1
|
Ishido M. Cyclin D3 Colocalizes with Myogenin and p21 in Skeletal Muscle Satellite Cells during Early-Stage Functional Overload. Acta Histochem Cytochem 2023; 56:111-119. [PMID: 38318102 PMCID: PMC10838632 DOI: 10.1267/ahc.23-00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/09/2023] [Indexed: 02/07/2024] Open
Abstract
Myogenic cell differentiation is modulated by multiple regulatory factors, such as myogenin, p21, and cyclin D3 during myogenesis in vitro. It is also recognized that myogenin and p21 play important roles in regulating muscle satellite cell (SC) differentiation during overload-induced muscle hypertrophy in vivo. However, the expression patterns and functional role of cyclin D3 in the progress of muscle hypertrophy remain unclear. Thus, the present study investigated cyclin D3 expression in skeletal muscles during early-stage functional overload. Plantaris muscles were exposed to functional overload due to ablation of the gastrocnemius and soleus muscles. As a result, cyclin D3 expression was detected in the nuclei of SCs but not in myonuclei on day 1 after surgery. Cyclin D3 expression, after functional overload, gradually increased, reaching a maximum on day 7 along with myogenin expression. Moreover, in response to the functional overload, cyclin D3 was expressed simultaneously with myogenin and p21 in SC nuclei. Therefore, the present study suggests that cyclin D3 with myogenin and p21 may interactively regulate SC differentiation during early-stage functional overload.
Collapse
Affiliation(s)
- Minenori Ishido
- Section for Health-related Physical Education, Division of Human Sciences, Faculty of Engineering, Osaka Institute of Technology, Osaka 535–8585, Japan
| |
Collapse
|
2
|
Lv Z, Ding Y, Cao W, Wang S, Gao K. Role of RHO family interacting cell polarization regulators (RIPORs) in health and disease: Recent advances and prospects. Int J Biol Sci 2022; 18:800-808. [PMID: 35002526 PMCID: PMC8741841 DOI: 10.7150/ijbs.65457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022] Open
Abstract
The RHO GTPase family has been suggested to play critical roles in cell growth, migration, and polarization. Regulators and effectors of RHO GTPases have been extensively explored in recent years. However, little attention has been given to RHO family interacting cell polarization regulators (RIPORs), a recently discovered protein family of RHO regulators. RIPOR proteins, namely, RIPOR1-3, bind directly to RHO proteins (A, B and C) via a RHO-binding motif and exert suppressive effects on RHO activity, thereby negatively influencing RHO-regulated cellular functions. In addition, RIPORs are phosphorylated by upstream protein kinases under chemokine stimulation, and this phosphorylation affects not only their subcellular localization but also their interaction with RHO proteins, altering the activation of RHO downstream targets and ultimately impacting cell polarity and migration. In this review, we provide an overview of recent studies on the function of RIPOR proteins in regulating RHO-dependent directional movement in immune responses and other pathophysiological functions.
Collapse
Affiliation(s)
- Zeheng Lv
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yan Ding
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wenxin Cao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shuyun Wang
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
3
|
de Souza DR, Vasconcelos DAAD, Murata GM, Fortes MAS, Marzuca-Nassr GN, Levada-Pires AC, Vitzel KF, Abreu P, Scervino MVM, Hirabara SM, Curi R, Pithon-Curi TC. Glutamine supplementation versus functional overload in extensor digitorum longus muscle hypertrophy. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
The Role of Forced and Voluntary Training on Accumulation of Neural Cell Adhesion Molecule and Polysialic Acid in Muscle of Mice with Experimental Autoimmune Encephalomyelitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5160958. [PMID: 32328133 PMCID: PMC7168727 DOI: 10.1155/2020/5160958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 11/28/2022]
Abstract
It has been suggested that depletion of adhesion molecules is one of the factors associated with or possibly responsible for multiple sclerosis (MS) progression. The aim of this study was to investigate the effect of forced and voluntary training before and after induction of experimental autoimmune encephalomyelitis (EAE) on accumulation of neural cell adhesion molecule (NCAM) and polysialic acid (PSA) in neuromuscular junction denervation in plantaris and soleus muscles in C57BL/6 female mice. A total of 40 female C57BL/6 mice, 10-week-old, were randomly divided into four groups, including induced control groups without EAE induction, induced EAE without training, and forced and voluntary training groups. Myelin oligodendrocyte glycoprotein peptide 35–55 (300 μg in saline; MOG 35–55; KJ Ross-Petersen ApS, Denmark) was injected subcutaneously at the base of the tail of each mouse. Clinical assessment of EAE was performed daily using a 15-point scoring system following immunization. Training groups performed the swimming program for 30 min/day, 5 times/week, for 4 weeks. Mice had access to a treadmill for one hour per day, 5times/week, for 4 weeks in individual cage. The mice were scarified, and the plantaris and soleus muscles were then isolated for investigation of proteins expression using IHC. An analysis of the preventive exercise (before) and recovery exercise (after) of the EAE was performed. Images of the stained sections were taken using a fluorescent microscope. Quantitative image analysis was performed using ImageJ software package. The obtained data from the mean percentage expression of PSA and NCAM in pre- and post-soleus and plantaris muscles showed that the highest and lowest expression levels of PSA and NCAM belonged to control and swim EAE (SE) groups, respectively. The low expression levels of PSA and NCAM were detected in rat with MS without intervention. In conclusion, the relationship between increasing levels of NCAM and PSA protein expression and voluntary and compulsory activity were detectable both in pre and post-soleus and plantaris. However, voluntary activity resulted in more expression levels of NCAM and PSA than that of compulsory. In conclusion, since it has been suggested that depletion of NCAM is one of the factors associated with or possibly responsible for MS progression, these findings show exercise MS progression may be reduced by increasing expression of exercise-related adhesion molecule such as NCAM and PSA (a glycan modification of the NCAM).
Collapse
|
5
|
Farenia R, Lesmana R, Uchida K, Iwasaki T, Koibuchi N, Shimokawa N. Changes in biomarker levels and myofiber constitution in rat soleus muscle at different exercise intensities. Mol Cell Biochem 2019; 458:79-87. [PMID: 30993497 DOI: 10.1007/s11010-019-03532-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/10/2019] [Indexed: 11/30/2022]
Abstract
Although exercise affects the function and structure of skeletal muscle, our knowledge regarding the biomedical alterations induced by different intensities of exercise is incomplete. Here we report on the changes in biomarker levels and myofiber constitution in the rat soleus muscle induced by exercise intensity. Male adult rats at 7 weeks of age were divided into 3 groups by exercise intensity, which was set based on the accumulated lactate levels in the blood using a treadmill: stationary control (0 m/min), aerobic exercise (15 m/min), and anaerobic exercise (25 m/min). The rats underwent 30 min/day treadmill training at different exercise intensities for 14 days. Immediately after the last training session, the soleus muscle was dissected out in order to measure the muscle biomarker levels and evaluate the changes in the myofibers. The mRNA expression of citrate synthase, glucose-6-phosphate dehydrogenase, and Myo D increased with aerobic exercise, while the mRNA expression of myosin heavy-chain I and Myo D increased in anaerobic exercise. These results suggest that muscle biomarkers can be used as parameters for the muscle adaptation process in aerobic/anaerobic exercise. Interestingly, by 14 days after the anaerobic exercise, the number of type II (fast-twitch) myofibers had decreased by about 20%. Furthermore, many macrophages and regenerated fibers were observed in addition to the injured fibers 14 days after the anaerobic exercise. Constitutional changes in myofibers due to damage incurred during anaerobic exercise are necessary for at least about 2 weeks. These results indicate that the changes in the biomarker levels and myofiber constitution by exercise intensity are extremely important for understanding the metabolic adaptations of skeletal muscle during physical exercise.
Collapse
Affiliation(s)
- Reni Farenia
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma, 371-8511, Japan.,Department of Basic Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung, 45363, Indonesia
| | - Ronny Lesmana
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma, 371-8511, Japan.,Department of Basic Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung, 45363, Indonesia.,Central Laboratory, Universitas Padjadjaran, Bandung, 45363, Indonesia
| | - Kaoru Uchida
- Department of Nutrition, Takasaki University of Health and Welfare, Gunma, 370-0033, Japan
| | - Toshiharu Iwasaki
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma, 371-8511, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma, 371-8511, Japan
| | - Noriaki Shimokawa
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma, 371-8511, Japan. .,Department of Nutrition, Takasaki University of Health and Welfare, Gunma, 370-0033, Japan.
| |
Collapse
|
6
|
Boers HE, Haroon M, Le Grand F, Bakker AD, Klein‐Nulend J, Jaspers RT. ---Mechanosensitivity of aged muscle stem cells. J Orthop Res 2018; 36:632-641. [PMID: 29094772 PMCID: PMC5888196 DOI: 10.1002/jor.23797] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/13/2017] [Indexed: 02/04/2023]
Abstract
During aging, skeletal muscle tissue progressively declines in mass, strength, and regenerative capacity. Decreased muscle stem cell (MuSC) number and impaired function might underlie the aging-related muscle wasting and impaired regenerative capacity. As yet, the search for factors that regulate MuSC fate and function has revealed several biochemical factors within the MuSC niche that may be responsible for the decline in MuSC regenerative capacity. This decline cannot be explained by environmental factors solely, as the MuSC potential to regenerate muscle tissue is not reversed by changing the biochemical MuSC niche composition. Here we discuss the likeliness that during physical exercise, MuSCs within their niche are subjected to mechanical loads, in particular pressure and shear stress, as well as associated deformations. We postulate that these physical cues are involved in the activation and differentiation of MuSCs as these cells contain several transmembrane sensor proteins that have been shown to be mechanosensitive in other cell types, that is, endothelial cells and osteoprogenitors. We will specifically address age-related changes in mechanosensing in MuSCs and their niche. Insight in the physical cues applied to the MuSCs in vivo, and how these cues affect MuSC fate and function, helps to develop new therapeutic interventions to counterbalance age-related muscle loss. This requires an approach combining two- and three-dimensional live cell imaging of MuSCs within contracting muscle tissue, mathematical finite element modeling, and cell biology. © 2017 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 36:632-641, 2018.
Collapse
Affiliation(s)
- Heleen E. Boers
- Laboratory for MyologyFaculty of Behavioural and Movement SciencesVrije Universiteit AmsterdamAmsterdam Movement SciencesDe Boelelaan 11081081 HZ AmsterdamThe Netherlands
| | - Mohammad Haroon
- Laboratory for MyologyFaculty of Behavioural and Movement SciencesVrije Universiteit AmsterdamAmsterdam Movement SciencesDe Boelelaan 11081081 HZ AmsterdamThe Netherlands
| | - Fabien Le Grand
- Sorbonne UniversitésUPMC Univ Paris 06INSERM UMRS974CNRS FRE3617Center for Research in Myology75013 ParisFrance
| | - Astrid D. Bakker
- Department of Oral Cell BiologyAcademic Centre for Dentistry AmsterdamUniversity of Amsterdam and Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Jenneke Klein‐Nulend
- Department of Oral Cell BiologyAcademic Centre for Dentistry AmsterdamUniversity of Amsterdam and Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Richard T. Jaspers
- Laboratory for MyologyFaculty of Behavioural and Movement SciencesVrije Universiteit AmsterdamAmsterdam Movement SciencesDe Boelelaan 11081081 HZ AmsterdamThe Netherlands
| |
Collapse
|
7
|
Fortes MAS, Scervino MVM, Marzuca-Nassr GN, Vitzel KF, da Justa Pinheiro CH, Curi R. Hypertrophy Stimulation at the Onset of Type I Diabetes Maintains the Soleus but Not the EDL Muscle Mass in Wistar Rats. Front Physiol 2017; 8:830. [PMID: 29123487 PMCID: PMC5662641 DOI: 10.3389/fphys.2017.00830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/06/2017] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus induces a reduction in skeletal muscle mass and strength. Strength training is prescribed as part of treatment since it improves glycemic control and promotes increase of skeletal muscle mass. The mechanisms involved in overload-induced muscle hypertrophy elicited at the establishment of the type I diabetic state was investigated in Wistar rats. The purpose was to examine whether the overload-induced hypertrophy can counteract the hypotrophy associated to the diabetic state. The experiments were performed in oxidative (soleus) or glycolytic (EDL) muscles. PI3K/Akt/mTOR protein synthesis pathway was evaluated 7 days after overload-induced hypertrophy of soleus and of EDL muscles. The mRNA expression of genes associated with different signaling pathways that control muscle hypertrophy was also evaluated: mechanotransduction (FAK), Wnt/β-catenin, myostatin, and follistatin. The soleus and EDL muscles when submitted to overload had similar hypertrophic responses in control and diabetic animals. The increase of absolute and specific twitch and tetanic forces had the same magnitude as muscle hypertrophic response. Hypertrophy of the EDL muscle from diabetic animals mostly involved mechanical loading-stimulated PI3K/Akt/mTOR pathway besides the reduced activation of AMP-activated protein kinase (AMPK) and decrease of myostatin expression. Hypertrophy was more pronounced in the soleus muscle of diabetic animals due to a more potent activation of rpS6 and increased mRNA expression of insulin-like growth factor-1 (IGF-1), mechano-growth factor (MGF) and follistatin, and decrease of myostatin, MuRF-1 and atrogin-1 contents. The signaling changes enabled the soleus muscle mass and force of the diabetic rats to reach the values of the control group.
Collapse
Affiliation(s)
- Marco A S Fortes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria V M Scervino
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gabriel N Marzuca-Nassr
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Kaio F Vitzel
- School of Health Sciences, College of Health, Massey University, Albany, New Zealand
| | - Carlos H da Justa Pinheiro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| |
Collapse
|
8
|
Caldow MK, Thomas EE, Dale MJ, Tomkinson GR, Buckley JD, Cameron-Smith D. Early myogenic responses to acute exercise before and after resistance training in young men. Physiol Rep 2015; 3:e12511. [PMID: 26359239 PMCID: PMC4600377 DOI: 10.14814/phy2.12511] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 07/27/2015] [Indexed: 11/24/2022] Open
Abstract
To enable dynamic regulation of muscle mass and myofiber repair following injury, a satellite cell precursor population exists to supply additional nuclei. Activated satellite cells express many genes and associated proteins necessary for maturation and incorporation into the damaged fiber. There is little knowledge about the response of these markers following whole-body resistance exercise training. We investigated the impact of 12 weeks of progressive whole-body resistance training on the expression of MRFs, PAX7, NCAM, and FA1, incorporating both acute and chronic resistance exercise components. Ten young recreationally active males (21.2 ± 3.5 years) performed 12 weeks of whole-body resistance training at 70-85% of their predetermined one-repetition maximum (1RM). At the initiation and completion of the training period, muscular strength was assessed by RM and dynamometer testing, and vastus lateralis samples were obtained prior to and 3 h following an acute resistance exercise test (both whole-body and isometric exercises). Increased mRNA expression of PAX7 (threefold), NCAM (threefold), MYF5 (threefold), MYOD (threefold) and MYOGENIN (twofold) was observed 3 h after the acute resistance exercise test, both pre and posttraining. Similarly, PAX7 (11-fold) and FA1 (twofold) protein abundance increased after acute exercise, while resting NCAM (eightfold) and FA1 (threefold) protein abundance increased following 12 weeks of resistance training. It is possible that these molecular changes are primarily due to the preceding exercise bout, and are not modified by long-term or whole-body exercise training.
Collapse
Affiliation(s)
- Marissa K Caldow
- Molecular Nutrition Unit, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Australia Basic and Clinical Myology Laboratory, Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Emily E Thomas
- Molecular Nutrition Unit, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Australia
| | - Michael J Dale
- School of Health Sciences, University of South Australia, Adelaide, Australia
| | - Grant R Tomkinson
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), School of Health Sciences and the Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia
| | - Jonathan D Buckley
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), School of Health Sciences and the Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia
| | | |
Collapse
|
9
|
Muscle-specific GSK-3β ablation accelerates regeneration of disuse-atrophied skeletal muscle. Biochim Biophys Acta Mol Basis Dis 2014; 1852:490-506. [PMID: 25496993 DOI: 10.1016/j.bbadis.2014.12.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 01/08/2023]
Abstract
Muscle wasting impairs physical performance, increases mortality and reduces medical intervention efficacy in chronic diseases and cancer. Developing proficient intervention strategies requires improved understanding of the molecular mechanisms governing muscle mass wasting and recovery. Involvement of muscle protein- and myonuclear turnover during recovery from muscle atrophy has received limited attention. The insulin-like growth factor (IGF)-I signaling pathway has been implicated in muscle mass regulation. As glycogen synthase kinase 3 (GSK-3) is inhibited by IGF-I signaling, we hypothesized that muscle-specific GSK-3β deletion facilitates the recovery of disuse-atrophied skeletal muscle. Wild-type mice and mice lacking muscle GSK-3β (MGSK-3β KO) were subjected to a hindlimb suspension model of reversible disuse-induced muscle atrophy and followed during recovery. Indices of muscle mass, protein synthesis and proteolysis, and post-natal myogenesis which contribute to myonuclear accretion, were monitored during the reloading of atrophied muscle. Early muscle mass recovery occurred more rapidly in MGSK-3β KO muscle. Reloading-associated changes in muscle protein turnover were not affected by GSK-3β ablation. However, coherent effects were observed in the extent and kinetics of satellite cell activation, proliferation and myogenic differentiation observed during reloading, suggestive of increased myonuclear accretion in regenerating skeletal muscle lacking GSK-3β. This study demonstrates that muscle mass recovery and post-natal myogenesis from disuse-atrophy are accelerated in the absence of GSK-3β.
Collapse
|
10
|
Domínguez-Álvarez M, Sabaté-Brescó M, Vilà-Ubach M, Gáldiz JB, Alvarez FJ, Casadevall C, Gea J, Barreiro E. Molecular and physiological events in respiratory muscles and blood of rats exposed to inspiratory threshold loading. Transl Res 2014; 163:478-93. [PMID: 24373863 DOI: 10.1016/j.trsl.2013.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 11/29/2013] [Accepted: 12/03/2013] [Indexed: 12/20/2022]
Abstract
High-intensity exercise induces oxidative stress and inflammatory events in muscles. Tumor necrosis factor (TNF)-α may alter muscle protein metabolism or promote muscle regeneration. We hypothesized that a program of noninvasive chronic inspiratory loading of different intensities induces a differential pattern of physiological, molecular, and cellular events within rat diaphragms. Antioxidants and TNF-α blockade may influence those events. In the diaphragm, gastrocnemius, and blood of rats exposed to high-intensity inspiratory threshold loads (2 hour every 24 hours for 14 days), with and without treatment with N-acetyl cysteine or infliximab (anti-TNF-α antibody), inflammatory cells and cytokines, superoxide anion production, myogenesis markers, and muscle structure were explored. In all animals, maximum inspiratory pressure (MIP) and body weight were determined. High-intensity inspiratory loading for 2 weeks caused a decline in MIP and body weight, and in the diaphragm induced a reduction in fast-twitch fiber proportions and sizes, whereas inflammatory cells and cytokine levels, including TNF-α immunohistochemical expression, superoxide anion, internal nuclei counts, and markers of myogenesis were increased. Blockade of TNF-α improved respiratory muscle function and structure, and animal weight, and, in the diaphragm, reduced inflammatory cell numbers and superoxide anion production drastically while inducing larger increases in protein and messenger RNA levels and immunohistochemical expression of TNF-α, internal nuclei, and markers of muscle regeneration. Blunting of TNF-α also induced a reduction in blood inflammatory cytokines and superoxide anion production. We conclude that TNF-α synthesized by inflammatory cells or myofibers could have differential effects on muscle structure and function in response to chronic, noninvasive, high-intensity inspiratory threshold loading.
Collapse
Affiliation(s)
- Marisol Domínguez-Álvarez
- Respiratory Medicine-Muscle and Respiratory System Research Unit, IMIM-Hospital del Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Barcelona, Catalonia, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Bunyola, Majorca, Balearic Islands, Spain
| | - Marina Sabaté-Brescó
- Respiratory Medicine-Muscle and Respiratory System Research Unit, IMIM-Hospital del Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Barcelona, Catalonia, Spain
| | - Mònica Vilà-Ubach
- Respiratory Medicine-Muscle and Respiratory System Research Unit, IMIM-Hospital del Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Barcelona, Catalonia, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Bunyola, Majorca, Balearic Islands, Spain
| | - Juan B Gáldiz
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Bunyola, Majorca, Balearic Islands, Spain; Respiratory Medicine Department and Research Unit, Cruces Hospital, Basque Country University, Barakaldo, Bizkaia, Spain
| | - Francisco J Alvarez
- Respiratory Medicine Department and Research Unit, Cruces Hospital, Basque Country University, Barakaldo, Bizkaia, Spain
| | - Carme Casadevall
- Respiratory Medicine-Muscle and Respiratory System Research Unit, IMIM-Hospital del Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Barcelona, Catalonia, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Bunyola, Majorca, Balearic Islands, Spain
| | - Joaquim Gea
- Respiratory Medicine-Muscle and Respiratory System Research Unit, IMIM-Hospital del Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Barcelona, Catalonia, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Bunyola, Majorca, Balearic Islands, Spain
| | - Esther Barreiro
- Respiratory Medicine-Muscle and Respiratory System Research Unit, IMIM-Hospital del Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Barcelona, Catalonia, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Bunyola, Majorca, Balearic Islands, Spain.
| |
Collapse
|
11
|
Fujimaki S, Hidaka R, Asashima M, Takemasa T, Kuwabara T. Wnt protein-mediated satellite cell conversion in adult and aged mice following voluntary wheel running. J Biol Chem 2014; 289:7399-412. [PMID: 24482229 DOI: 10.1074/jbc.m113.539247] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Muscle represents an abundant, accessible, and replenishable source of adult stem cells. Skeletal muscle-derived stem cells, called satellite cells, play essential roles in regeneration after muscle injury in adult skeletal muscle. Although the molecular mechanism of muscle regeneration process after an injury has been extensively investigated, the regulation of satellite cells under steady state during the adult stage, including the reaction to exercise stimuli, is relatively unknown. Here, we show that voluntary wheel running exercise, which is a low stress exercise, converts satellite cells to the activated state due to accelerated Wnt signaling. Our analysis showed that up-regulated canonical Wnt/β-catenin signaling directly modulated chromatin structures of both MyoD and Myf5 genes, resulting in increases in the mRNA expression of Myf5 and MyoD and the number of proliferative Pax7(+)Myf5(+) and Pax7(+) MyoD(+) cells in skeletal muscle. The effect of Wnt signaling on the activation of satellite cells, rather than Wnt-mediated fibrosis, was observed in both adult and aged mice. The association of β-catenin, T-cell factor, and lymphoid enhancer transcription factors of multiple T-cell factor/lymphoid enhancer factor regulatory elements, conserved in mouse, rat, and human species, with the promoters of both the Myf5 and MyoD genes drives the de novo myogenesis in satellite cells even in aged muscle. These results indicate that exercise-stimulated extracellular Wnts play a critical role in the regulation of satellite cells in adult and aged skeletal muscle.
Collapse
Affiliation(s)
- Shin Fujimaki
- From the Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-0046 and
| | | | | | | | | |
Collapse
|
12
|
Amin H, Vachris J, Hamilton A, Steuerwald N, Howden R, Arthur ST. GSK3β inhibition and LEF1 upregulation in skeletal muscle following a bout of downhill running. J Physiol Sci 2014; 64:1-11. [PMID: 23963660 PMCID: PMC10717853 DOI: 10.1007/s12576-013-0284-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/01/2013] [Indexed: 01/24/2023]
Abstract
Canonical Wnt signaling is important in skeletal muscle repair but has not been well characterized in response to physiological stimuli. The objective of this study was to assess the effect of downhill running (DHR) on components of Wnt signaling. Young, male C57BL/J6 mice were exposed to DHR. Muscle injury and repair (MCadherin) were measured in soleus. Gene and protein expression of Wnt3a, active β-catenin, GSK3β, and LEF1 were measured in gastrocnemius. Muscle injury increased 6 days post-DHR and MCadherin protein increased 5 days post-DHR. Total and active GSK3β protein decreased 3 days (9-fold and 3.6-fold, respectively) post-DHR. LEF1 protein increased 6 days (5-fold) post-DHR. DHR decreased GSK3β and increased LEF1 protein expression, but did not affect other components of Wnt signaling. Due to their applicability, using models of physiological stimuli such as DHR will provide significant insight into cellular mechanisms within muscle.
Collapse
Affiliation(s)
- Hiral Amin
- Molecular Biology Core Facility, Cannon Research Center, Charlotte, NC USA
| | - Judy Vachris
- Molecular Biology Core Facility, Cannon Research Center, Charlotte, NC USA
| | - Alicia Hamilton
- Molecular Biology Core Facility, Cannon Research Center, Charlotte, NC USA
| | - Nury Steuerwald
- Molecular Biology Core Facility, Cannon Research Center, Charlotte, NC USA
| | - Reuben Howden
- Laboratory of Systems Physiology, Department of Kinesiology, UNC Charlotte, 9201 University City Blvd., Charlotte, NC 28223 USA
| | - Susan Tsivitse Arthur
- Laboratory of Systems Physiology, Department of Kinesiology, UNC Charlotte, 9201 University City Blvd., Charlotte, NC 28223 USA
| |
Collapse
|
13
|
Arthur ST, Cooley ID. The effect of physiological stimuli on sarcopenia; impact of Notch and Wnt signaling on impaired aged skeletal muscle repair. Int J Biol Sci 2012; 8:731-60. [PMID: 22701343 PMCID: PMC3371570 DOI: 10.7150/ijbs.4262] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/06/2012] [Indexed: 12/17/2022] Open
Abstract
The age-related loss of skeletal muscle mass and function that is associated with sarcopenia can result in ultimate consequences such as decreased quality of life. The causes of sarcopenia are multifactorial and include environmental and biological factors. The purpose of this review is to synthesize what the literature reveals in regards to the cellular regulation of sarcopenia, including impaired muscle regenerative capacity in the aged, and to discuss if physiological stimuli have the potential to slow the loss of myogenic potential that is associated with sarcopenia. In addition, this review article will discuss the effect of aging on Notch and Wnt signaling, and whether physiological stimuli have the ability to restore Notch and Wnt signaling resulting in rejuvenated aged muscle repair. The intention of this summary is to bring awareness to the benefits of consistent physiological stimulus (exercise) to combating sarcopenia as well as proclaiming the usefulness of contraction-induced injury models to studying the effects of local and systemic influences on aged myogenic capability.
Collapse
Affiliation(s)
- Susan Tsivitse Arthur
- Department of Kinesiology, Laboratory of Systems Physiology, University North Carolina - Charlotte, Charlotte, NC 28223, USA.
| | | |
Collapse
|
14
|
Mancinelli R, Pietrangelo T, Burnstock G, Fanò G, Fulle S. Transcriptional profile of GTP-mediated differentiation of C2C12 skeletal muscle cells. Purinergic Signal 2011; 8:207-21. [PMID: 22127439 DOI: 10.1007/s11302-011-9266-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 10/03/2011] [Indexed: 02/01/2023] Open
Abstract
Several purine receptors have been localised on skeletal muscle membranes. Previous data support the hypothesis that extracellular guanosine 5'-triphosphate (GTP) is an important regulatory factor in the development and function of muscle tissue. We have previously described specific extracellular binding sites for GTP on the plasma membrane of mouse skeletal muscle (C2C12) cells. Extracellular GTP induces an increase in intracellular Ca(2+) concentrations that results in membrane hyperpolarisation through Ca(2+)-activated K(+) channels, as has been demonstrated by patch-clamp experiments. This GTP-evoked increase in intracellular Ca(2+) is due to release of Ca(2+) from intracellular inositol-1,4,5-trisphosphate-sensitive stores. This enhances the expression of the myosin heavy chain in these C2C12 myoblasts and commits them to fuse into multinucleated myotubes, probably via a phosphoinositide-3-kinase-dependent signal-transduction mechanism. To define the signalling of extracellular GTP as an enhancer or modulator of myogenesis, we investigated whether the gene-expression profile of differentiated C2C12 cells (4 and 24 h in culture) is affected by extracellular GTP. To investigate the nuclear activity and target genes modulated by GTP, transcriptional profile analysis and real-time PCR were used. We demonstrate that in the early stages of differentiation, GTP up-regulates genes involved in different pathways associated with myogenic processes, including cytoskeleton structure, the respiratory chain, myogenesis, chromatin reorganisation, cell adhesion, and the Jak/Stat pathway, and down-regulates the mitogen-activated protein kinase pathway. GTP also increases the expression of three genes involved in myogenesis, Pp3ca, Gsk3b, and Pax7. Our data suggests that in the myogenic C2C12 cell line, extracellular GTP acts as a differentiative factor in the induction and sustaining of myogenesis.
Collapse
Affiliation(s)
- Rosa Mancinelli
- Department of Neuroscience and Imaging, University G. d'Annunzio Chieti-Pescara, Chieti, Italy.
| | | | | | | | | |
Collapse
|
15
|
Rapid isolation of muscle-derived stem cells by discontinuous Percoll density gradient centrifugation. In Vitro Cell Dev Biol Anim 2011; 47:454-8. [PMID: 21691920 DOI: 10.1007/s11626-011-9433-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 05/31/2011] [Indexed: 01/24/2023]
Abstract
We investigated relationship between the maturity and density of muscle cells and developed a rapid isolation method to acquire stem cells from skeletal muscle. Mononuclear cells were isolated from the lower hind-limb muscles of 7-d-old male Sprague-Dawley rats and separated by Percoll density gradient centrifugation. After centrifugation, the cells were layered in the interfaces between each Percoll density layer. Flow cytometry was used to investigate the Sca-1, Pax7, CD34, CD45, M-cadherin, and myosin expression of the cells in each density layer. We found that CD45-positive cells were not present in freshly isolated muscle cells. CD34-, Pax7-positive cells were mainly observed at the interface between the 15% and 25% Percoll layers and had a density of 1.0235-1.0355 g/ml. Cells positive for M-cadherin were at the 25-35% Percoll density interface and had a density of 1.0355-1.0492 g/ml. We conclude that because there appears to be a correlation between maturity and density, muscle-derived stem cells may be isolated successfully from the 15-25% Percoll interface.
Collapse
|
16
|
Segregation of myoblast fusion and muscle-specific gene expression by distinct ligand-dependent inactivation of GSK-3β. Cell Mol Life Sci 2010; 68:523-35. [PMID: 20694829 PMCID: PMC3021259 DOI: 10.1007/s00018-010-0467-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 07/07/2010] [Accepted: 07/12/2010] [Indexed: 11/16/2022]
Abstract
Myogenic differentiation involves myoblast fusion and induction of muscle-specific gene expression, which are both stimulated by pharmacological (LiCl), genetic, or IGF-I-mediated GSK-3β inactivation. To assess whether stimulation of myogenic differentiation is common to ligand-mediated GSK-3β inactivation, myoblast fusion and muscle-specific gene expression were investigated in response to Wnt-3a. Moreover, crosstalk between IGF-I/GSK-3β/NFATc3 and Wnt/GSK-3β/β-catenin signaling was assessed. While both Wnt-3a and LiCl promoted myoblast fusion, muscle-specific gene expression was increased by LiCl, but not by Wnt-3a or β-catenin over-expression. Furthermore, LiCl and IGF-I, but not Wnt-3a, increased NFATc3 transcriptional activity. In contrast, β-catenin-dependent transcriptional activity was increased by Wnt-3a and LiCl, but not IGF-I. These results for the first time reveal a segregated regulation of myoblast fusion and muscle-specific gene expression following stimulation of myogenic differentiation in response to distinct ligand-specific signaling routes of GSK-3β inactivation.
Collapse
|
17
|
Tsivitse S. Notch and Wnt signaling, physiological stimuli and postnatal myogenesis. Int J Biol Sci 2010; 6:268-81. [PMID: 20567496 PMCID: PMC2878172 DOI: 10.7150/ijbs.6.268] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 05/13/2010] [Indexed: 12/18/2022] Open
Abstract
Adult skeletal muscle stem cells, termed satellite cells are imperative to muscle regeneration. Much work has been performed on satellite cell identification and the subsequent activation of the myogenic response but the regulation of satellite cells including its activation is not well elucidated. The purpose of this review article is to synthesize what the literature reveals in regards to the current understanding of satellite cells including their contribution to muscle repair and growth following physiological stimuli. In addition, this review article will describe the recent findings on the roles of the classic developmental signaling pathways, Notch and Wnt, to the myogenic response in various muscle injury models. This purpose of this summary is to bring awareness of the impact that muscle contraction models have on the local and systemic environment of adult muscle stem cells which will be beneficial for comprehending and treatment development for muscle -associated ailments and other organ diseases.
Collapse
Affiliation(s)
- Susan Tsivitse
- Department of Kinesiology, Exercise Physiology Laboratory, University North Carolina-Charlotte, NC 28223, USA.
| |
Collapse
|
18
|
Russo TL, Peviani SM, Durigan JLQ, Gigo-Benato D, Delfino GB, Salvini TF. Stretching and electrical stimulation reduce the accumulation of MyoD, myostatin and atrogin-1 in denervated rat skeletal muscle. J Muscle Res Cell Motil 2010; 31:45-57. [DOI: 10.1007/s10974-010-9203-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Accepted: 02/05/2010] [Indexed: 12/22/2022]
|
19
|
Oishi Y, Hayashida M, Tsukiashi S, Taniguchi K, Kami K, Roy RR, Ohira Y. Heat stress increases myonuclear number and fiber size via satellite cell activation in rat regenerating soleus fibers. J Appl Physiol (1985) 2009; 107:1612-21. [DOI: 10.1152/japplphysiol.91651.2008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To investigate the effects of heat stress (hyperthermia) on muscle degeneration-regeneration, the soleus muscles of adult male Wistar rats were injected bilaterally with a single injection of bupivacaine. The rats were assigned to a sedentary control (Con), heat stress (Heat), bupivacaine-injected (BPVC), or bupivacaine-injected plus heat stress (BPVC+Heat) group. Heat stress was induced in the Heat and BPVC+Heat groups by immersion of the lower half of the body into water maintained at 42 ± 1°C for 30 min 48 h after the injection of bupivacaine and every other day during the following 1 or 2 wk. The soleus muscles in all groups were excised 24 h after the final bout of heat stress. Mean muscle weight, fiber cross-sectional area, myonuclear number, and heat shock protein 72 (Hsp72) and calcineurin protein levels were lower in the BPVC than in the Con or Heat groups at both time points. In contrast, several of these parameters in the BPVC+Heat group were not different or higher than in the Con or Heat groups at the 1- and/or 2-wk time points. The number of total and activated satellite cells, estimated by analyses of Pax7-negative, M-cadherin-negative, and MyoD-positive nuclei, was greater in BPVC+Heat than in all other groups. Combined, the results indicate that heat stress-related activation of satellite cells and upregulation of Hsp72 and calcineurin expression played important roles in the regeneration of the soleus fibers after bupivacaine injection.
Collapse
Affiliation(s)
- Yasuharu Oishi
- Laboratory of Muscle Physiology, Faculty of Education, Kumamoto University, Kumamoto, Japan
| | - Mari Hayashida
- Laboratory of Muscle Physiology, Faculty of Education, Kumamoto University, Kumamoto, Japan
| | - Shinsuke Tsukiashi
- Laboratory of Muscle Physiology, Faculty of Education, Kumamoto University, Kumamoto, Japan
| | - Kohachi Taniguchi
- Laboratory of Muscle Physiology, Faculty of Education, Kumamoto University, Kumamoto, Japan
| | - Katsuya Kami
- Graduate School of Medicine, Osaka University, Osaka, Japan; and
| | - Roland R. Roy
- Brain Research Institute and
- Department of Physiological Science, University of California, Los Angeles, California
| | - Yoshinobu Ohira
- Graduate School of Medicine, Osaka University, Osaka, Japan; and
| |
Collapse
|
20
|
Hinton RJ, Serrano M, So S. Differential gene expression in the perichondrium and cartilage of the neonatal mouse temporomandibular joint. Orthod Craniofac Res 2009; 12:168-77. [PMID: 19627518 DOI: 10.1111/j.1601-6343.2009.01450.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Our goal was to discover genes differentially expressed in the perichondrium (PC) of the mandibular condylar cartilage (MCC) that might enhance regenerative medicine or orthopaedic therapies directed at the tissues of the temporomandibular joint. We used targeted gene arrays (osteogenesis, stem cell) to identify genes preferentially expressed in the PC and the cartilaginous (C) portions of the MCC in 2-day-old mice. Genes with higher expression in the PC sample related to growth factor ligand-receptor interactions [FGF-13 (6.4x), FGF-18 (4x), NCAM (2x); PGDF receptors, transforming growth factor (TGF)-beta and IGF-1], the Notch isoforms (especially Notch 3 and 4) and their ligands or structural proteins/proteoglycans [collagen XIV (21x), collagen XVIII (4x), decorin (2.5x)]. Genes with higher expression in the C sample consisted mostly of known cartilage-specific genes [aggrecan (11x), procollagens X (33x), XI (14x), IX (4.5x), Sox 9 (4.4x) and Indian hedgehog (6.7x)]. However, the functional or structural roles of several genes that were expressed at higher levels in the PC sample are unclear [myogenic factor (Myf) 9 (9x), tooth-related genes such as tuftelin (2.5x) and dentin sialophosphoprotein (1.6x), VEGF-B (2x) and its receptors (3-4x) and sclerostin (1.7x)]. FGF, Notch and TGF-beta signalling may be important regulators of MCC proliferation and differentiation; the relatively high expression of genes such as Myf6 and VEGF-B and its receptors suggests a degree of unsuspected plasticity in PC cells.
Collapse
Affiliation(s)
- R J Hinton
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, TX 75246, USA.
| | | | | |
Collapse
|
21
|
Al-Shanti N, Stewart CE. Ca2+/calmodulin-dependent transcriptional pathways: potential mediators of skeletal muscle growth and development. Biol Rev Camb Philos Soc 2009; 84:637-52. [PMID: 19725819 DOI: 10.1111/j.1469-185x.2009.00090.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The loss of muscle mass with age and disuse has a significant impact on the physiological and social well-being of the aged; this is an increasingly important problem as the population becomes skewed towards older age. Exercise has psychological benefits but it also impacts on muscle protein synthesis and degradation, increasing muscle tissue volume in both young and older individuals. Skeletal muscle hypertrophy involves an increase in muscle mass and cross-sectional area and associated increased myofibrillar protein content. Attempts to understand the molecular mechanisms that underlie muscle growth, development and maintenance, have focused on characterising the molecular pathways that initiate, maintain and regenerate skeletal muscle. Such understanding may aid in improving targeted interventional therapies for age-related muscle loss and muscle wasting associated with diseases. Two major routes through which skeletal muscle development and growth are regulated are insulin-like growth factor I (IGF-I) and Ca(2+)/calmodulin-dependent transcriptional pathways. Many reviews have focused on understanding the signalling pathways of IGF-I and its receptor, which govern skeletal muscle hypertrophy. However, alternative molecular signalling pathways such as the Ca(2+)/calmodulin-dependent transcriptional pathways should also be considered as potential mediators of muscle growth. These latter pathways have received relatively little attention and the purpose herein is to highlight the progress being made in the understanding of these pathways and associated molecules: calmodulin, calmodulin kinases (CaMKs), calcineurin and nuclear factor of activated T-cell (NFAT), which are involved in skeletal muscle regulation. We describe: (1) how conformational changes in the Ca(2+) sensor calmodulin result in the exposure of binding pockets for the target proteins (CaMKs and calcineurin). (2) How Calmodulin consequently activates either the Ca(2+)/calmodulin-dependent kinases pathways (via CaMKs) or calmodulin-dependent serine/threonine phosphatases (via calcineurin). (3) How calmodulin kinases alter transcription in the nucleus through the phosphorylation, deactivation and translocation of histone deacetylase 4 (HDAC4) from the nucleus to the cytoplasm. (4) How calcineurin transmits signals to the nucleus through the dephosphorylation and translocation of NFAT from the cytoplasm to the nucleus.
Collapse
Affiliation(s)
- Nasser Al-Shanti
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, John Dalton Building, Oxford Road, Manchester, M1 5GD, UK.
| | | |
Collapse
|
22
|
The effect of downhill running on Notch signaling in regenerating skeletal muscle. Eur J Appl Physiol 2009; 106:759-67. [DOI: 10.1007/s00421-009-1077-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2009] [Indexed: 11/26/2022]
|
23
|
Ishido M, Uda M, Kasuga N, Masuhara M. The expression patterns of Pax7 in satellite cells during overload-induced rat adult skeletal muscle hypertrophy. Acta Physiol (Oxf) 2009; 195:459-69. [PMID: 18808442 DOI: 10.1111/j.1748-1716.2008.01905.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM Activated satellite cells (SCs) have the ability to reacquire a quiescent, undifferentiated state. Pax7 plays a crucial role in allowing activated SCs to undergo self-renewal. Because the increase in the SC population is induced during overload-induced skeletal muscle hypertrophy, it is possible that Pax7-regulated SC self-renewal is involved in the modulation of the SC population during the functional overload of skeletal muscles. However, the characteristics of the expression patterns of Pax7 in SCs during the functional overload of adult skeletal muscles are poorly understood. METHODS Using immunohistochemical approaches, we examined the temporal and spatial expression patterns of Pax7 expressed in SCs during the functional overloading of rat skeletal muscles. RESULTS The time course of Pax7 expression in SCs was similar to that of the expression of the differentiation regulatory factor myogenin during the early stage of functional overload. However, the percentage of SCs that expressed Pax7 was markedly higher than that of the SCs that expressed myogenin. Coexpression of Pax7 and myogenin was not detected in SCs. In addition, the expression of cyclin-dependent kinase inhibitor p21, which regulates cell cycle arrest and differentiation, was not detected in Pax7-positive SCs. CONCLUSION These results suggest that Pax7-regulated self-renewal of SCs may be induced during the early stage of functional overload and may contribute to modulating the SC population in hypertrophied muscles. Furthermore, it was suggested that the numbers of SCs which underwent self-renewal may be higher than that of SCs which were provided as the additional myonuclei for hypertrophying myofibres.
Collapse
Affiliation(s)
- M Ishido
- Osaka University of Health and Sport Sciences, Japan.
| | | | | | | |
Collapse
|
24
|
Zammit PS. All muscle satellite cells are equal, but are some more equal than others? J Cell Sci 2008; 121:2975-82. [DOI: 10.1242/jcs.019661] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle is an accessible adult stem-cell model in which differentiated myofibres are maintained and repaired by a self-renewing stem-cell compartment. These resident stem cells, which are known as satellite cells, lie on the surface of the muscle fibre, between the plasmalemma and overlying basal lamina. Although they are normally mitotically quiescent in adult muscle, satellite cells can be activated when needed to generate myoblasts, which eventually differentiate to provide new myonuclei for the homeostasis, hypertrophy and repair of muscle fibres, or fuse together to form new myofibres for regeneration. Satellite cells also self-renew in order to maintain a viable stem-cell pool that is able to respond to repeated demand. The study of the control of self-renewal has led to the idea that the satellite-cell pool might be heterogeneous: that is it might contain both self-renewing satellite `stem' cells and myogenic precursors with limited replicative potential in the same anatomical location. The regulatory circuits that control satellite-cell self-renewal are beginning to be deciphered, with Pax7, and Notch and Wnt signalling being clearly implicated. This Commentary seeks to integrate these interesting new findings into the wider context of satellite-cell biology, and to highlight some of the many outstanding questions.
Collapse
Affiliation(s)
- Peter S. Zammit
- King's College London, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
25
|
Perez-Ruiz A, Ono Y, Gnocchi VF, Zammit PS. β-catenin promotes self-renewal of skeletal-muscle satellite cells. J Cell Sci 2008; 121:1373-82. [DOI: 10.1242/jcs.024885] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Satellite cells are the resident stem cells of adult skeletal muscle. As with all stem cells, how the choice between self-renewal or differentiation is controlled is central to understanding their function. Here, we have explored the role of β-catenin in determining the fate of myogenic satellite cells. Satellite cells express β-catenin, and expression is maintained as they activate and undergo proliferation. Constitutive retroviral-driven expression of wild-type or stabilised β-catenin results in more satellite cells expressing Pax7 without any MyoD – therefore, adopting the self-renewal pathway, with fewer cells undergoing myogenic differentiation. Similarly, preventing the degradation of endogenous β-catenin by inhibiting GSK3β activity also results in more Pax7-positive–MyoD-negative (Pax7+MyoD–) satellite-cell progeny. Consistent with these observations, downregulation of β-catenin using small interfering RNA (siRNA) reduced the proportion of satellite cells that express Pax7 and augmented myogenic differentiation after mitogen withdrawal. Since a dominant-negative version of β-catenin had the same effect as silencing β-catenin using specific siRNA, β-catenin promotes self-renewal via transcriptional control of target genes. Thus, β-catenin signalling in proliferating satellite cells directs these cells towards the self-renewal pathway and, so, contributes to the maintenance of this stem-cell pool in adult skeletal muscle.
Collapse
Affiliation(s)
- Ana Perez-Ruiz
- King's College London, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Yusuke Ono
- King's College London, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Viola F. Gnocchi
- King's College London, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- Department of Medical Sciences, University of Piemonte Orientale “Amedeo Avogadro”, Novara, Italy
| | - Peter S. Zammit
- King's College London, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| |
Collapse
|
26
|
Watanabe S, Kondo S, Hayasaka M, Hanaoka K. Functional analysis of homeodomain-containing transcription factor Lbx1 in satellite cells of mouse skeletal muscle. J Cell Sci 2007; 120:4178-87. [PMID: 18003701 DOI: 10.1242/jcs.011668] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Satellite cells are usually mitotically quiescent muscle stem cells, located between the sarcolemma and the basement membrane of muscle fibers. When muscles are damaged, satellite cells become activated, proliferate and differentiate to form multinucleate myofibers. The molecular mechanisms underlying these processes are poorly understood. In the present study, we found that, following treatment with cardiotoxin, homeodomain-containing transcription factor Lbx1 was strongly expressed in the satellite cells of regenerating adult skeletal muscle. Our immunohistochemical and northern blot analyses indicate that Lbx1 is expressed in activated but not quiescent satellite cells. In vitro, this Lbx1 expression was gradually downregulated when satellite cells differentiate into mature myofibers. Transfection and forced expression of Lbx1 in satellite-cell-derived C2C12 myoblast cells resulted in severe depression of myogenic differentiation and incomplete myotube formation, concomitantly with the activation of the paired-box transcription factor Pax7 and depression of the myogenic regulatory factor MyoD. Moreover, knockdown of Lbx1 in in-vitro-cultured satellite cells resulted in downregulation of Pax7. These results suggest that Lbx1 plays important roles in differentiation and maintenance of satellite cells of mature myofibers, probably through the regulation of Pax7.
Collapse
Affiliation(s)
- Shuichi Watanabe
- Molecular Embryology, Department of Biosciences, School of Science, Kitasato University, Kanagawa, 228-8555, Japan
| | | | | | | |
Collapse
|