B.H.-T.-N., M.M.); Division of Neurology, Stroke Center, Foch Hospital, University Versailles Saint-Quentin en Yvelines, Paris, France (B.L.); Departments of Neurology and Stroke Center (P.A.) and Hematology (N.A.), AP-HP, Bichat Hospital, Paris, France; and Department of Neurology and Stroke Center, AP-HP, Lariboisière Hospital, DHU Neurovasc, Paris, France (M.M.)
| | - Benoit Ho-Tin-Noe
- From the Univ Paris Diderot, Sorbonne Paris Cite, Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France (J.-P.D., S.L., V.S., J.G.-V., M.C., L.L., P.A., N.A., M.J.-P., J.-B.M., B.H.-T.-N., M.M.); Division of Neurology, Stroke Center, Foch Hospital, University Versailles Saint-Quentin en Yvelines, Paris, France (B.L.); Departments of Neurology and Stroke Center (P.A.) and Hematology (N.A.), AP-HP, Bichat Hospital, Paris, France; and Department of Neurology and Stroke Center, AP-HP, Lariboisière Hospital, DHU Neurovasc, Paris, France (M.M.)
| | - Mikael Mazighi
- From the Univ Paris Diderot, Sorbonne Paris Cite, Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France (J.-P.D., S.L., V.S., J.G.-V., M.C., L.L., P.A., N.A., M.J.-P., J.-B.M., B.H.-T.-N., M.M.); Division of Neurology, Stroke Center, Foch Hospital, University Versailles Saint-Quentin en Yvelines, Paris, France (B.L.); Departments of Neurology and Stroke Center (P.A.) and Hematology (N.A.), AP-HP, Bichat Hospital, Paris, France; and Department of Neurology and Stroke Center, AP-HP, Lariboisière Hospital, DHU Neurovasc, Paris, France (M.M.)
| |
Collapse
|