1
|
Files R, Santos C, Queiroga FL, Silva F, Delgado L, Pires I, Prada J. Investigating Cox-2 and EGFR as Biomarkers in Canine Oral Squamous Cell Carcinoma: Implications for Diagnosis and Therapy. Curr Issues Mol Biol 2024; 46:485-497. [PMID: 38248333 PMCID: PMC10814971 DOI: 10.3390/cimb46010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common and highly aggressive dog tumor known for its local invasiveness and metastatic potential. Understanding the molecular mechanisms driving the development and progression of OSCC is crucial for improving diagnostic and therapeutic strategies. Additionally, spontaneous oral squamous cell carcinomas in dogs are an excellent model for studying human counterparts. In this study, we aimed to investigate the significance of two key molecular components, Cox-2 and EGFR, in canine OSCC. We examined 34 tumor sections from various dog breeds to assess the immunoexpression of Cox-2 and EGFR. Our findings revealed that Cox-2 was highly expressed in 70.6% of cases, while EGFR overexpression was observed in 44.1%. Cox-2 overexpression showed association with histological grade of malignancy (HGM) (p = 0.006) and EGFR with vascular invasion (p = 0.006). COX-2 and EGFR concurrent expression was associated with HGM (p = 0.002), as well as with the presence of vascular invasion (p = 0.002). These data suggest that Cox-2 and EGFR could be promising biomarkers and potential therapeutic targets, opening avenues for developing novel treatment strategies for dogs affected by OSCC. Further studies are warranted to delve deeper into these findings and translate them into clinical practice.
Collapse
Affiliation(s)
- Rita Files
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (C.S.); (F.L.Q.); (F.S.); (J.P.)
| | - Catarina Santos
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (C.S.); (F.L.Q.); (F.S.); (J.P.)
| | - Felisbina L. Queiroga
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (C.S.); (F.L.Q.); (F.S.); (J.P.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Centre for the Study of Animal Science, CECA-ICETA, University of Porto, 4200-427 Porto, Portugal
| | - Filipe Silva
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (C.S.); (F.L.Q.); (F.S.); (J.P.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Leonor Delgado
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences—CESPU (IUCS-CESPU), 4585-116 Gandra, Portugal;
- Pathology Department, INNO Serviços Especializados em Veterinária, 4710-503 Braga, Portugal
| | - Isabel Pires
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (C.S.); (F.L.Q.); (F.S.); (J.P.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Justina Prada
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (C.S.); (F.L.Q.); (F.S.); (J.P.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
2
|
Herstad KMV, Gunnes G, Rørtveit R, Kolbjørnsen Ø, Tran L, Skancke E. Immunohistochemical expression of β-catenin, Ki67, CD3 and CD18 in canine colorectal adenomas and adenocarcinomas. BMC Vet Res 2021; 17:119. [PMID: 33712002 PMCID: PMC7953700 DOI: 10.1186/s12917-021-02829-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 03/05/2021] [Indexed: 12/18/2022] Open
Abstract
Background Inflammation is believed to influence human colorectal carcinogenesis and may have an impact on prognosis and survival. The mucosal immunophenotype in dogs with colorectal cancer is poorly described. The aim of this study was to investigate whether the density, distribution and grade of tumor-infiltrating immune cells (TIIs) are different in normal colonic tissue vs benign stages (adenomas) and malignant stages (adenocarcinomas) of canine colorectal carcinogenesis, and thus, whether they can be considered as prognostic factors in dogs. This retrospective case-control study was performed on formalin-fixed, paraffin-embedded tissue samples from dogs with histologically confirmed colorectal adenoma (n = 18) and adenocarcinoma (n = 13) collected from archived samples. The samples had been collected by colonoscopy, surgery or during postmortem examination. Healthy colonic tissue obtained post mortem from dogs euthanized for reasons not involving the gastrointestinal tract served as control tissue (n = 9). Results The tumor samples had significantly lower numbers of CD3+ T-cells in the epithelium compared to controls (adenocarcinoma vs control, Kruskal-Wallis test, p = 0.0004, and adenoma vs control, p = 0.002). Adenomas had a significantly lower number of CD18+ cells in the lamina propria, compared to control samples (Kruskal-Wallis test, p = 0.008). Colonic samples from control dogs had uniform staining of β-catenin along the cell membrane of epithelial cells. Compared to normal colonic cells, the expression levels of cytoplasmic β-catenin were significantly higher in adenomas and adenocarcinomas (adenoma vs control Kruskal-Wallis test, p = 0.004, and adenocarcinoma vs control, p = 0.002). None of the control samples showed positive staining of β-catenin in the nucleus of colonic cells. In contrast, adenocarcinomas and adenomas showed moderate to strong staining of the cell nucleus. The nuclear β-catenin expression (signal strength and distribution) was significantly higher in adenomas compared to adenocarcinomas (Kruskal-Wallis test, p < 0.05). Conclusions β-catenin and Ki67 were not useful markers for demonstrating tumor progression from adenomas to adenocarcinomas. The lower presence of CD18 and CD3+ cells in colorectal tumors compared to controls indicates a reduced presence of histiocytes and T-cells, which may have implications for the pathogenesis and progression of colorectal cancer in dogs. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02829-6.
Collapse
Affiliation(s)
- Kristin M V Herstad
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway.
| | - Gjermund Gunnes
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Runa Rørtveit
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Øyvor Kolbjørnsen
- Department of Animal Health, Norwegian Veterinary Institute, Section for Biohazard and Pathology, Oslo, Norway
| | - Linh Tran
- Department of Animal Health, Norwegian Veterinary Institute, Section for Biohazard and Pathology, Oslo, Norway
| | - Ellen Skancke
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| |
Collapse
|
3
|
Ohmi A, Ohno K, Chambers JK, Uchida K, Nakagawa T, Tomiyasu H, Tsujimoto H. Clinical and histopathological features and prognosis of gastrointestinal adenocarcinomas in Jack Russell Terriers. J Vet Med Sci 2020; 83:167-173. [PMID: 33328390 PMCID: PMC7972879 DOI: 10.1292/jvms.20-0421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
There has been an increase in the number of Jack Russell Terriers (JRTs) diagnosed with
adenomas and adenocarcinomas of the gastrointestinal tract in Japan. This study
retrospectively investigated the clinical and histopathological features and prognosis of
adenocarcinomas arising in the gastrointestinal tract in JRT dogs. Seven JRTs and 39 dogs
of other breeds diagnosed with gastrointestinal adenocarcinoma were included in the study.
The most common sites of gastrointestinal adenocarcinoma in JRTs were the pylorus and
rectum. On histopathological examination, these adenocarcinomas showed a papillary or
tubular growth pattern, and the lesions were confined within the mucosal epithelium and
poorly invasive. Among all dogs with gastric adenocarcinoma, the median survival time
(MST) for five of the JRTs could not be determined because more than half of the cases
remained alive, while the MST for nine non-JRT dogs was 34 days. Among all dogs with
adenocarcinoma in the large intestine, the MST for three of the JRTs could not be
determined, while the MST for nine non-JRT dogs was 1,973 days. The difference in MST
between JRT and non-JRT dogs with gastric adenocarcinoma was significant
(P=0.0220). Since gastrointestinal adenocarcinomas in JRTs show
distinct characteristics with respect to their clinical features, treatment course, and
prognosis, a different surgical and medical treatment plan should be considered compared
to the management of gastrointestinal adenocarcinomas in other dog breeds.
Collapse
Affiliation(s)
- Aki Ohmi
- Veterinary Medical Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Koichi Ohno
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - James K Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Taisuke Nakagawa
- Veterinary Medical Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hirotaka Tomiyasu
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hajime Tsujimoto
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
4
|
Yoshitake R, Saeki K, Eto S, Shinada M, Nakano R, Sugiya H, Endo Y, Fujita N, Nishimura R, Nakagawa T. Aberrant expression of the COX2/PGE 2 axis is induced by activation of the RAF/MEK/ERK pathway in BRAF V595E canine urothelial carcinoma. Sci Rep 2020; 10:7826. [PMID: 32385388 PMCID: PMC7210937 DOI: 10.1038/s41598-020-64832-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/09/2020] [Indexed: 01/03/2023] Open
Abstract
Cancer-promoting inflammation is an important event in cancer development. Canine urothelial carcinoma (cUC) overexpresses prostaglandin E2 (PGE2) and has a unique sensitivity to cyclooxygenase 2 (COX2)-inhibiting therapy. In addition, majority of cUC harbour BRAFV595E mutation. However, mechanisms underlying aberrant PGE2 production in BRAFV595E cUC patients remain unclear. Drug screening revealed that inhibition of RAF/MEK/ERK pathway, p38 and JNK pathway reduced PGE2 production in cUC cells. By pharmacological inhibition of the multiple components in the pathway, activation of the ERK MAPK pathway was shown to mediate overexpression of COX2 and production of PGE2 in BRAFV595E cUC cells. In silico gain-of-function analysis of the BRAF mutation also implicated involvement of mutation in the process. The positive association between ERK activation and COX2 expression was further validated in the clinical patients. Moreover, it was also suggested that p38 and JNK regulates PGE2 production independently of ERK pathway, possibly through COX2-dependent and COX1-/COX2- independent manner, respectively. In conclusion, this study demonstrated that activation of ERK induces production of PGE2 in BRAFV595E cUC cells, which is also independently regulated by p38 and JNK. With its unique vulnerability to COX-targeted therapy, BRAFV595E cUC may serve as a valuable model to study the tumour-promoting inflammation.
Collapse
Affiliation(s)
- Ryohei Yoshitake
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kohei Saeki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Shotaro Eto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masahiro Shinada
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Rei Nakano
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Nihon University College of Bioresource Sciences, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hiroshi Sugiya
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Nihon University College of Bioresource Sciences, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yoshifumi Endo
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Naoki Fujita
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
5
|
Grassinger JM, Merz S, Aupperle-Lellbach H, Erhard H, Klopfleisch R. Correlation of BRAF Variant V595E, Breed, Histological Grade and Cyclooxygenase-2 Expression in Canine Transitional Cell Carcinomas. Vet Sci 2019; 6:vetsci6010031. [PMID: 30893857 PMCID: PMC6466154 DOI: 10.3390/vetsci6010031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/20/2022] Open
Abstract
The presence of BRAF variant V595E, as well as an increased cyclooxygenase-2 (COX-2) expression in canine transitional cell carcinoma (TCC) are well-described in the literature. The aim of the present study was to investigate the correlation between breed (terrier versus non-terrier dogs), histological grade, COX-2 expression, and BRAF mutation in canine TCC. Therefore, transmural TCC biopsies from 65 dogs (15 terriers, 50 non-terriers) were graded histologically into low- and high-grade. Immunohistochemical evaluation of the intensity of COX-2 expression was performed using an immunoreactive score (IRS). Exon 15 of chromosome 16 was examined for the BRAF variant c.1799T>A by TaqMan® SNP assay. TCC was low-grade in 20 cases (one terrier, 19 non-terriers) and high-grade in 45 cases (14 terriers, 31 non-terriers). Contrary to humans, histological grade was not significantly correlated to the intensity of COX-2 expression. BRAF mutation was detected in 11/15 (73%) TCC of terriers and in 18/50 (36%) TCC of non-terriers. Histological grade and BRAF mutation were not correlated significantly (p = 0.2912). Terriers had a considerably higher prevalence of high-grade tumors (p < 0.0001), as well as of BRAF mutation (p ≤ 0.05) compared to non-terriers. In non-terriers, neoplasms with BRAF mutation showed a significantly higher intensity of COX-2 expression than those without BRAF mutation (p ≤ 0.05). In conclusion, in contrast to humans, testing for BRAF mutation in canine TCC is a sensitive diagnostic method especially in terriers (73%) and may be recommended as a screening test. However, evidence of BRAF mutation in canine TCC is not a predictor for the histological grade. Moreover, a positive correlation between histological grade and the intensity of COX-2 expression was not found. Further studies are necessary to clarify the clinical and prognostic relevance of the elevated intensity of COX-2 expression of TCC with BRAF mutation detected in non-terriers.
Collapse
Affiliation(s)
| | - Sophie Merz
- Institute of Veterinary Pathology, Freie Universität Berlin, 14163 Berlin, Germany.
| | | | - Hanna Erhard
- Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany.
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin, 14163 Berlin, Germany.
| |
Collapse
|
6
|
Molecular investigation of the direct anti-tumour effects of nonsteroidal anti-inflammatory drugs in a panel of canine cancer cell lines. Vet J 2017; 221:38-47. [DOI: 10.1016/j.tvjl.2017.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 01/25/2023]
|
7
|
Belluco S, Carnier P, Castagnaro M, Chiers K, Millanta F, Peña L, Pires I, Queiroga F, Riffard S, Scase T, Polton G. Immunohistochemical Labelling for Cyclo-oxygenase-2: Does the Positive Control Guarantee Standardized Results? J Comp Pathol 2016; 154:186-94. [PMID: 26895886 DOI: 10.1016/j.jcpa.2016.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 01/11/2023]
Abstract
Since the identification of cyclo-oxygenase-2 as a potentially important therapeutic target in veterinary oncology, numerous studies on its expression have been conducted. Unfortunately, results have been heterogeneous and conclusions are difficult to draw. We tested the ability of a defined positive control to guarantee reproducibility of results among different laboratories. Valid positive controls were defined by positivity of the renal macula densa without background labelling. Fifteen colorectal tumours and 15 oral squamous cell carcinomas were labelled immunohistochemically by six European laboratories. Slides were evaluated in blinded fashion for percentage of positive cells and labelling intensity by three pathologists, and results were analyzed statistically for reproducibility and inter-reader variability. Macula densa positivity was an insufficiently sensitive control to guarantee reproducible results for percentage of positive cells and labelling intensity. Inter-reader variability was proven statistically, making the case for image analysis or other automated quantitative evaluation techniques.
Collapse
Affiliation(s)
- S Belluco
- Equipe Recherche UPSP ICE 2011-03-101: Oncology, Vetagro-sup, Campus Vétérinaire, 1 Avenue Bourgelat, Marcy l'etoile, France.
| | - P Carnier
- Department of Comparative Biomedicine and Food Science, Faculty of Veterinary Medicine, AGRIPOLIS, Viale dell'Università 16, Legnaro, Italy
| | - M Castagnaro
- Department of Comparative Biomedicine and Food Science, Faculty of Veterinary Medicine, AGRIPOLIS, Viale dell'Università 16, Legnaro, Italy
| | - K Chiers
- Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, Merelbeke, Belgium
| | - F Millanta
- Department of Animal Pathology, School of Veterinary Medicine, University of Pisa, Viale delle Piagge 2, Pisa, Italy
| | - L Peña
- Veterinary School, Complutense University Madrid, Madrid, Spain
| | - I Pires
- University of Trás-os-Montes and Alto Douro, Quinta de Prados, Vila Real, Portugal
| | - F Queiroga
- University of Trás-os-Montes and Alto Douro, Quinta de Prados, Vila Real, Portugal
| | - S Riffard
- Merial, 254 rue Marcel Mérieux, Lyon, France
| | - T Scase
- Bridge Pathology Ltd., Courtyard House, 26A Oakfield Road, Bristol, UK
| | - G Polton
- North Downs Specialist Referrals, Friesian Building 3&4, The Brewer Street Dairy Business Park, Brewer Street, Bletchingley, Surrey, UK
| |
Collapse
|
8
|
Sledge DG, Patrick DJ, Fitzgerald SD, Xie Y, Kiupel M. Differences in Expression of Uroplakin III, Cytokeratin 7, and Cyclooxygenase-2 in Canine Proliferative Urothelial Lesions of the Urinary Bladder. Vet Pathol 2014; 52:74-82. [DOI: 10.1177/0300985814522819] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The expression of immunohistochemical markers that have been used in diagnosis and/or prognostication of urothelial tumors in humans (uroplakin III [UPIII], cytokeratin 7 [CK7], cyclooxygenase-2 [COX-2], and activated caspase 3) was evaluated in a series of 99 canine proliferative urothelial lesions of the urinary bladder and compared to the lesion classification and grade as defined by the World Health Organization / International Society of Urologic Pathology consensus system. There were significant associations between tumor classification and overall UPIII pattern ( P = 1.49 × 10–18), loss of UPIII ( P = 1.27 × 10–4), overall CK7 pattern ( P = 4.34 × 10–18), and COX-2 pattern ( P = 8.12 × 10–25). In addition, there were significant associations between depth of neoplastic cell infiltration into the urinary bladder wall and overall UPIII pattern ( P = 1.54 × 10–14), loss of UPIII ( P = 2.07 × 10–4), overall CK7 pattern ( P = 1.17 × 10–13), loss of CK7 expression ( P = .0485), and COX-2 pattern ( P = 8.23 × 10–21). There were no significant associations between tumor classification or infiltration and caspase 3 expression pattern.
Collapse
Affiliation(s)
- D. G. Sledge
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | | | - S. D. Fitzgerald
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Y. Xie
- Pharmanet/i3, Haslett, MI, USA
| | - M. Kiupel
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
9
|
Knudsen CS, Williams A, Brearley MJ, Demetriou JL. COX-2 expression in canine anal sac adenocarcinomas and in non-neoplastic canine anal sacs. Vet J 2013; 197:782-7. [PMID: 23778258 DOI: 10.1016/j.tvjl.2013.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 03/08/2013] [Accepted: 05/06/2013] [Indexed: 01/06/2023]
Abstract
Anal sac adenocarcinoma (ASAC) is a clinically significant canine neoplasm characterized by early lymphatic invasion. Up-regulation of cyclooxygenase isoform 2 (COX-2) has been confirmed in several animal and human neoplastic tissues. The aim of the current study was primarily to evaluate COX-2 expression in canine ASAC and compare it to COX-2 expression in non-neoplastic canine anal sac tissue using immunohistochemistry with scoring for percentage positivity and intensity. Twenty-five ASAC samples and 22 normal anal sacs were available for evaluation. All canine ASAC samples and the normal anal sac tissues stained positively for COX-2. However, while normal anal sac tissue showed strong staining of the ductal epithelial cells, ASAC samples showed staining of the neoplastic glandular epithelial cells, with varying percentage positivity and intensity between ASAC samples. COX-2 immunoreactivity of ASAC samples was of low intensity in 52% and high in 12% of the cases; the remaining samples were of intermediate intensity. Seventy-six per cent of the ASAC had over 50% of the neoplastic glandular cells staining positive. These results confirm that COX-2 is expressed in the neoplastic glandular epithelial cells in canine ASAC and suggest a potential role for COX-2 inhibitors in the management of ASAC. Furthermore, the results indicate that COX-2 is expressed in ductal epithelial cells of the normal anal sac.
Collapse
Affiliation(s)
- C S Knudsen
- The Queen's Veterinary School Hospital, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| | | | | | | |
Collapse
|
10
|
de Brito Galvao JF, Kisseberth WC, Murahari S, Sutayatram S, Chew DJ, Inpanbutr N. Effects of gemcitabine and gemcitabine in combination with carboplatin on five canine transitional cell carcinoma cell lines. Am J Vet Res 2012; 73:1262-72. [DOI: 10.2460/ajvr.73.8.1262] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Friedman GD, Udaltsova N, Chan J, Quesenberry CP, Habel LA. Screening pharmaceuticals for possible carcinogenic effects: initial positive results for drugs not previously screened. Cancer Causes Control 2011; 20:1821-35. [PMID: 19582585 DOI: 10.1007/s10552-009-9375-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 06/03/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To screen commonly used prescription drugs for possible carcinogenic effects. METHODS In a large health care program we identified 105 commonly used drugs, not previously screened. Recipients were followed for up to 12½ years for incident cancer. Nested case-control analyses of 55 cancer sites and all combined included up to ten matched controls per case, with lag of at least 2 years between drug dispensing and cancer. Positive associations entailed a relative risk of 1.50, with p ≤ 0.01 and higher risk for three or more, than for one prescription. Evaluation included further analyses, searches of the literature, and clinical judgment. RESULTS There were 101 associations of interest for 61 drugs. Sixty-six associations were judged to have involved substantial confounding. We found evidence that of the remaining 35, the following associations may not be due to chance: sulindac with gallbladder cancer and leukemia, hyoscyamine with nonHodgkin lymphoma, nortriptyline with esophageal and hepatic cancer, oxazepam with lung cancer, both fluoxetine and paroxetine with testicular cancer, hydrochlorothiazide with renal and lip cancer, and nifedipine with lip cancer. CONCLUSIONS These preliminary findings suggest that further studies are indicated regarding sulindac, hyoscyamine, nortriptyline, oxazepam, fluoxetine, paroxetine, hydrochlorothiazide, and nifedipine.
Collapse
Affiliation(s)
- Gary D Friedman
- Division of Research, Kaiser Permanente Medical Care Program, 2000 Broadway, Oakland, CA 94612, USA.
| | | | | | | | | |
Collapse
|
12
|
Abstract
Cyclooxygenase (COX; also known as prostaglandin endoperoxide synthase) is a key enzyme in the biochemical pathway leading to the synthesis of prostaglandins. A large amount of epidemiological and experimental evidence supports a role for COX-2, the inducible form of the enzyme, in human tumorigenesis, notably in colorectal cancer. COX-2 mediates this role through the production of PGE(2) that acts to inhibit apoptosis, promote cell proliferation, stimulate angiogenesis, and decrease immunity. Similarly, COX-2 is believed to be involved in the oncogenesis of some cancers in domestic animals. Here, the author reviews the current knowledge on COX-2 expression and role in cancers of dogs, cats, and horses. Data indicate that COX-2 upregulation is present in many animal cancers, but there is presently not enough information to clearly define the prognostic significance of COX-2 expression. To date, only few reports document an association between COX-2 expression and survival, notably in canine mammary cancers and osteosarcomas. Some evidence suggests that COX inhibitors could be useful in the prevention and/or treatment of certain cancers in domestic animals, the best example being urinary transitional cell carcinomas in dogs. However, determination of the levels of COX-2 in a tumor does not appear to be a good prognostic factor or a good indicator for the response to nonsteroidal anti-inflammatory drug therapy. Clearly, additional research, including the development of in vitro cell systems, is needed to determine if COX-2 expression can be used as a reliable prognostic factor and as a definite therapeutic target in animal cancers.
Collapse
Affiliation(s)
- M Doré
- Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, Canada.
| |
Collapse
|
13
|
COX-1 and COX-2 Expression in Canine Cutaneous, Oral and Ocular Melanocytic Tumours. J Comp Pathol 2010; 143:142-9. [DOI: 10.1016/j.jcpa.2010.01.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 01/11/2010] [Accepted: 01/20/2010] [Indexed: 01/26/2023]
|
14
|
Tantishaiyakul V, Suknuntha K, Vao-Soongnern V. Characterization of cimetidine-piroxicam coprecipitate interaction using experimental studies and molecular dynamic simulations. AAPS PharmSciTech 2010; 11:952-8. [PMID: 20512435 DOI: 10.1208/s12249-010-9461-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 05/13/2010] [Indexed: 11/30/2022] Open
Abstract
The crystalline states of cimetidine and piroxicam, when coprecipitated from solvents containing 1:1 mole ratio, were transformed to amorphous states as observed using powder X-ray diffraction (PXRD). Amorphous forms of drugs generally exhibit higher water solubility than crystalline forms. It is therefore interesting to investigate the interactions that cause the transformation of both the crystalline drugs. Intermolecular interactions between the drugs were determined using Fourier-transform infrared spectroscopy (FTIR) and solid-state (13)C CP/MAS NMR. Molecular dynamic (MD) simulation was performed for the first time for this type of study to indicate the specific groups involved in the interactions based on radial distribution function (RDF) analyses. RDF is a useful tool to describe the average density of atoms at a distance from a specified atom. FTIR spectra revealed a shift of the C identical withN stretching band of cimetidine. The (13)C CP/MAS NMR spectra indicated downfield shifts of C(11), C(15) and C(7) of piroxicam. RDF analyses indicated that intermolecular interactions occurred between the amide oxygen atom as well as the pyridyl nitrogen of piroxicam and H-N(3) of cimetidine. The hydrogen atom (O-H) at C(7) interacts with the N(1) of cimetidine. Since the MD simulation results are consistent with, and complementary to the experimental analyses, such simulations could provide a novel strategy for investigating specific interacting groups of drugs in coprecipitates, or in amorphous mixtures.
Collapse
|
15
|
Queiroga FL, Pires I, Lobo L, Lopes CS. The role of Cox-2 expression in the prognosis of dogs with malignant mammary tumours. Res Vet Sci 2010; 88:441-5. [DOI: 10.1016/j.rvsc.2009.10.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 09/19/2009] [Accepted: 10/23/2009] [Indexed: 11/30/2022]
|
16
|
Sarathchandra SK, Lunn JA, Hunt GB. Ligation of the caudal mesenteric artery during resection and anastomosis of the colorectal junction for annular adenocarcinoma in two dogs. Aust Vet J 2009; 87:356-9. [DOI: 10.1111/j.1751-0813.2009.00473.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Tantishaiyakul V, Songkro S, Suknuntha K, Permkum P, Pipatwarakul P. Crystal structure transformations and dissolution studies of cimetidine-piroxicam coprecipitates and physical mixtures. AAPS PharmSciTech 2009; 10:789-95. [PMID: 19521782 DOI: 10.1208/s12249-009-9263-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 05/15/2009] [Indexed: 12/27/2022] Open
Abstract
We have recently demonstrated that coprecipitation of cimetidine (C) and piroxicam (P) at a mole ratio of 1:1 results in the transformation of the crystalline forms of both drugs to an amorphous state. In this study, coprecipitates and physical mixtures of cimetidine and piroxicam were further investigated at C/P mole ratios of 1:10, 1:5, 1:4, 1:2, 10:1, 20:1, 30:1, 40:1, and 52.5:1, the latter being the composition of a clinically used dosage. The physicochemical properties of these samples were examined using X-ray diffraction and Fourier transform infrared spectroscopy. Additionally, dissolution of piroxicam in the samples at C/P mole ratios of 10:1, 20:1, 30:1, 40:1, and 52.5:1 was investigated at pH 1.2 and pH 4. In coprecipitates with C/P mole ratios of 10:1, 20:1, 30:1, and 40:1, crystalline forms of both drugs were transformed to amorphous states. A mixture of an amorphous state and cimetidine crystalline form A was observed for the coprecipitate with a C/P mole ratio of 52.5:1. For the coprecipitates with C/P mole ratios of 1:2, 1:4, 1:5, and 1:10, cimetidine form A was transformed to form C, whereas piroxicam form II was modified to form I. It is interesting that small molecules, instead of polymers or solvents, can cause such crystal structure transformations. The dissolution of piroxicam at pH 4 is lower than that at pH 1.2. Additionally, the coprecipitates and physical mixtures with C/P mole ratios of 10:1, 20:1, 30:1, 40:1, and 52.5:1 demonstrate substantially higher dissolution of piroxicam compared to that of drug alone.
Collapse
|
18
|
Ponglowhapan S, Church D, Khalid M. Expression of cyclooxygenase-2 in the canine lower urinary tract with regard to the effects of gonadal status and gender. Theriogenology 2009; 71:1276-88. [DOI: 10.1016/j.theriogenology.2008.12.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 12/29/2008] [Accepted: 12/29/2008] [Indexed: 11/17/2022]
|
19
|
Smith KM, Scase TJ, Miller JL, Donaldson D, Sansom J. Expression of cyclooxygenase-2 by equine ocular and adnexal squamous cell carcinomas. Vet Ophthalmol 2008; 11 Suppl 1:8-14. [DOI: 10.1111/j.1463-5224.2008.00623.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Taylor III JA, Pilbeam C, Nisbet A. Role of the prostaglandin pathway and the use of NSAIDs in genitourinary malignancies. Expert Rev Anticancer Ther 2008; 8:1125-34. [DOI: 10.1586/14737140.8.7.1125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Hayes A. Cancer, cyclo-oxygenase and nonsteroidal anti-inflammatory drugs ? can we combine all three? Vet Comp Oncol 2007; 5:1-13. [DOI: 10.1111/j.1476-5829.2006.00111.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|