1
|
Jo HD, Kim MK. Identification of EIMD Level Differences Between Long- and Short Head of Biceps Brachii Using Echo Intensity and GLCM Texture Features. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024; 95:441-449. [PMID: 37698509 DOI: 10.1080/02701367.2023.2250832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 08/14/2023] [Indexed: 09/13/2023]
Abstract
Purpose: This study aimed to compare the time-course changes of exercise-induced muscle damage (EIMD) levels in the long head of biceps brachii (LHB) and short head of the biceps brachii (SHB) using echo intensity (EI) and to determine the efficiency of the gray level co-occurrence matrix (GLCM) texture parameters. Methods: The participants performed 30 maximal eccentric contractions of the elbow flexor. Along with muscle damage indicators, including circumference, range of motion, muscle soreness, and maximal voluntary isometric contraction (MVIC), the EI and GLCM texture features of the LHB and SHB was also assessed using B-mode ultrasonography. All measurements were assessed pre- and immediately post-exercise and after 24, 48, 72, and 96 h. Results: The muscle damage indicators indicated significant changes after the eccentric contractions (p < 0.01 for circumference, range of motion, muscle soreness, and MVIC). The EI of LHB significantly increased following the contractions (p < 0.01), but that of SHB did not (p > 0.05). In contrast, for the GLCM texture parameters, there were significant changes in the SHB (p < 0.01 for homogeneity, energy, and entropy). Conclusion: Thus, this study demonstrated that EIMD severity is different between LHB and SHB even within the same muscle. In the GLCM features, the time course of SHB after eccentric contraction revealed different patterns compared with those of LHB. Therefore, even if there are no changes in EI within a target muscle following muscle contractions, new information on muscle quality can be obtained through GLCM analysis.
Collapse
|
2
|
Qi Y, Sun K, Zhao D, Liu L, Zhang S. Kinematic and electromyography characteristics of performing butterfly stroke with different swimming speeds in flow environment. Heliyon 2023; 9:e20122. [PMID: 37809614 PMCID: PMC10559845 DOI: 10.1016/j.heliyon.2023.e20122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Objective To investigate effect of flow speeds on the upper limb muscular activity of butterfly swimmers training in a flow environment. A comparison of kinematic characteristics and muscular activity of upper limbs were made when the swimmers training with different flow speeds in a swimming flume. The purpose was to provide a basis for scientifically formulating special swimming training advice for athletes' training in flow environment. Methods Ten youth female butterfly swimmers participated in the study with the speed of 70%, 80%, and 90% level of their max speeds. A stroke cycle was divided into four phases (entry, pull, push, and recovery). The kinematic parameters of upper limbs (stroke rate, stroke length, duration of each phase in a stroke cycle) and muscular activity (onset timing, integrated electromyography (iEMG), contribution ratio) of four muscles (Biceps brachii (BB), Triceps brachii (TB), Pectoralis major (PM), and Latissimus dorsi (LD)) were collected and analyzed in different stroke phases. Results There was no significant difference between stroke rate and stroke length with different flow speeds. There were significant differences among the duration of the four stroke phases. The entry phase had the longest duration, the pull phase had the shortest duration, the push phase was longer than the recovery phase, and the recovery phase was shorter than the entry phase. The BB and PM were activated significantly earlier at 90% of target speed than at 80% of target speed, while the TB was activated significantly later than other two speeds. The muscular contribution ratio of the PM was highest in the pull phase and lowest in the pushing phase. The muscular contribution ratio of the BB was significantly lower in the pushing phase than in other three stroke phases. The muscular contribution of the TB was significantly higher in the recovery phase than in other three stroke phases. The muscular contribution ratio of the LD was highest in the pushing phase, and it was significantly higher in pushing phase and recovery phase than in pull phase. Conclusions (1) When butterfly athletes training with 70%, 80% and 90% of their max speed in a flow environment, it didn't make significant differences between the kinematic or muscle activation characteristics of the upper limbs movement except the muscle onset timing. (2) Stroke phase was the main factor of the duration and the muscle contribution ratio during butterfly arm stroke for young athletes.
Collapse
Affiliation(s)
- Yaqian Qi
- Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Research Institute of Sports Science, Shanghai, 200030, China
| | - Kaiyang Sun
- Shanghai Research Institute of Sports Science, Shanghai, 200030, China
| | - Defeng Zhao
- Shanghai Research Institute of Sports Science, Shanghai, 200030, China
| | - Lingjun Liu
- Shanghai Research Institute of Sports Science, Shanghai, 200030, China
| | | |
Collapse
|
3
|
Watanabe K, Vieira TM, Gallina A, Kouzaki M, Moritani T. Novel Insights Into Biarticular Muscle Actions Gained From High-Density Electromyogram. Exerc Sport Sci Rev 2021; 49:179-187. [PMID: 33927163 PMCID: PMC8191471 DOI: 10.1249/jes.0000000000000254] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 11/21/2022]
Abstract
Biarticular muscles have traditionally been considered to exhibit homogeneous neuromuscular activation. The regional activation of biarticular muscles, as revealed from high-density surface electromyograms, seems however to discredit this notion. We thus hypothesize the regional activation of biarticular muscles may contribute to different actions about the joints they span. We then discuss the mechanistic basis and methodological implications underpinning our hypothesis.
Collapse
Affiliation(s)
- Kohei Watanabe
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Nagoya, Japan
| | - Taian Martins Vieira
- Laboratory for Engineering of the Neuromuscular System, Electronics and Telecommunication Department, Politecnico di Torino
- PoliToBIOMed Lab, Politecnico di Torino, Torino, Italy
| | - Alessio Gallina
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Motoki Kouzaki
- Laboratory of Neurophysiology, Graduate School of Human and Environmental Studies, Kyoto University
| | | |
Collapse
|
4
|
Rohlén R, Stålberg E, Grönlund C. Identification of single motor units in skeletal muscle under low force isometric voluntary contractions using ultrafast ultrasound. Sci Rep 2020; 10:22382. [PMID: 33361807 PMCID: PMC7759573 DOI: 10.1038/s41598-020-79863-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/14/2020] [Indexed: 01/23/2023] Open
Abstract
The central nervous system (CNS) controls skeletal muscles by the recruitment of motor units (MUs). Understanding MU function is critical in the diagnosis of neuromuscular diseases, exercise physiology and sports, and rehabilitation medicine. Recording and analyzing the MUs’ electrical depolarization is the basis for state-of-the-art methods. Ultrafast ultrasound is a method that has the potential to study MUs because of the electrical depolarizations and consequent mechanical twitches. In this study, we evaluate if single MUs and their mechanical twitches can be identified using ultrafast ultrasound imaging of voluntary contractions. We compared decomposed spatio-temporal components of ultrasound image sequences against the gold standard needle electromyography. We found that 31% of the MUs could be successfully located and their firing pattern extracted. This method allows new non-invasive opportunities to study mechanical properties of MUs and the CNS control in neuromuscular physiology.
Collapse
Affiliation(s)
- Robin Rohlén
- Department of Radiation Sciences, Biomedical Engineering, Umeå University, Umeå, Sweden.
| | - Erik Stålberg
- Department of Clinical Neurophysiology, Institute of Neuroscience, Uppsala University, Uppsala, Sweden.,Department of Neurosciences, University Hospital, Uppsala, Sweden
| | - Christer Grönlund
- Department of Radiation Sciences, Biomedical Engineering, Umeå University, Umeå, Sweden
| |
Collapse
|
5
|
Effect of knee joint angle on the neuromuscular activation of the quadriceps femoris during repetitive fatiguing contractions. J Electromyogr Kinesiol 2019; 49:102356. [PMID: 31557704 DOI: 10.1016/j.jelekin.2019.102356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/16/2019] [Accepted: 09/11/2019] [Indexed: 11/22/2022] Open
Abstract
We assessed the effect of knee joint angle on the EMG amplitude and frequency of the four individual muscles in the quadriceps femoris during repetitive fatiguing maximum voluntary contractions (MVCs). Fifteen healthy men and women performed two fatiguing tasks consisting of 40 MVCs in flexion (80°) and extension (140˚) (full extension = 180˚). Neuromuscular activation of the vastus intermedius (VI), vastus lateralis (VL), vastus medialis (VM), and rectus femoris (RF) was recorded using surface electrodes, and median frequency (MF) and root mean square (RMS) of electromyographic (EMG) signals (normalized by pre-test MVCs) were calculated. MVCs significantly decreased from the 10th to the 40th repetition in both flexion and extension. The MFs of VI and VM in flexion and that of RF flexion and extension were significantly decreased after the 10th repetition. There were no significant changes in normalized EMG amplitude in any muscles specific to knee angle. Stepwise regression analysis suggested that predictive synergistic action may occur in RF/VM and RF/VI in flexion and in RF/VM in extension. This suggest that EMG MF of RF/VM is independent, but that of RF/VI and RF/VL is dependent upon knee joint angle, which may, in part, explain joint angle-specific muscle fatigue.
Collapse
|
6
|
Huang C, Chen X, Cao S, Qiu B, Zhang X. An isometric muscle force estimation framework based on a high-density surface EMG array and an NMF algorithm. J Neural Eng 2018; 14:046005. [PMID: 28497771 DOI: 10.1088/1741-2552/aa63ba] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To realize accurate muscle force estimation, a novel framework is proposed in this paper which can extract the input of the prediction model from the appropriate activation area of the skeletal muscle. APPROACH Surface electromyographic (sEMG) signals from the biceps brachii muscle during isometric elbow flexion were collected with a high-density (HD) electrode grid (128 channels) and the external force at three contraction levels was measured at the wrist synchronously. The sEMG envelope matrix was factorized into a matrix of basis vectors with each column representing an activation pattern and a matrix of time-varying coefficients by a nonnegative matrix factorization (NMF) algorithm. The activation pattern with the highest activation intensity, which was defined as the sum of the absolute values of the time-varying coefficient curve, was considered as the major activation pattern, and its channels with high weighting factors were selected to extract the input activation signal of a force estimation model based on the polynomial fitting technique. MAIN RESULTS Compared with conventional methods using the whole channels of the grid, the proposed method could significantly improve the quality of force estimation and reduce the electrode number. SIGNIFICANCE The proposed method provides a way to find proper electrode placement for force estimation, which can be further employed in muscle heterogeneity analysis, myoelectric prostheses and the control of exoskeleton devices.
Collapse
Affiliation(s)
- Chengjun Huang
- Department of Electronic Science and Technology, University of Science and Technology of China (USTC), Hefei, People's Republic of China
| | | | | | | | | |
Collapse
|
7
|
Huang C, Chen X, Cao S, Zhang X. Muscle-tendon units localization and activation level analysis based on high-density surface EMG array and NMF algorithm. J Neural Eng 2016; 13:066001. [DOI: 10.1088/1741-2560/13/6/066001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Afsharipour B, Ullah K, Merletti R. Amplitude indicators and spatial aliasing in high density surface electromyography recordings. Biomed Signal Process Control 2015. [DOI: 10.1016/j.bspc.2015.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Watanabe K, Kouzaki M, Moritani T. Spatial EMG potential distribution of biceps brachii muscle during resistance training and detraining. Eur J Appl Physiol 2015; 115:2661-70. [PMID: 26255291 DOI: 10.1007/s00421-015-3237-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/03/2015] [Indexed: 11/26/2022]
Abstract
PURPOSE We investigated the effect of resistance training and detraining on the spatial distribution pattern of surface electromyography (SEMG) of the biceps brachii. METHODS Ten male subjects completed 6 weeks of resistance training of one arm and 8 weeks of detraining. During training and detraining periods, spatial distribution patterns of SEMG were measured and quantified with 64 two-dimensional electrodes. RESULTS MVC, muscle thickness, and SEMG amplitude of the trained arm were significantly greater than those of the untrained arm after the 6 weeks of resistance training (p < 0.05), but these differences were no longer observed after 2 months of detraining. On the other hand, no significant differences in the spatial distribution pattern of SEMG were observed between the arms. CONCLUSION Spatial distribution pattern of SEMG was not changed during resistance training and detraining periods. This suggests that detectable adaptations in the motor unit recruitment pattern do not occur during regular resistance training.
Collapse
Affiliation(s)
- Kohei Watanabe
- Laboratory of Neuromuscular Biomechanics, School of International Liberal Studies, Chukyo University, Yagotohonmachi, Showa-ku, Nagoya, 466-8666, Japan.
| | - Motoki Kouzaki
- Laboratory of Neurophysiology, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Toshio Moritani
- Laboratory of Applied Physiology, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Watanabe K, Kouzaki M, Moritani T. Heterogeneous neuromuscular activation within human rectus femoris muscle during pedaling. Muscle Nerve 2015; 52:404-11. [DOI: 10.1002/mus.24544] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Kohei Watanabe
- Laboratory of Neuromuscular Biomechanics; School of International Liberal Studies, Chukyo University; Yagotohonmachi Showa-ku Nagoya 466-8666 Japan
| | - Motoki Kouzaki
- Laboratory of Neurophysiology; Graduate School of Human and Environmental Studies, Kyoto University; Kyoto Japan
| | - Toshio Moritani
- Laboratory of Applied Physiology; Graduate School of Human and Environmental Studies, Kyoto University; Kyoto Japan
| |
Collapse
|
11
|
Regional neuromuscular regulation within human rectus femoris muscle during gait. J Biomech 2014; 47:3502-8. [DOI: 10.1016/j.jbiomech.2014.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 08/29/2014] [Accepted: 09/03/2014] [Indexed: 11/20/2022]
|
12
|
Harwood B, Cornett KMD, Edwards DL, Brown RE, Jakobi JM. The effect of tendon vibration on motor unit activity, intermuscular coherence and force steadiness in the elbow flexors of males and females. Acta Physiol (Oxf) 2014; 211:597-608. [PMID: 24888350 DOI: 10.1111/apha.12319] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 12/31/2013] [Accepted: 05/23/2014] [Indexed: 12/01/2022]
Abstract
BACKGROUND Compartmentalized responses in motor unit (MU) activity of the short head (SH) and long head (LH) of the biceps brachii are observed following forearm position change. Differential muscle spindle afferent distribution has been proposed as a potential mechanism underlying this behaviour. Tendon vibration is an effective, non-invasive method of increasing muscle spindle afferent activity of a target muscle group offering a paradigm in which this hypothesis may be investigated further. AIM To determine the effect of tendon vibration on MU recruitment and discharge rates of the SH and LH, muscle activity of the elbow flexors and triceps brachii, intermuscular coherence among the SH, LH, brachioradialis and triceps brachii and force steadiness in young males and females during isometric elbow flexion. METHODS Intramuscular electromyography (EMG) of the SH and LH, and surface EMG of the elbow flexors were recorded pre- and post-vibration during low-force isometric contractions. Motor unit recruitment thresholds, MU discharge rates and MU discharge variability; surface EMG amplitude, intermuscular coherence and force steadiness were determined pre- and post-vibration. RESULTS Differential changes in all MU properties, EMG amplitude and intermuscular coherence were observed among elbow flexors. Although MU properties exhibited differential changes, they accounted for little variance in isometric force steadiness. However, intermuscular EMG coherence among all muscles investigated was reduced post-vibration. CONCLUSION Uncoupling of common oscillatory input as a result of differential muscle spindle afferent inputs to elbow flexors may be responsible for the reduction in force steadiness following tendon vibration and a forearm position change.
Collapse
Affiliation(s)
- B. Harwood
- Health and Exercise Science; University of British Columbia Okanagan; Kelowna BC Canada
- Department of Physiology; University of Arizona; Tucson AZ USA
| | - K. M. D. Cornett
- Health and Exercise Science; University of British Columbia Okanagan; Kelowna BC Canada
| | - D. L. Edwards
- Human Kinetics; University of Windsor; Windsor ON Canada
| | - R. E. Brown
- Health and Exercise Science; University of British Columbia Okanagan; Kelowna BC Canada
| | - J. M. Jakobi
- Department of Physiology; University of Arizona; Tucson AZ USA
| |
Collapse
|
13
|
Ringheim I, Indahl A, Roeleveld K. Alternating activation is related to fatigue in lumbar muscles during sustained sitting. J Electromyogr Kinesiol 2014; 24:380-6. [DOI: 10.1016/j.jelekin.2014.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 01/27/2014] [Accepted: 01/31/2014] [Indexed: 11/26/2022] Open
|
14
|
Staudenmann D, van Dieën JH, Stegeman DF, Enoka RM. Increase in heterogeneity of biceps brachii activation during isometric submaximal fatiguing contractions: a multichannel surface EMG study. J Neurophysiol 2013; 111:984-90. [PMID: 24335206 DOI: 10.1152/jn.00354.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of fatigue emerge from the beginning of sustained submaximal contractions, as shown by an increase in the amplitude of the surface electromyogram (EMG). The increase in EMG amplitude is attributed to an augmentation of the excitatory drive to the motor neuron pool that, more importantly than increasing discharge rates, recruits additional motor units for the contraction. The aim of this study was to determine whether the spatiotemporal distribution of biceps brachii (BB) activity becomes more or less heterogeneous during a fatiguing isometric contraction sustained at a submaximal target force. Multiple electrodes were attached over the entire BB muscle, and principal component analysis (PCA) was used to extract the representative information from multiple monopolar EMG channels. The development of heterogeneity during the fatiguing contraction was quantified by applying a cluster algorithm on the PCA-processed EMG amplitudes. As shown previously, the overall EMG amplitude increased during the sustained contraction, whereas there was no change in coactivation of triceps brachii. However, EMG amplitude did not increase in all channels and even decreased in some. The change in spatial distribution of muscle activity varied across subjects. As found in other studies, the spatial distribution of EMG activity changed during the sustained contraction, but the grouping and size of the clusters did not change. This study showed for the first time that muscle activation became more heterogeneous during a sustained contraction, presumably due to a decrease in the strength of common inputs with the recruitment of additional motor units.
Collapse
Affiliation(s)
- Didier Staudenmann
- Movement and Sport Science, Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland
| | | | | | | |
Collapse
|
15
|
Mista CA, Salomoni SE, Graven-Nielsen T. Spatial reorganisation of muscle activity correlates with change in tangential force variability during isometric contractions. J Electromyogr Kinesiol 2013; 24:37-45. [PMID: 24321699 DOI: 10.1016/j.jelekin.2013.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 09/12/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022] Open
Abstract
The aim of this study was to quantify the effects of spatial reorganisation of muscle activity on task-related and tangential components of force variability during sustained contractions. Three-dimensional forces were measured from isometric elbow flexion during submaximal contractions (50s, 5-50% of maximal voluntary contraction (MVC)) and total excursion of the centre of pressure was extracted. Spatial electromyographic (EMG) activity was recorded from the biceps brachii muscle. The centroids of the root mean square (RMS) EMG and normalised mutual information (NMI) maps were computed to assess spatial muscle activity and spatial relationship between EMG and task-related force variability, respectively. Result showed that difference between the position of the centroids at the beginning and at the end of the contraction of the RMS EMG and the NMI maps were different in the medial-lateral direction (P<0.05), reflecting that muscle regions modulate their activity without necessarily modulating the contribution to the task-related force variability over time. Moreover, this difference between shifts of the centroids was positively correlated with the total excursion of the centre of pressure at the higher levels of contractions (>30% MVC, R(2)>0.30, P<0.05), suggesting that changes in spatial muscle activity could impact on the modulation of tangential forces. Therefore, within-muscle adaptations do not necessarily increase force variability, and this interaction can be quantified by analysing the RMS EMG and the NMI map centroids.
Collapse
Affiliation(s)
- Christian A Mista
- Laboratory for Musculoskeletal Pain and Motor Control, Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Denmark
| | - Sauro E Salomoni
- Laboratory for Musculoskeletal Pain and Motor Control, Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Denmark
| | - Thomas Graven-Nielsen
- Laboratory for Musculoskeletal Pain and Motor Control, Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Denmark.
| |
Collapse
|
16
|
Lindberg F, Öhberg F, Brodin L, Grönlund C. Assessment of intramuscular activation patterns using ultrasound M-mode strain. J Electromyogr Kinesiol 2013; 23:879-85. [PMID: 23557977 DOI: 10.1016/j.jelekin.2013.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/05/2013] [Accepted: 02/26/2013] [Indexed: 11/25/2022] Open
|
17
|
Watanabe K, Kouzaki M, Moritani T. Task-dependent spatial distribution of neural activation pattern in human rectus femoris muscle. J Electromyogr Kinesiol 2012; 22:251-8. [DOI: 10.1016/j.jelekin.2011.11.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/06/2011] [Accepted: 11/03/2011] [Indexed: 10/14/2022] Open
|
18
|
Miyamoto N, Wakahara T, Kawakami Y. Task-dependent inhomogeneous muscle activities within the bi-articular human rectus femoris muscle. PLoS One 2012; 7:e34269. [PMID: 22479583 PMCID: PMC3313973 DOI: 10.1371/journal.pone.0034269] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 02/28/2012] [Indexed: 11/28/2022] Open
Abstract
The motor nerve of the bi-articular rectus femoris muscle is generally split from the femoral nerve trunk into two sub-branches just before it reaches the distal and proximal regions of the muscle. In this study, we examined whether the regional difference in muscle activities exists within the human rectus femoris muscle during maximal voluntary isometric contractions of knee extension and hip flexion. Surface electromyographic signals were recorded from the distal, middle, and proximal regions. In addition, twitch responses were evoked by stimulating the femoral nerve with supramaximal intensity. The root mean square value of electromyographic amplitude during each voluntary task was normalized to the maximal compound muscle action potential amplitude (M-wave) for each region. The electromyographic amplitudes were significantly smaller during hip flexion than during knee extension task for all regions. There was no significant difference in the normalized electromyographic amplitude during knee extension among regions within the rectus femoris muscle, whereas those were significantly smaller in the distal than in the middle and proximal regions during hip flexion task. These results indicate that the bi-articular rectus femoris muscle is differentially controlled along the longitudinal direction and that in particular the distal region of the muscle cannot be fully activated during hip flexion.
Collapse
Affiliation(s)
- Naokazu Miyamoto
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan.
| | | | | |
Collapse
|
19
|
Nagata K, Hagio S, Tanabe H, Kouzaki M. Index finger position fluctuations reflect multi-muscle coordination. J Electromyogr Kinesiol 2012; 22:546-52. [PMID: 22305653 DOI: 10.1016/j.jelekin.2012.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 12/28/2011] [Accepted: 01/09/2012] [Indexed: 11/19/2022] Open
Abstract
We hypothesized that movement fluctuations in the index finger reflect the integrated result of the coordination of multiple muscles because index finger movements are determined by the cooperation of multiple muscles spanning the metacarpophalangeal (MCP) joint. To evaluate this hypothesis, the aim of the present study was to examine the fluctuations of the index finger in abduction-adduction and extension-flexion directions during a position-holding task using two laser displacement sensors. Eleven healthy men maintained their index finger position while supporting a load at 5% of the maximal voluntary contraction force. To maintain the position of the index finger, displacement of the index finger in the abduction-adduction and extension-flexion directions was measured from a distance with two laser displacement sensors that were positioned to the lateral side of and above the index finger. The index finger movements fluctuated around the target position in not only the abduction-adduction direction but also the extension-flexion direction. The path length of finger displacement and the standard deviation of finger acceleration were significantly greater in the extension-flexion direction than in the abduction-adduction direction. These results suggest that the index finger movements quantified by two laser displacement sensors reflect the coordination of multiple muscles spanning the MCP joint.
Collapse
Affiliation(s)
- Kaori Nagata
- Laboratory of Neurophysiology, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
20
|
Age independent and position-dependent alterations in motor unit activity of the biceps brachii. Eur J Appl Physiol 2010; 110:27-38. [DOI: 10.1007/s00421-010-1438-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2010] [Indexed: 10/19/2022]
|
21
|
Gerdle B, Grönlund C, Karlsson SJ, Holtermann A, Roeleveld K. Altered neuromuscular control mechanisms of the trapezius muscle in fibromyalgia. BMC Musculoskelet Disord 2010; 11:42. [PMID: 20205731 PMCID: PMC2839982 DOI: 10.1186/1471-2474-11-42] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 03/05/2010] [Indexed: 11/15/2022] Open
Abstract
Background fibromyalgia is a relatively common condition with widespread pain and pressure allodynia, but unknown aetiology. For decades, the association between motor control strategies and chronic pain has been a topic for debate. One long held functional neuromuscular control mechanism is differential activation between regions within a single muscle. The aim of this study was to investigate differences in neuromuscular control, i.e. differential activation, between myalgic trapezius in fibromyalgia patients and healthy controls. Methods 27 fibromyalgia patients and 30 healthy controls performed 3 minutes bilateral shoulder elevations with different loads (0-4 Kg) with a high-density surface electromyographical (EMG) grid placed above the upper trapezius. Differential activation was quantified by the power spectral median frequency of the difference in EMG amplitude between the cranial and caudal parts of the upper trapezius. The average duration of the differential activation was described by the inverse of the median frequency of the differential activations. Results the median frequency of the differential activations was significantly lower, and the average duration of the differential activations significantly longer in fibromyalgia compared with controls at the two lowest load levels (0-1 Kg) (p < 0.04), but not at the two highest load levels (2 and 4 Kg). Conclusion these findings illustrate a different neuromuscular control between fibromyalgia patients and healthy controls during a low load functional task, either sustaining or resulting from the chronic painful condition. The findings may have clinical relevance for rehabilitation strategies for fibromyalgia.
Collapse
Affiliation(s)
- Björn Gerdle
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
22
|
Law LAF, Avin KG. Endurance time is joint-specific: a modelling and meta-analysis investigation. ERGONOMICS 2010; 53:109-29. [PMID: 20069487 PMCID: PMC2891087 DOI: 10.1080/00140130903389068] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Static task intensity-endurance time (ET) relationships (e.g. Rohmert's curve) were first reported decades ago. However, a comprehensive meta-analysis to compare experimentally-observed ETs across bodily regions has not been reported. We performed a systematic literature review of ETs for static contractions, developed joint-specific power and exponential models of the intensity-ET relationships, and compared these models between each joint (ankle, trunk, hand/grip, elbow, knee, and shoulder) and the pooled data (generalised curve). 194 publications were found, representing a total of 369 data points. The power model provided the best fit to the experimental data. Significant intensity-dependent ET differences were predicted between each pair of joints. Overall, the ankle was most fatigue-resistant, followed by the trunk, hand/grip, elbow, knee and finally the shoulder was most fatigable. We conclude ET varies systematically between joints, in some cases with large effect sizes. Thus, a single generalised ET model does not adequately represent fatigue across joints. STATEMENT OF RELEVANCE: Rohmert curves have been used in ergonomic analyses of fatigue, as there are limited tools available to accurately predict force decrements. This study provides updated endurance time-intensity curves using a large meta-analysis of fatigue data. Specific models derived for five distinct joint regions should further increase prediction accuracy.
Collapse
|
23
|
Holtermann A, Grönlund C, Ingebrigtsen J, Karlsson JS, Roeleveld K. Duration of differential activations is functionally related to fatigue prevention during low-level contractions. J Electromyogr Kinesiol 2009; 20:241-5. [PMID: 19481957 DOI: 10.1016/j.jelekin.2009.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 04/30/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022] Open
Abstract
The aim of this study was to investigate the importance of duration of differential activations between the heads of the biceps brachii on local fatigue during prolonged low-level contractions. Fifteen subjects carried out isometric elbow flexion at 5% of maximal voluntary contraction (MVC) for 30 min. MVCs were performed before and at the end of the prolonged contraction. Surface electromyographic (EMG) signals were recorded from both heads of the biceps brachii. Differential activation was analysed based on the difference in EMG amplitude (activation) between electrodes situated at the two heads. Differential activations were quantified by the power spectral median frequency of the difference in activation between the heads throughout the contraction. The inverse of the median frequency was used to describe the average duration of the differential activations. The relation between average duration of the differential activations and the fatigue-induced reduction in maximal force was explored by linear regression analysis. The main finding was that the average duration of differential activation was positively associated to relative maximal force at the end of the 30 min contraction (R(2)=0.5, P<0.01). The findings of this study highlight the importance of duration of differential activations for local fatigue, and support the hypothesis that long term differential activations prevent fatigue during prolonged low-level contractions.
Collapse
Affiliation(s)
- A Holtermann
- Human Movement Sciences Programme, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | |
Collapse
|
24
|
Karlsson JS, Roeleveld K, Grönlund C, Holtermann A, Ostlund N. Signal processing of the surface electromyogram to gain insight into neuromuscular physiology. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2009; 367:337-356. [PMID: 18974034 DOI: 10.1098/rsta.2008.0214] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A surface electromyogram (sEMG) contains information about physiological and morphological characteristics of the active muscle and its neural strategies. Because the electrodes are situated on the skin above the muscle, the sEMG is an easily obtainable source of information. However, different combinations of physiological and morphological characteristics can lead to similar sEMG signals and sEMG recordings contain noise and other artefacts. Therefore, many sEMG signal processing methods have been developed and applied to allow insight into neuromuscular physiology. This paper gives an overview of important advances in the development and applications of sEMG signal processing methods, including spectral estimation, higher order statistics and spatio-temporal processing. These methods provide information about muscle activation dynamics and muscle fatigue, as well as characteristics and control of single motor units (conduction velocity, firing rate, amplitude distribution and synchronization).
Collapse
Affiliation(s)
- J Stefan Karlsson
- Department of Biomedical Engineering & Informatics, University Hospital, 901 85 Umeå, Sweden.
| | | | | | | | | |
Collapse
|