1
|
Ewerling A, May-Simera HL. Evolutionary trajectory for nuclear functions of ciliary transport complex proteins. Microbiol Mol Biol Rev 2024; 88:e0000624. [PMID: 38995044 PMCID: PMC11426024 DOI: 10.1128/mmbr.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYCilia and the nucleus were two defining features of the last eukaryotic common ancestor. In early eukaryotic evolution, these structures evolved through the diversification of a common membrane-coating ancestor, the protocoatomer. While in cilia, the descendants of this protein complex evolved into parts of the intraflagellar transport complexes and BBSome, the nucleus gained its selectivity by recruiting protocoatomer-like proteins to the nuclear envelope to form the selective nuclear pore complexes. Recent studies show a growing number of proteins shared between the proteomes of the respective organelles, and it is currently unknown how ciliary transport proteins could acquire nuclear functions and vice versa. The nuclear functions of ciliary proteins are still observable today and remain relevant for the understanding of the disease mechanisms behind ciliopathies. In this work, we review the evolutionary history of cilia and nucleus and their respective defining proteins and integrate current knowledge into theories for early eukaryotic evolution. We postulate a scenario where both compartments co-evolved and that fits current models of eukaryotic evolution, explaining how ciliary proteins and nucleoporins acquired their dual functions.
Collapse
Affiliation(s)
- Alexander Ewerling
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Helen Louise May-Simera
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
2
|
Kim KH, Lee CB. Socialized mitochondria: mitonuclear crosstalk in stress. Exp Mol Med 2024; 56:1033-1042. [PMID: 38689084 PMCID: PMC11148012 DOI: 10.1038/s12276-024-01211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 05/02/2024] Open
Abstract
Traditionally, mitochondria are considered sites of energy production. However, recent studies have suggested that mitochondria are signaling organelles that are involved in intracellular interactions with other organelles. Remarkably, stressed mitochondria appear to induce a beneficial response that restores mitochondrial function and cellular homeostasis. These mitochondrial stress-centered signaling pathways have been rapidly elucidated in multiple organisms. In this review, we examine current perspectives on how mitochondria communicate with the rest of the cell, highlighting mitochondria-to-nucleus (mitonuclear) communication under various stresses. Our understanding of mitochondria as signaling organelles may provide new insights into disease susceptibility and lifespan extension.
Collapse
Affiliation(s)
- Kyung Hwa Kim
- Department of Health Sciences, The Graduate School of Dong-A University, 840 Hadan-dong, Saha-gu, Busan, 49315, Korea.
| | - Cho Bi Lee
- Department of Health Sciences, The Graduate School of Dong-A University, 840 Hadan-dong, Saha-gu, Busan, 49315, Korea
| |
Collapse
|
3
|
Guiry MD. How many species of algae are there? A reprise. Four kingdoms, 14 phyla, 63 classes and still growing. JOURNAL OF PHYCOLOGY 2024; 60:214-228. [PMID: 38245909 DOI: 10.1111/jpy.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
To date (1 November 2023), the online database AlgaeBase has documented 50,589 species of living algae and 10,556 fossil species here referred to four kingdoms (Eubacteria, Chromista, Plantae, and Protozoa), 14 phyla, and 63 classes. The algae are the third most speciose grouping of plant-like organisms after the flowering plants (≈382,000 species) and fungi (≈170,000 species, including lichens) but are the least well defined of all the botanical groupings. Priority is given to phyla and class names that are familiar to phycologists and that are nomenclaturally valid. The most species-rich phylum is the Heterokontophyta to which 18 classes are referred with 21,052 living species and which is dominated by the diatoms in three classes with 18,673 species (16,427 living; 2239 fossil). The next most species-rich phyla are the red algae (7276 living), the green algae (6851 living), the blue-green algae (Cyanobacteria, 5723 living), the charophytes (4950 living, including the Charophyceae, 511 species living, and the Zygnematophyceae, 4335 living species), Dinoflagellata (2956 living, including the Dinophyceae, 2828 extant), and haptophytes (Haptophyta 1722 species, 517 living).
Collapse
Affiliation(s)
- Michael D Guiry
- AlgaeBase, Ryan Institute, University of Galway, University Road, Galway, Ireland
| |
Collapse
|
4
|
Langlois GA, Rueckert S. In memoriam: Thomas Cavalier-Smith (1942-2021). J Eukaryot Microbiol 2024; 71:e13013. [PMID: 38059499 DOI: 10.1111/jeu.13013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 12/08/2023]
Abstract
Thomas Cavalier-Smith, born in London, U.K., on October 21, 1942, was a Professor of Evolutionary Biology in the Department of Zoology at the University of Oxford at the time of his death on March 19, 2021. Credited with at least 235 research works and over 20,000 citations, Cavalier-Smith was a well-known and widely respected scientist who took a bold and detailed approach to understanding major transitions in evolution, including the role of endosymbiosis. He was noted for his willingness to question theories and constantly accumulate and evaluate data, motivated by science for the sake of science. This paper reviews Thomas Cavalier-Smith's major accomplishments, examines his theoretical approaches, and provides highlights from the "Tree of Life Symposium" sponsored by the International Society of Protistologists (ISOP) and the International Society of Evolutionary Protistology (ISEP) on June 21, 2021, to celebrate Tom's life and work.
Collapse
Affiliation(s)
- Gaytha A Langlois
- Marine Microbial Research Laboratory, Bryant University, Smithfield, Rhode Island, USA
| | - Sonja Rueckert
- Department of Eukaryotic Microbiology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
5
|
López-García P, Moreira D. The symbiotic origin of the eukaryotic cell. C R Biol 2023; 346:55-73. [PMID: 37254790 DOI: 10.5802/crbiol.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
Eukaryogenesis represented a major evolutionary transition that led to the emergence of complex cells from simpler ancestors. For several decades, the most accepted scenario involved the evolution of an independent lineage of proto-eukaryotes endowed with an endomembrane system, including a nuclear compartment, a developed cytoskeleton and phagocytosis, which engulfed the alphaproteobacterial ancestor of mitochondria. However, the recent discovery by metagenomic and cultural approaches of Asgard archaea, which harbour many genes in common with eukaryotes and are their closest relatives in phylogenomic trees, rather supports scenarios based on the symbiosis of one Asgard-like archaeon and one or more bacteria at the origin of the eukaryotic cell. Here, we review the recent discoveries that led to this conceptual shift, briefly evoking current models of eukaryogenesis and the challenges ahead to discriminate between them and to establish a detailed, plausible scenario that accounts for the evolution of eukaryotic traits from those of their prokaryotic ancestors.
Collapse
|
6
|
Göker M, Oren A. Proposal to include the categories kingdom and domain in the International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol 2023; 73. [PMID: 36749690 DOI: 10.1099/ijsem.0.005650] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Observations made after introduction of the phylum category into the International Code of Nomenclature of Prokaryotes (ICNP) indicate that the addition of a category should usually be conducted before informal names at that rank become widely used. It is thus investigated whether it would be beneficial to add further categories. An extrapolation from the number of names validly published under the ICNP at the distinct principal categories was conducted. This extrapolation indicated that two principal ranks above phylum rank would also harbour validly published names if the according categories were covered by the ICNP. The appropriate categories would be kingdom and domain, regarded as separate principal ranks. The benefit from introducing these ranks is confirmed by analysing the previous taxonomic activity above phylum level and the nomenclatural problems associated with this activity. An etymological examination of the way names of taxa above genus level are formed under distinct codes of nomenclature provides hints for implementing additional categories. According emendations of the ICNP are proposed to include kingdom and domain as a means of further stabilizing prokaryotic nomenclature.
Collapse
Affiliation(s)
- Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124 Braunschweig, Germany
| | - Aharon Oren
- The Hebrew University of Jerusalem, The Institute of Life Sciences, Edmond J. Safra Campus - Givat Ram, 9190401 Jerusalem, Israel
| |
Collapse
|
7
|
Barlow LD, Maciejowski W, More K, Terry K, Vargová R, Záhonová K, Dacks JB. Comparative Genomics for Evolutionary Cell Biology Using AMOEBAE: Understanding the Golgi and Beyond. Methods Mol Biol 2022; 2557:431-452. [PMID: 36512230 DOI: 10.1007/978-1-0716-2639-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Taking an evolutionary approach to cell biology can yield important new information about how the cell works and how it evolved to do so. This is true of the Golgi apparatus, as it is of all systems within the cell. Comparative genomics is one of the crucial first steps to this line of research, but comes with technical challenges that must be overcome for rigor and robustness. We here introduce AMOEBAE, a workflow for mid-range scale comparative genomic analyses. It allows for customization of parameters, queries, and taxonomic sampling of genomic and transcriptomics data. This protocol article covers the rationale for an evolutionary approach to cell biological study (i.e., when would AMOEBAE be useful), how to use AMOEBAE, and discussion of limitations. It also provides an example dataset, which demonstrates that the Golgi protein AP4 Epsilon is present as the sole retained subunit of the AP4 complex in basidiomycete fungi. AMOEBAE can facilitate comparative genomic studies by balancing reproducibility and speed with user-input and interpretation. It is hoped that AMOEBAE or similar tools will encourage cell biologists to incorporate an evolutionary context into their research.
Collapse
Affiliation(s)
- Lael D Barlow
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada. .,Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK.
| | - William Maciejowski
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Kiran More
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Kara Terry
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Romana Vargová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Kristína Záhonová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Joel B Dacks
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada. .,Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB, Canada. .,Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia. .,Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College of London, London, UK.
| |
Collapse
|
8
|
Wang Y, Ying N, Huang Y, Zou X, Liu X, Li L, Zhou J, Zhao S, Ma R, Li X, Tan H, Fang W. Nucleospora hippocampi n. sp., an Intranuclear Microsporidian Infecting the Seahorse Hippocampus erectus From China. Front Cell Infect Microbiol 2022; 12:882843. [PMID: 35601100 PMCID: PMC9114889 DOI: 10.3389/fcimb.2022.882843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
The life cycle, ultrastructure, and molecular phylogeny of a new intranuclear microsporidian, Nucleospora hippocampi n. sp., infecting the intestine of the Hippocampus erectus, were described. The histopathology revealed an extensive infection, mainly in the columnar epithelium of the intestinal mucosa layer. The enterocytes were the important target cell for Nucleospora hippocampi n. sp. infection. Transmission electron microscopy results showed that this microsporidian developed directly within the host cell nucleoplasm. In the intranuclear life cycle, the transformation from meront to sporogonial plasmodium was recognized by forming electron-dense disc structures, which were considered the polar tube precursors. The microsporidian showed the typical morphological characteristics of the family Enterocytozoonidae in the formation and development of spore organelles prior to the division of the sporogonial plasmodium. According to wet smear observation, eight spores were generally formed in a single host nucleus. Mature spores were elongated ovoids that were slightly bent and measured 1.93 × 0.97 μm. The isofilar polar tube was arranged in 7~8 coils in one row. Phylogenetic analysis of its small subunit ribosomal DNA sequences demonstrated that the parasite belonged to the Nucleospora group clade. The histological, ultrastructural, and molecular data support the emergence of a new species in the genus Nucleospora. This is the first report of Nucleospora species in Asia and threatened syngnathid fishes.
Collapse
Affiliation(s)
- Yuan Wang
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Na Ying
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, China
| | - Yanqing Huang
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, China
| | - Xiong Zou
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, China
| | - Xin Liu
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, China
| | - Letian Li
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Junfang Zhou
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, China
| | - Shu Zhao
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, China
| | - Rongrong Ma
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Xincang Li
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, China
| | - Hongxin Tan
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- *Correspondence: Hongxin Tan, ; Wenhong Fang,
| | - Wenhong Fang
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, China
- *Correspondence: Hongxin Tan, ; Wenhong Fang,
| |
Collapse
|
9
|
Cavalier-Smith T. Ciliary transition zone evolution and the root of the eukaryote tree: implications for opisthokont origin and classification of kingdoms Protozoa, Plantae, and Fungi. PROTOPLASMA 2022; 259:487-593. [PMID: 34940909 PMCID: PMC9010356 DOI: 10.1007/s00709-021-01665-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/03/2021] [Indexed: 05/19/2023]
Abstract
I thoroughly discuss ciliary transition zone (TZ) evolution, highlighting many overlooked evolutionarily significant ultrastructural details. I establish fundamental principles of TZ ultrastructure and evolution throughout eukaryotes, inferring unrecognised ancestral TZ patterns for Fungi, opisthokonts, and Corticata (i.e., kingdoms Plantae and Chromista). Typical TZs have a dense transitional plate (TP), with a previously overlooked complex lattice as skeleton. I show most eukaryotes have centriole/TZ junction acorn-V filaments (whose ancestral function was arguably supporting central pair microtubule-nucleating sites; I discuss their role in centriole growth). Uniquely simple malawimonad TZs (without TP, simpler acorn) pinpoint the eukaryote tree's root between them and TP-bearers, highlighting novel superclades. I integrate TZ/ciliary evolution with the best multiprotein trees, naming newly recognised major eukaryote clades and revise megaclassification of basal kingdom Protozoa. Recent discovery of non-photosynthetic phagotrophic flagellates with genome-free plastids (Rhodelphis), the sister group to phylum Rhodophyta (red algae), illuminates plant and chromist early evolution. I show previously overlooked marked similarities in cell ultrastructure between Rhodelphis and Picomonas, formerly considered an early diverging chromist. In both a nonagonal tube lies between their TP and an annular septum surrounding their 9+2 ciliary axoneme. Mitochondrial dense condensations and mitochondrion-linked smooth endomembrane cytoplasmic partitioning cisternae further support grouping Picomonadea and Rhodelphea as new plant phylum Pararhoda. As Pararhoda/Rhodophyta form a robust clade on site-heterogeneous multiprotein trees, I group Pararhoda and Rhodophyta as new infrakingdom Rhodaria of Plantae within subkingdom Biliphyta, which also includes Glaucophyta with fundamentally similar TZ, uniquely in eukaryotes. I explain how biliphyte TZs generated viridiplant stellate-structures.
Collapse
|
10
|
Was the Last Bacterial Common Ancestor a Monoderm after All? Genes (Basel) 2022; 13:genes13020376. [PMID: 35205421 PMCID: PMC8871954 DOI: 10.3390/genes13020376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022] Open
Abstract
The very nature of the last bacterial common ancestor (LBCA), in particular the characteristics of its cell wall, is a critical issue to understand the evolution of life on earth. Although knowledge of the relationships between bacterial phyla has made progress with the advent of phylogenomics, many questions remain, including on the appearance or disappearance of the outer membrane of diderm bacteria (also called Gram-negative bacteria). The phylogenetic transition between monoderm (Gram-positive bacteria) and diderm bacteria, and the associated peptidoglycan expansion or reduction, requires clarification. Herein, using a phylogenomic tree of cultivated and characterized bacteria as an evolutionary framework and a literature review of their cell-wall characteristics, we used Bayesian ancestral state reconstruction to infer the cell-wall architecture of the LBCA. With the same phylogenomic tree, we further revisited the evolution of the division and cell-wall synthesis (dcw) gene cluster using homology- and model-based methods. Finally, extensive similarity searches were carried out to determine the phylogenetic distribution of the genes involved with the biosynthesis of the outer membrane in diderm bacteria. Quite unexpectedly, our analyses suggest that all cultivated and characterized bacteria might have evolved from a common ancestor with a monoderm cell-wall architecture. If true, this would indicate that the appearance of the outer membrane was not a unique event and that selective forces have led to the repeated adoption of such an architecture. Due to the lack of phenotypic information, our methodology cannot be applied to all extant bacteria. Consequently, our conclusion might change once enough information is made available to allow the use of an even more diverse organism selection.
Collapse
|
11
|
Robin AN, Denton KK, Horna Lowell ES, Dulay T, Ebrahimi S, Johnson GC, Mai D, O’Fallon S, Philson CS, Speck HP, Zhang XP, Nonacs P. Major Evolutionary Transitions and the Roles of Facilitation and Information in Ecosystem Transformations. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.711556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A small number of extraordinary “Major Evolutionary Transitions” (METs) have attracted attention among biologists. They comprise novel forms of individuality and information, and are defined in relation to organismal complexity, irrespective of broader ecosystem-level effects. This divorce between evolutionary and ecological consequences qualifies unicellular eukaryotes, for example, as a MET although they alone failed to significantly alter ecosystems. Additionally, this definition excludes revolutionary innovations not fitting into either MET type (e.g., photosynthesis). We recombine evolution with ecology to explore how and why entire ecosystems were newly created or radically altered – as Major System Transitions (MSTs). In doing so, we highlight important morphological adaptations that spread through populations because of their immediate, direct-fitness advantages for individuals. These are Major Competitive Transitions, or MCTs. We argue that often multiple METs and MCTs must be present to produce MSTs. For example, sexually-reproducing, multicellular eukaryotes (METs) with anisogamy and exoskeletons (MCTs) significantly altered ecosystems during the Cambrian. Therefore, we introduce the concepts of Facilitating Evolutionary Transitions (FETs) and Catalysts as key events or agents that are insufficient themselves to set a MST into motion, but are essential parts of synergies that do. We further elucidate the role of information in MSTs as transitions across five levels: (I) Encoded; (II) Epigenomic; (III) Learned; (IV) Inscribed; and (V) Dark Information. The latter is ‘authored’ by abiotic entities rather than biological organisms. Level IV has arguably allowed humans to produce a MST, and V perhaps makes us a FET for a future transition that melds biotic and abiotic life into one entity. Understanding the interactive processes involved in past major transitions will illuminate both current events and the surprising possibilities that abiotically-created information may produce.
Collapse
|
12
|
Devos DP. Reconciling Asgardarchaeota Phylogenetic Proximity to Eukaryotes and Planctomycetes Cellular Features in the Evolution of Life. Mol Biol Evol 2021; 38:3531-3542. [PMID: 34229349 PMCID: PMC8382908 DOI: 10.1093/molbev/msab186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The relationship between the three domains of life—Archaea, Bacteria, and Eukarya—is one of Biology’s greatest mysteries. Current favored models imply two ancestral domains, Bacteria and Archaea, with eukaryotes originating within Archaea. This type of models has been supported by the recent description of the Asgardarchaeota, the closest prokaryotic relatives of eukaryotes. However, there are many problems associated with any scenarios implying that eukaryotes originated from within the Archaea, including genome mosaicism, phylogenies, the cellular organization of the Archaea, and their ancestral character. By contrast, all models of eukaryogenesis fail to consider two relevant discoveries: the detection of membrane coat proteins, and of phagocytosis-related processes in Planctomycetes, which are among the bacteria with the most developed endomembrane system. Consideration of these often overlooked features and others found in Planctomycetes and related bacteria suggest an evolutionary model based on a single ancestral domain. In this model, the proximity of Asgard and eukaryotes is not rejected but instead, Asgard are considered as diverging away from a common ancestor instead of on the way toward the eukaryotic ancestor. This model based on a single ancestral domain solves most of the ambiguities associated with the ones based on two ancestral domains. The single-domain model is better suited to explain the origin and evolution of all three domains of life, blurring the distinctions between them. Support for this model as well as the opportunities that it presents not only for reinterpreting previous results, but also for planning future experiments, are explored.
Collapse
Affiliation(s)
- Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD) - CSIC, Junta de Andalucía, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Seville, 41013, Spain
| |
Collapse
|
13
|
Skejo J, Garg SG, Gould SB, Hendriksen M, Tria FDK, Bremer N, Franjević D, Blackstone NW, Martin WF. Evidence for a Syncytial Origin of Eukaryotes from Ancestral State Reconstruction. Genome Biol Evol 2021; 13:evab096. [PMID: 33963405 PMCID: PMC8290118 DOI: 10.1093/gbe/evab096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Modern accounts of eukaryogenesis entail an endosymbiotic encounter between an archaeal host and a proteobacterial endosymbiont, with subsequent evolution giving rise to a unicell possessing a single nucleus and mitochondria. The mononucleate state of the last eukaryotic common ancestor (LECA) is seldom, if ever, questioned, even though cells harboring multiple (syncytia, coenocytes, and polykaryons) are surprisingly common across eukaryotic supergroups. Here, we present a survey of multinucleated forms. Ancestral character state reconstruction for representatives of 106 eukaryotic taxa using 16 different possible roots and supergroup sister relationships, indicate that LECA, in addition to being mitochondriate, sexual, and meiotic, was multinucleate. LECA exhibited closed mitosis, which is the rule for modern syncytial forms, shedding light on the mechanics of its chromosome segregation. A simple mathematical model shows that within LECA's multinucleate cytosol, relationships among mitochondria and nuclei were neither one-to-one, nor one-to-many, but many-to-many, placing mitonuclear interactions and cytonuclear compatibility at the evolutionary base of eukaryotic cell origin. Within a syncytium, individual nuclei and individual mitochondria function as the initial lower-level evolutionary units of selection, as opposed to individual cells, during eukaryogenesis. Nuclei within a syncytium rescue each other's lethal mutations, thereby postponing selection for viable nuclei and cytonuclear compatibility to the generation of spores, buffering transitional bottlenecks at eukaryogenesis. The prokaryote-to-eukaryote transition is traditionally thought to have left no intermediates, yet if eukaryogenesis proceeded via a syncytial common ancestor, intermediate forms have persisted to the present throughout the eukaryotic tree as syncytia but have so far gone unrecognized.
Collapse
Affiliation(s)
- Josip Skejo
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Faculty of Science, Division of Zoology, Department of Biology, University of Zagreb, Evolution Lab, Zagreb, Croatia
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Hendriksen
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Fernando D K Tria
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Nico Bremer
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Damjan Franjević
- Faculty of Science, Division of Zoology, Department of Biology, University of Zagreb, Evolution Lab, Zagreb, Croatia
| | - Neil W Blackstone
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - William F Martin
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
14
|
Knopp M, Stockhorst S, van der Giezen M, Garg SG, Gould SB. The Asgard Archaeal-Unique Contribution to Protein Families of the Eukaryotic Common Ancestor Was 0.3. Genome Biol Evol 2021; 13:6248096. [PMID: 33892498 PMCID: PMC8220308 DOI: 10.1093/gbe/evab085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 12/22/2022] Open
Abstract
The identification of the asgard archaea has fueled speculations regarding the nature of the archaeal host in eukaryogenesis and its level of complexity prior to endosymbiosis. Here, we analyzed the coding capacity of 150 eukaryotes, 1,000 bacteria, and 226 archaea, including the only cultured member of the asgard archaea. Clustering methods that consistently recover endosymbiotic contributions to eukaryotic genomes recover an asgard archaeal-unique contribution of a mere 0.3% to protein families present in the last eukaryotic common ancestor, while simultaneously suggesting that this group's diversity rivals that of all other archaea combined. The number of homologs shared exclusively between asgard archaea and eukaryotes is only 27 on average. This tiny asgard archaeal-unique contribution to the root of eukaryotic protein families questions claims that archaea evolved complexity prior to eukaryogenesis. Genomic and cellular complexity remains a eukaryote-specific feature and is best understood as the archaeal host's solution to housing an endosymbiont.
Collapse
Affiliation(s)
- Michael Knopp
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Germany
| | - Simon Stockhorst
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Germany
| | | | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Germany
| |
Collapse
|
15
|
Ros-Rocher N, Pérez-Posada A, Leger MM, Ruiz-Trillo I. The origin of animals: an ancestral reconstruction of the unicellular-to-multicellular transition. Open Biol 2021; 11:200359. [PMID: 33622103 PMCID: PMC8061703 DOI: 10.1098/rsob.200359] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
How animals evolved from a single-celled ancestor, transitioning from a unicellular lifestyle to a coordinated multicellular entity, remains a fascinating question. Key events in this transition involved the emergence of processes related to cell adhesion, cell–cell communication and gene regulation. To understand how these capacities evolved, we need to reconstruct the features of both the last common multicellular ancestor of animals and the last unicellular ancestor of animals. In this review, we summarize recent advances in the characterization of these ancestors, inferred by comparative genomic analyses between the earliest branching animals and those radiating later, and between animals and their closest unicellular relatives. We also provide an updated hypothesis regarding the transition to animal multicellularity, which was likely gradual and involved the use of gene regulatory mechanisms in the emergence of early developmental and morphogenetic plans. Finally, we discuss some new avenues of research that will complement these studies in the coming years.
Collapse
Affiliation(s)
- Núria Ros-Rocher
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Alberto Pérez-Posada
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain.,Centro Andaluz de Biología del Desarrollo (CSIC-Universidad Pablo de Olavide), Carretera de Utrera Km 1, 41013 Sevilla, Andalusia, Spain
| | - Michelle M Leger
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain.,Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain.,ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
16
|
Takemura M. Medusavirus Ancestor in a Proto-Eukaryotic Cell: Updating the Hypothesis for the Viral Origin of the Nucleus. Front Microbiol 2020; 11:571831. [PMID: 33013805 PMCID: PMC7494782 DOI: 10.3389/fmicb.2020.571831] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022] Open
Abstract
The mechanistic evolutionary origin of the eukaryotic cell nucleus remains unknown. Among several plausible hypotheses, the most controversial is that large DNA viruses, such as poxviruses, led to the emergence of the eukaryotic cell nucleus. Several recent findings, including the discovery of a nucleus-like structure in prokaryotic viruses and prokaryotes possessing nucleus-like inner membranes, suggest genomic DNA compartmentalization not only in eukaryotes but also in prokaryotes. The sophisticated viral machinery of mimiviruses is thought to resemble the eukaryotic nucleus: DNA replicates both inside the viral factory and nucleus, which is at least partially surrounded by membranes and is devoid of ribosomes. Furthermore, several features of the recently identified Acanthamoeba castellanii medusavirus suggest that the evolutionary relationship between ancestral viral factory and eukaryotic nucleus. Notably, Ran, DNA polymerase, and histones show molecular fossils of lateral transfer of nuclear genes between the virus and host. These results suggest viral innovation in the emergence of the eukaryotic nucleus. According to these results, a new scenario explaining the origin of the eukaryotic nucleus from the perspective of viral participation is proposed. This new scenario could substantially impact the study of eukaryogenesis and stimulate further discussion about viral contributions to the evolution of the eukaryotic nucleus.
Collapse
Affiliation(s)
- Masaharu Takemura
- Laboratory of Biology, Department of Liberal Arts, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
17
|
Parra-Marín O, López-Pacheco K, Hernández R, López-Villaseñor I. The highly diverse TATA box-binding proteins among protists: A review. Mol Biochem Parasitol 2020; 239:111312. [PMID: 32771681 DOI: 10.1016/j.molbiopara.2020.111312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/28/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022]
Abstract
Transcription is the first step of gene expression regulation and is a fundamental mechanism for establishing the viability and development of a cell. The TATA box-binding protein (TBP) interaction with a TATA box in a promoter is one of the best studied mechanisms in transcription initiation. TBP is a transcription factor that is highly conserved from archaea to humans and is essential for the transcription initiated by each of the three RNA polymerases. In addition, the discovery of TBP-related factor 1 (TRF1) and other factors related to TBP shed light on the variability among transcription initiation complexes, thus demonstrating that the compositions of these complexes are, in fact, more complicated than originally believed. Despite these facts, the majority of studies on transcription have been performed on animal, plant and fungal cells, which serve as canonical models, and information regarding protist cells is relatively scarce. The aim of this work is to review the diversity of the TBPs that have been documented in protists and describe some of the specific features that differentiate them from their counterparts in higher eukaryotes.
Collapse
Affiliation(s)
- Olivia Parra-Marín
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Karla López-Pacheco
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Roberto Hernández
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Imelda López-Villaseñor
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico.
| |
Collapse
|
18
|
Cavalier-Smith T, Chao EEY. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). PROTOPLASMA 2020. [PMID: 31900730 DOI: 10.1007/s00709-019-01442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Palaeontologically, eubacteria are > 3× older than neomura (eukaryotes, archaebacteria). Cell biology contrasts ancestral eubacterial murein peptidoglycan walls and derived neomuran N-linked glycoprotein coats/walls. Misinterpreting long stems connecting clade neomura to eubacteria on ribosomal sequence trees (plus misinterpreted protein paralogue trees) obscured this historical pattern. Universal multiprotein ribosomal protein (RP) trees, more accurate than rRNA trees, are taxonomically undersampled. To reduce contradictions with genically richer eukaryote trees and improve eubacterial phylogeny, we constructed site-heterogeneous and maximum-likelihood universal three-domain, two-domain, and single-domain trees for 143 eukaryotes (branching now congruent with 187-protein trees), 60 archaebacteria, and 151 taxonomically representative eubacteria, using 51 and 26 RPs. Site-heterogeneous trees greatly improve eubacterial phylogeny and higher classification, e.g. showing gracilicute monophyly, that many 'rDNA-phyla' belong in Proteobacteria, and reveal robust new phyla Synthermota and Aquithermota. Monoderm Posibacteria and Mollicutes (two separate wall losses) are both polyphyletic: multiple outer membrane losses in Endobacteria occurred separately from Actinobacteria; neither phylum is related to Chloroflexi, the most divergent prokaryotes, which originated photosynthesis (new model proposed). RP trees support an eozoan root for eukaryotes and are consistent with archaebacteria being their sisters and rooted between Filarchaeota (=Proteoarchaeota, including 'Asgardia') and Euryarchaeota sensu-lato (including ultrasimplified 'DPANN' whose long branches often distort trees). Two-domain trees group eukaryotes within Planctobacteria, and archaebacteria with Planctobacteria/Sphingobacteria. Integrated molecular/palaeontological evidence favours negibacterial ancestors for neomura and all life. Unique presence of key pre-neomuran characters favours Planctobacteria only as ancestral to neomura, which apparently arose by coevolutionary repercussions (explained here in detail, including RP replacement) of simultaneous outer membrane and murein loss. Planctobacterial C-1 methanotrophic enzymes are likely ancestral to archaebacterial methanogenesis and β-propeller-α-solenoid proteins to eukaryotic vesicle coats, nuclear-pore-complexes, and intraciliary transport. Planctobacterial chaperone-independent 4/5-protofilament microtubules and MamK actin-ancestors prepared for eukaryote intracellular motility, mitosis, cytokinesis, and phagocytosis. We refute numerous wrong ideas about the universal tree.
Collapse
Affiliation(s)
| | - Ema E-Yung Chao
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
19
|
Cavalier-Smith T, Chao EEY. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). PROTOPLASMA 2020; 257:621-753. [PMID: 31900730 PMCID: PMC7203096 DOI: 10.1007/s00709-019-01442-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/19/2019] [Indexed: 05/02/2023]
Abstract
Palaeontologically, eubacteria are > 3× older than neomura (eukaryotes, archaebacteria). Cell biology contrasts ancestral eubacterial murein peptidoglycan walls and derived neomuran N-linked glycoprotein coats/walls. Misinterpreting long stems connecting clade neomura to eubacteria on ribosomal sequence trees (plus misinterpreted protein paralogue trees) obscured this historical pattern. Universal multiprotein ribosomal protein (RP) trees, more accurate than rRNA trees, are taxonomically undersampled. To reduce contradictions with genically richer eukaryote trees and improve eubacterial phylogeny, we constructed site-heterogeneous and maximum-likelihood universal three-domain, two-domain, and single-domain trees for 143 eukaryotes (branching now congruent with 187-protein trees), 60 archaebacteria, and 151 taxonomically representative eubacteria, using 51 and 26 RPs. Site-heterogeneous trees greatly improve eubacterial phylogeny and higher classification, e.g. showing gracilicute monophyly, that many 'rDNA-phyla' belong in Proteobacteria, and reveal robust new phyla Synthermota and Aquithermota. Monoderm Posibacteria and Mollicutes (two separate wall losses) are both polyphyletic: multiple outer membrane losses in Endobacteria occurred separately from Actinobacteria; neither phylum is related to Chloroflexi, the most divergent prokaryotes, which originated photosynthesis (new model proposed). RP trees support an eozoan root for eukaryotes and are consistent with archaebacteria being their sisters and rooted between Filarchaeota (=Proteoarchaeota, including 'Asgardia') and Euryarchaeota sensu-lato (including ultrasimplified 'DPANN' whose long branches often distort trees). Two-domain trees group eukaryotes within Planctobacteria, and archaebacteria with Planctobacteria/Sphingobacteria. Integrated molecular/palaeontological evidence favours negibacterial ancestors for neomura and all life. Unique presence of key pre-neomuran characters favours Planctobacteria only as ancestral to neomura, which apparently arose by coevolutionary repercussions (explained here in detail, including RP replacement) of simultaneous outer membrane and murein loss. Planctobacterial C-1 methanotrophic enzymes are likely ancestral to archaebacterial methanogenesis and β-propeller-α-solenoid proteins to eukaryotic vesicle coats, nuclear-pore-complexes, and intraciliary transport. Planctobacterial chaperone-independent 4/5-protofilament microtubules and MamK actin-ancestors prepared for eukaryote intracellular motility, mitosis, cytokinesis, and phagocytosis. We refute numerous wrong ideas about the universal tree.
Collapse
Affiliation(s)
| | - Ema E-Yung Chao
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
20
|
Malina C, Larsson C, Nielsen J. Yeast mitochondria: an overview of mitochondrial biology and the potential of mitochondrial systems biology. FEMS Yeast Res 2019; 18:4969682. [PMID: 29788060 DOI: 10.1093/femsyr/foy040] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/10/2018] [Indexed: 12/29/2022] Open
Abstract
Mitochondria are dynamic organelles of endosymbiotic origin that are essential components of eukaryal cells. They contain their own genetic machinery, have multicopy genomes and like their bacterial ancestors they consist of two membranes. However, the majority of the ancestral genome has been lost or transferred to the nuclear genome of the host, preserving only a core set of genes involved in oxidative phosphorylation. Mitochondria perform numerous biological tasks ranging from bioenergetics to production of protein co-factors, including heme and iron-sulfur clusters. Due to the importance of mitochondria in many cellular processes, mitochondrial dysfunction is implicated in a wide variety of human disorders. Much of our current knowledge on mitochondrial function and dysfunction comes from studies using Saccharomyces cerevisiae. This yeast has good fermenting capacity, rendering tolerance to mutations that inactivate oxidative phosphorylation and complete loss of mitochondrial DNA. Here, we review yeast mitochondrial metabolism and function with focus on S. cerevisiae and its contribution in understanding mitochondrial biology. We further review how systems biology studies, including mathematical modeling, has allowed gaining new insight into mitochondrial function, and argue that this approach may enable us to gain a holistic view on how mitochondrial function interacts with different cellular processes.
Collapse
Affiliation(s)
- Carl Malina
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.,Wallenberg Center for Protein Research, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Christer Larsson
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.,Wallenberg Center for Protein Research, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
21
|
Shɨshkin Y, Drachko D, Klimov VI, Zlatogursky VV. Yogsothoth knorrus gen. n., sp. n. and Y. carteri sp. n. (Yogsothothidae fam. n., Haptista, Centroplasthelida), with Notes on Evolution and Systematics of Centrohelids. Protist 2018; 169:682-696. [DOI: 10.1016/j.protis.2018.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 06/06/2018] [Accepted: 06/09/2018] [Indexed: 12/26/2022]
|
22
|
Cavalier-Smith T, Chao EE, Lewis R. Multigene phylogeny and cell evolution of chromist infrakingdom Rhizaria: contrasting cell organisation of sister phyla Cercozoa and Retaria. PROTOPLASMA 2018; 255:1517-1574. [PMID: 29666938 PMCID: PMC6133090 DOI: 10.1007/s00709-018-1241-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/12/2018] [Indexed: 05/18/2023]
Abstract
Infrakingdom Rhizaria is one of four major subgroups with distinct cell body plans that comprise eukaryotic kingdom Chromista. Unlike other chromists, Rhizaria are mostly heterotrophic flagellates, amoebae or amoeboflagellates, commonly with reticulose (net-like) or filose (thread-like) feeding pseudopodia; uniquely for eukaryotes, cilia have proximal ciliary transition-zone hub-lattices. They comprise predominantly flagellate phylum Cercozoa and reticulopodial phylum Retaria, whose exact phylogenetic relationship has been uncertain. Given even less clear relationships amongst cercozoan classes, we sequenced partial transcriptomes of seven Cercozoa representing five classes and endomyxan retarian Filoreta marina to establish 187-gene multiprotein phylogenies. Ectoreta (retarian infraphyla Foraminifera, Radiozoa) branch within classical Cercozoa as sister to reticulose Endomyxa. This supports recent transfer of subphylum Endomyxa from Cercozoa to Retaria alongside subphylum Ectoreta which embraces classical retarians where capsules or tests subdivide cells into organelle-containing endoplasm and anastomosing pseudopodial net-like ectoplasm. Cercozoa are more homogeneously filose, often with filose pseudopodia and/or posterior ciliary gliding motility: zooflagellate Helkesimastix and amoeboid Guttulinopsis form a strongly supported clade, order Helkesida. Cercomonads are polyphyletic (Cercomonadida sister to glissomonads; Paracercomonadida deeper). Thecofilosea are a clade, whereas Imbricatea may not be; Sarcomonadea may be paraphyletic. Helkesea and Metromonadea are successively deeper outgroups within cercozoan subphylum Monadofilosa; subphylum Reticulofilosa (paraphyletic on site-heterogeneous trees) branches earliest, Granofilosea before Chlorarachnea. Our multiprotein trees confirm that Rhizaria are sisters of infrakingdom Halvaria (Alveolata, Heterokonta) within chromist subkingdom Harosa (= SAR); they further support holophyly of chromist subkingdom Hacrobia, and are consistent with holophyly of Chromista as sister of kingdom Plantae. Site-heterogeneous rDNA trees group Kraken with environmental DNA clade 'eSarcomonad', not Paracercomonadida. Ectoretan fossil dates evidence ultrarapid episodic stem sequence evolution. We discuss early rhizarian cell evolution and multigene tree coevolutionary patterns, gene-paralogue evidence for chromist monophyly, and integrate this with fossil evidence for the age of Rhizaria and eukaryote cells, and revise rhizarian classification.
Collapse
Affiliation(s)
| | - Ema E Chao
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Rhodri Lewis
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
23
|
Burns JA, Pittis AA, Kim E. Gene-based predictive models of trophic modes suggest Asgard archaea are not phagocytotic. Nat Ecol Evol 2018; 2:697-704. [DOI: 10.1038/s41559-018-0477-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 01/11/2018] [Indexed: 12/24/2022]
|
24
|
Farming the mitochondrial ancestor as a model of endosymbiotic establishment by natural selection. Proc Natl Acad Sci U S A 2018; 115:E1504-E1510. [PMID: 29382768 PMCID: PMC5816194 DOI: 10.1073/pnas.1718707115] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The origin of mitochondria is a challenging and intensely debated issue. Mitochondria are ancestrally present in eukaryotes, and their endosymbiotic inclusion was an extremely important step during the transition from prokaryotes to eukaryotes. However, because of the unknown order of eukaryotic inventions (e.g., cytoskeleton, phagocytosis, and endomembranes), it is unknown whether they led to or followed the acquisition of mitochondria. According to the farming hypothesis, the mitochondrial ancestor was captured by a phagocytotic host, but the advantage was not direct metabolic help provided by the symbiont; rather, it was provisioning captured prey to farmers in poor times, like humans farm pigs. Our analytical and computational models prove that farming could lead to stable endosymbiosis without any further benefit assumed between partners. The origin of mitochondria was a major evolutionary transition leading to eukaryotes, and is a hotly debated issue. It is unknown whether mitochondria were acquired early or late, and whether it was captured via phagocytosis or syntrophic integration. We present dynamical models to directly simulate the emergence of mitochondria in an ecoevolutionary context. Our results show that regulated farming of prey bacteria and delayed digestion can facilitate the establishment of stable endosymbiosis if prey-rich and prey-poor periods alternate. Stable endosymbiosis emerges without assuming any initial metabolic benefit provided by the engulfed partner, in a wide range of parameters, despite that during good periods farming is costly. Our approach lends support to the appearance of mitochondria before any metabolic coupling has emerged, but after the evolution of primitive phagocytosis by the urkaryote.
Collapse
|
25
|
Cavalier-Smith T. Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences. PROTOPLASMA 2018; 255:297-357. [PMID: 28875267 PMCID: PMC5756292 DOI: 10.1007/s00709-017-1147-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/18/2017] [Indexed: 05/18/2023]
Abstract
In 1981 I established kingdom Chromista, distinguished from Plantae because of its more complex chloroplast-associated membrane topology and rigid tubular multipartite ciliary hairs. Plantae originated by converting a cyanobacterium to chloroplasts with Toc/Tic translocons; most evolved cell walls early, thereby losing phagotrophy. Chromists originated by enslaving a phagocytosed red alga, surrounding plastids by two extra membranes, placing them within the endomembrane system, necessitating novel protein import machineries. Early chromists retained phagotrophy, remaining naked and repeatedly reverted to heterotrophy by losing chloroplasts. Therefore, Chromista include secondary phagoheterotrophs (notably ciliates, many dinoflagellates, Opalozoa, Rhizaria, heliozoans) or walled osmotrophs (Pseudofungi, Labyrinthulea), formerly considered protozoa or fungi respectively, plus endoparasites (e.g. Sporozoa) and all chromophyte algae (other dinoflagellates, chromeroids, ochrophytes, haptophytes, cryptophytes). I discuss their origin, evolutionary diversification, and reasons for making chromists one kingdom despite highly divergent cytoskeletons and trophic modes, including improved explanations for periplastid/chloroplast protein targeting, derlin evolution, and ciliary/cytoskeletal diversification. I conjecture that transit-peptide-receptor-mediated 'endocytosis' from periplastid membranes generates periplastid vesicles that fuse with the arguably derlin-translocon-containing periplastid reticulum (putative red algal trans-Golgi network homologue; present in all chromophytes except dinoflagellates). I explain chromist origin from ancestral corticates and neokaryotes, reappraising tertiary symbiogenesis; a chromist cytoskeletal synapomorphy, a bypassing microtubule band dextral to both centrioles, favoured multiple axopodial origins. I revise chromist higher classification by transferring rhizarian subphylum Endomyxa from Cercozoa to Retaria; establishing retarian subphylum Ectoreta for Foraminifera plus Radiozoa, apicomonad subclasses, new dinozoan classes Myzodinea (grouping Colpovora gen. n., Psammosa), Endodinea, Sulcodinea, and subclass Karlodinia; and ranking heterokont Gyrista as phylum not superphylum.
Collapse
|
26
|
Martin WF, Tielens AGM, Mentel M, Garg SG, Gould SB. The Physiology of Phagocytosis in the Context of Mitochondrial Origin. Microbiol Mol Biol Rev 2017; 81:e00008-17. [PMID: 28615286 PMCID: PMC5584316 DOI: 10.1128/mmbr.00008-17] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
How mitochondria came to reside within the cytosol of their host has been debated for 50 years. Though current data indicate that the last eukaryote common ancestor possessed mitochondria and was a complex cell, whether mitochondria or complexity came first in eukaryotic evolution is still discussed. In autogenous models (complexity first), the origin of phagocytosis poses the limiting step at eukaryote origin, with mitochondria coming late as an undigested growth substrate. In symbiosis-based models (mitochondria first), the host was an archaeon, and the origin of mitochondria was the limiting step at eukaryote origin, with mitochondria providing bacterial genes, ATP synthesis on internalized bioenergetic membranes, and mitochondrion-derived vesicles as the seed of the eukaryote endomembrane system. Metagenomic studies are uncovering new host-related archaeal lineages that are reported as complex or phagocytosing, although images of such cells are lacking. Here we review the physiology and components of phagocytosis in eukaryotes, critically inspecting the concept of a phagotrophic host. From ATP supply and demand, a mitochondrion-lacking phagotrophic archaeal fermenter would have to ingest about 34 times its body weight in prokaryotic prey to obtain enough ATP to support one cell division. It would lack chemiosmotic ATP synthesis at the plasma membrane, because phagocytosis and chemiosmosis in the same membrane are incompatible. It would have lived from amino acid fermentations, because prokaryotes are mainly protein. Its ATP yield would have been impaired relative to typical archaeal amino acid fermentations, which involve chemiosmosis. In contrast, phagocytosis would have had great physiological benefit for a mitochondrion-bearing cell.
Collapse
Affiliation(s)
- William F Martin
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Aloysius G M Tielens
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
27
|
Zachar I, Szathmáry E. Breath-giving cooperation: critical review of origin of mitochondria hypotheses : Major unanswered questions point to the importance of early ecology. Biol Direct 2017; 12:19. [PMID: 28806979 PMCID: PMC5557255 DOI: 10.1186/s13062-017-0190-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/20/2017] [Indexed: 02/08/2023] Open
Abstract
The origin of mitochondria is a unique and hard evolutionary problem, embedded within the origin of eukaryotes. The puzzle is challenging due to the egalitarian nature of the transition where lower-level units took over energy metabolism. Contending theories widely disagree on ancestral partners, initial conditions and unfolding of events. There are many open questions but there is no comparative examination of hypotheses. We have specified twelve questions about the observable facts and hidden processes leading to the establishment of the endosymbiont that a valid hypothesis must address. We have objectively compared contending hypotheses under these questions to find the most plausible course of events and to draw insight on missing pieces of the puzzle. Since endosymbiosis borders evolution and ecology, and since a realistic theory has to comply with both domains' constraints, the conclusion is that the most important aspect to clarify is the initial ecological relationship of partners. Metabolic benefits are largely irrelevant at this initial phase, where ecological costs could be more disruptive. There is no single theory capable of answering all questions indicating a severe lack of ecological considerations. A new theory, compliant with recent phylogenomic results, should adhere to these criteria. REVIEWERS This article was reviewed by Michael W. Gray, William F. Martin and Purificación López-García.
Collapse
Affiliation(s)
- István Zachar
- Eötvös Loránd University, Department of Plant Systematics, Ecology and Theoretical Biology, Pázmány P. sétány 1/C, Budapest, 1117, Hungary.
- Evolutionary Systems Research Group, MTA, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kunó str. 3., Tihany, 8237, Hungary.
| | - Eörs Szathmáry
- Eötvös Loránd University, Department of Plant Systematics, Ecology and Theoretical Biology, Pázmány P. sétány 1/C, Budapest, 1117, Hungary
- Evolutionary Systems Research Group, MTA, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kunó str. 3., Tihany, 8237, Hungary
- Parmenides Foundation, Kirchplatz 1, 82049 Pullach/Munich, Munich, Germany
| |
Collapse
|
28
|
Abstract
Predation, in the broad sense of an organism killing another organism for nutritional purposes, is probably as old as life itself and has originated many times during the history of life. Although little of the beginnings is caught in the fossil record, observations in the rock record and theoretical considerations suggest that predation played a crucial role in some of the major transitions in evolution. The origin of eukaryotic cells, poorly constrained to about 2.7 Ga by geochemical evidence, was most likely the ultimate result of predation among prokaryotes. Multicellularity (or syncytiality), as a means of acquiring larger size, is visible in the fossil record soon after 2 Ga and is likely to have been mainly a response to selective pressure from predation among protists. The appearance of mobile predators on bacteria and protists may date back as far as 2 Ga or it may be not much older than the Cambrian explosion, or about 600 Ma. The combined indications from the decline of stromatolites and the diversification of acritarchs, however, suggest that such predation may have begun around 1 Ga. The Cambrian explosion, culminating around 550 Ma, represents the transition from simple, mostly microbial, ecosystems to ones with complex food webs and second- and higher-order consumers. Macrophagous predators were involved from the beginning, but it is not clear whether they originated in the plankton or in the benthos. Although predation was a decisive selective force in the Cambrian explosion, it was a shaper rather than a trigger of this evolutionary event.
Collapse
|
29
|
Vega-Cabrera LA, Pardo-López L. Membrane remodeling and organization: Elements common to prokaryotes and eukaryotes. IUBMB Life 2017; 69:55-62. [DOI: 10.1002/iub.1604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/15/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Luz A. Vega-Cabrera
- Instituto de Biotecnología, Universidad Nacional Autónoma de México; Apdo. Postal 510-3 Cuernavaca Morelos México
| | - Liliana Pardo-López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México; Apdo. Postal 510-3 Cuernavaca Morelos México
| |
Collapse
|
30
|
Baum DA. A comparison of autogenous theories for the origin of eukaryotic cells. AMERICAN JOURNAL OF BOTANY 2015; 102:1954-1965. [PMID: 26643887 DOI: 10.3732/ajb.1500196] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 10/21/2015] [Indexed: 06/05/2023]
Abstract
PREMISE Eukaryotic cells have many unique features that all evolved on the stem lineage of living eukaryotes, making it difficult to reconstruct the order in which they accumulated. Nuclear endosymbiotic theories hold that three prokaryotes (nucleus, cytoplasm, and mitochondrion) came together to form a eukaryotic cell, whereas autogenous models hold that the nucleus and cytoplasm formed through evolutionary changes in a single prokaryotic lineage. Given several problems with nuclear endosymbiotic theories, this review focuses on autogenous models. KEY INSIGHTS Until recently all autogenous models assumed an outside-in (OI) topology, proposing that the nuclear envelope was formed from membrane-bound vesicles within the original cell body. Buzz Baum and I recently proposed an inside-out (IO) alternative, suggesting that the nucleus corresponds to the original cell body, with the cytoplasmic compartment deriving from extracellular protrusions. In this review, I show that OI and IO models are compatible with both mitochondria early (ME) or mitochondria late (ML) formulations. Whereas ME models allow that the relationship between mitochondria and host was mutualistic from the outset, ML models imply that the association began with predation or parasitism, becoming mutualistic later. In either case, the mutualistic interaction that eventually formed was probably syntrophic. CONCLUSIONS Diverse features of eukaryotic cell biology align well with the IOME model, but it would be premature to rule out the OIME model. ML models require that phagocytosis, a complex and energy expensive process, evolved before mitochondria, which seems unlikely. Nonetheless, further research is needed, especially resolution of the phylogenetic affinities of mitochondria.
Collapse
Affiliation(s)
- David A Baum
- Department of Botany and Wisconsin Institute for Discovery, University of Wisconsin, 430 Lincoln Drive, Madison, Wisconsin 53706 USA
| |
Collapse
|
31
|
Martin WF, Garg S, Zimorski V. Endosymbiotic theories for eukaryote origin. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140330. [PMID: 26323761 PMCID: PMC4571569 DOI: 10.1098/rstb.2014.0330] [Citation(s) in RCA: 292] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2015] [Indexed: 11/12/2022] Open
Abstract
For over 100 years, endosymbiotic theories have figured in thoughts about the differences between prokaryotic and eukaryotic cells. More than 20 different versions of endosymbiotic theory have been presented in the literature to explain the origin of eukaryotes and their mitochondria. Very few of those models account for eukaryotic anaerobes. The role of energy and the energetic constraints that prokaryotic cell organization placed on evolutionary innovation in cell history has recently come to bear on endosymbiotic theory. Only cells that possessed mitochondria had the bioenergetic means to attain eukaryotic cell complexity, which is why there are no true intermediates in the prokaryote-to-eukaryote transition. Current versions of endosymbiotic theory have it that the host was an archaeon (an archaebacterium), not a eukaryote. Hence the evolutionary history and biology of archaea increasingly comes to bear on eukaryotic origins, more than ever before. Here, we have compiled a survey of endosymbiotic theories for the origin of eukaryotes and mitochondria, and for the origin of the eukaryotic nucleus, summarizing the essentials of each and contrasting some of their predictions to the observations. A new aspect of endosymbiosis in eukaryote evolution comes into focus from these considerations: the host for the origin of plastids was a facultative anaerobe.
Collapse
Affiliation(s)
- William F Martin
- Institute for Molecular Evolution, Universität Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Sriram Garg
- Institute for Molecular Evolution, Universität Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Verena Zimorski
- Institute for Molecular Evolution, Universität Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| |
Collapse
|
32
|
A multi-functional tubulovesicular network as the ancestral eukaryotic endomembrane system. BIOLOGY 2015; 4:264-81. [PMID: 25811639 PMCID: PMC4498299 DOI: 10.3390/biology4020264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/03/2015] [Indexed: 12/31/2022]
Abstract
The origin of the eukaryotic endomembrane system is still the subject of much speculation. We argue that the combination of two recent hypotheses addressing the eukaryotic endomembrane's early evolution supports the possibility that the ancestral membranes were organised as a multi-functional tubulovesicular network. One of the potential selective advantages provided by this organisation was the capacity to perform endocytosis. This possibility is illustrated by membrane organisations observed in current organisms in the three domains of life. Based on this, we propose a coherent model of autogenous eukaryotic endomembrane system evolution in which mitochondria are involved at a late stage.
Collapse
|
33
|
Cavalier-Smith T. Gregarine site-heterogeneous 18S rDNA trees, revision of gregarine higher classification, and the evolutionary diversification of Sporozoa. Eur J Protistol 2014; 50:472-95. [DOI: 10.1016/j.ejop.2014.07.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/19/2014] [Accepted: 07/21/2014] [Indexed: 10/25/2022]
|
34
|
Cavalier-Smith T. The neomuran revolution and phagotrophic origin of eukaryotes and cilia in the light of intracellular coevolution and a revised tree of life. Cold Spring Harb Perspect Biol 2014; 6:a016006. [PMID: 25183828 PMCID: PMC4142966 DOI: 10.1101/cshperspect.a016006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Three kinds of cells exist with increasingly complex membrane-protein targeting: Unibacteria (Archaebacteria, Posibacteria) with one cytoplasmic membrane (CM); Negibacteria with a two-membrane envelope (inner CM; outer membrane [OM]); eukaryotes with a plasma membrane and topologically distinct endomembranes and peroxisomes. I combine evidence from multigene trees, palaeontology, and cell biology to show that eukaryotes and archaebacteria are sisters, forming the clade neomura that evolved ~1.2 Gy ago from a posibacterium, whose DNA segregation and cell division were destabilized by murein wall loss and rescued by the evolving novel neomuran endoskeleton, histones, cytokinesis, and glycoproteins. Phagotrophy then induced coevolving serial major changes making eukaryote cells, culminating in two dissimilar cilia via a novel gliding-fishing-swimming scenario. I transfer Chloroflexi to Posibacteria, root the universal tree between them and Heliobacteria, and argue that Negibacteria are a clade whose OM, evolving in a green posibacterium, was never lost.
Collapse
|
35
|
Tekle YI, Anderson OR, Lecky AF. Evidence of Parasexual Activity in “Asexual Amoebae” Cochliopodium spp. (Amoebozoa): Extensive Cellular and Nuclear Fusion. Protist 2014; 165:676-87. [DOI: 10.1016/j.protis.2014.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 11/30/2022]
|
36
|
Niklas KJ, Cobb ED, Kutschera U. Did meiosis evolve before sex and the evolution of eukaryotic life cycles? Bioessays 2014; 36:1091-101. [PMID: 25143284 DOI: 10.1002/bies.201400045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biologists have long theorized about the evolution of life cycles, meiosis, and sexual reproduction. We revisit these topics and propose that the fundamental difference between life cycles is where and when multicellularity is expressed. We develop a scenario to explain the evolutionary transition from the life cycle of a unicellular organism to one in which multicellularity is expressed in either the haploid or diploid phase, or both. We propose further that meiosis might have evolved as a mechanism to correct for spontaneous whole-genome duplication (auto-polyploidy) and thus before the evolution of sexual reproduction sensu stricto (i.e. the formation of a diploid zygote via the fusion of haploid gametes) in the major eukaryotic clades. In addition, we propose, as others have, that sexual reproduction, which predominates in all eukaryotic clades, has many different advantages among which is that it produces variability among offspring and thus reduces sibling competition.
Collapse
Affiliation(s)
- Karl J Niklas
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | | | |
Collapse
|
37
|
|
38
|
Keeling PJ. The impact of history on our perception of evolutionary events: endosymbiosis and the origin of eukaryotic complexity. Cold Spring Harb Perspect Biol 2014; 6:a016196. [PMID: 24492708 PMCID: PMC3941238 DOI: 10.1101/cshperspect.a016196] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Evolutionary hypotheses are correctly interpreted as products of the data they set out to explain, but they are less often recognized as being heavily influenced by other factors. One of these is the history of preceding thought, and here I look back on historically important changes in our thinking about the role of endosymbiosis in the origin of eukaryotic cells. Specifically, the modern emphasis on endosymbiotic explanations for numerous eukaryotic features, including the cell itself (the so-called chimeric hypotheses), can be seen not only as resulting from the advent of molecular and genomic data, but also from the intellectual acceptance of the endosymbiotic origin of mitochondria and plastids. This transformative idea may have unduly affected how other aspects of the eukaryotic cell are explained, in effect priming us to accept endosymbiotic explanations for endogenous processes. Molecular and genomic data, which were originally harnessed to answer questions about cell evolution, now so dominate our thinking that they largely define the question, and the original questions about how eukaryotic cellular architecture evolved have been neglected. This is unfortunate because, as Roger Stanier pointed out, these cellular changes represent life's "greatest single evolutionary discontinuity," and on this basis I advocate a return to emphasizing evolutionary cell biology when thinking about the origin of eukaryotes, and suggest that endogenous explanations will prevail when we refocus on the evolution of the cell.
Collapse
Affiliation(s)
- Patrick J Keeling
- Canadian Institute for Advanced Research, Botany Department, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| |
Collapse
|
39
|
Ptáčková E, Kostygov AY, Chistyakova LV, Falteisek L, Frolov AO, Patterson DJ, Walker G, Cepicka I. Evolution of Archamoebae: Morphological and Molecular Evidence for Pelobionts Including Rhizomastix, Entamoeba, Iodamoeba, and Endolimax. Protist 2013; 164:380-410. [DOI: 10.1016/j.protis.2012.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 11/13/2012] [Accepted: 11/27/2012] [Indexed: 10/27/2022]
|
40
|
Mach J, Poliak P, Matušková A, Žárský V, Janata J, Lukeš J, Tachezy J. An Advanced System of the Mitochondrial Processing Peptidase and Core Protein Family in Trypanosoma brucei and Multiple Origins of the Core I Subunit in Eukaryotes. Genome Biol Evol 2013; 5:860-75. [PMID: 23563972 PMCID: PMC3673636 DOI: 10.1093/gbe/evt056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2013] [Indexed: 01/20/2023] Open
Abstract
Mitochondrial processing peptidase (MPP) consists of α and β subunits that catalyze the cleavage of N-terminal mitochondrial-targeting sequences (N-MTSs) and deliver preproteins to the mitochondria. In plants, both MPP subunits are associated with the respiratory complex bc1, which has been proposed to represent an ancestral form. Subsequent duplication of MPP subunits resulted in separate sets of genes encoding soluble MPP in the matrix and core proteins (cp1 and cp2) of the membrane-embedded bc1 complex. As only α-MPP was duplicated in Neurospora, its single β-MPP functions in both MPP and bc1 complexes. Herein, we investigated the MPP/core protein family and N-MTSs in the kinetoplastid Trypanosoma brucei, which is often considered one of the most ancient eukaryotes. Analysis of N-MTSs predicted in 336 mitochondrial proteins showed that trypanosomal N-MTSs were comparable with N-MTSs from other organisms. N-MTS cleavage is mediated by a standard heterodimeric MPP, which is present in the matrix of procyclic and bloodstream trypanosomes, and its expression is essential for the parasite. Distinct Genes encode cp1 and cp2, and in the bloodstream forms the expression of cp1 is downregulated along with the bc1 complex. Phylogenetic analysis revealed that all eukaryotic lineages include members with a Neurospora-type MPP/core protein family, whereas cp1 evolved independently in metazoans, some fungi and kinetoplastids. Evolution of cp1 allowed the independent regulation of respiration and protein import, which is essential for the procyclic and bloodstream forms of T. brucei. These results indicate that T. brucei possesses a highly derived MPP/core protein family that likely evolved in response to its complex life cycle and does not appear to have an ancient character proposed earlier for this eukaryote.
Collapse
Affiliation(s)
- Jan Mach
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Poliak
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Budweis, Czech Republic
| | - Anna Matušková
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Vojtěch Žárský
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiří Janata
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Budweis, Czech Republic
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
41
|
Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. Eur J Protistol 2012; 49:115-78. [PMID: 23085100 DOI: 10.1016/j.ejop.2012.06.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/21/2012] [Accepted: 06/26/2012] [Indexed: 11/21/2022]
Abstract
I discuss how different feeding modes and related cellular structures map onto the eukaryote evolutionary tree. Centrally important for understanding eukaryotic cell diversity are Loukozoa: ancestrally biciliate phagotrophic protozoa possessing a posterior cilium and ventral feeding groove into which ciliary currents direct prey. I revise their classification by including all anaerobic Metamonada as a subphylum and adding Tsukubamonas. Loukozoa, often with ciliary vanes, are probably ancestral to all protozoan phyla except Euglenozoa and Percolozoa and indirectly to kingdoms Animalia, Fungi, Plantae, and Chromista. I make a new protozoan phylum Sulcozoa comprising subphyla Apusozoa (Apusomonadida, Breviatea) and Varisulca (Diphyllatea; Planomonadida, Discocelida, Mantamonadida; Rigifilida). Understanding sulcozoan evolution clarifies the origins from them of opisthokonts (animals, fungi, Choanozoa) and Amoebozoa, and their evolutionary novelties; Sulcozoa and their descendants (collectively called podiates) arguably arose from Loukozoa by evolving posterior ciliary gliding and pseudopodia in their ventral groove. I explain subsequent independent cytoskeletal modifications, accompanying further shifts in feeding mode, that generated Amoebozoa, Choanozoa, and fungi. I revise classifications of Choanozoa, Conosa (Amoebozoa), and basal fungal phylum Archemycota. I use Choanozoa, Sulcozoa, Loukozoa, and Archemycota to emphasize the need for simply classifying ancestral (paraphyletic) groups and illustrate advantages of this for understanding step-wise phylogenetic advances.
Collapse
|
42
|
Abstract
Comparisons of ribosomal RNAs and various protein coding genes have contributed to a new view of eukaryote phylogeny. Analyses of paralogous protein coding genes suggest that archaebacteria and eukaryotes are sistergroups. Sequence diversity of small subunit rRNAs in protists by far exceeds that of any multicellular or prokaryote taxon. Remarkably, a group of taxa that lack mitochondria first branches off in the small subunit rRNA tree. The later radiations are formed by a series of clades that were once thought to be more ancestral. Furthermore, tracing of the evolutionary origin of secondary endobiontic events is now possible with sequence comparisons.
Collapse
Affiliation(s)
- M Schlegel
- Martin Schlegel is at the Universität Tübingen, Zoologisches Institut, Abteilung Zellbiologie, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| |
Collapse
|
43
|
Godde JS. Breaking through a phylogenetic impasse: a pair of associated archaea might have played host in the endosymbiotic origin of eukaryotes. Cell Biosci 2012; 2:29. [PMID: 22913376 PMCID: PMC3490757 DOI: 10.1186/2045-3701-2-29] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/03/2012] [Indexed: 11/23/2022] Open
Abstract
For over a century, the origin of eukaryotes has been a topic of intense debate among scientists. Although it has become widely accepted that organelles such as the mitochondria and chloroplasts arose via endosymbiosis, the origin of the eukaryotic nucleus remains enigmatic. Numerous models for the origin of the nucleus have been proposed over the years, many of which use endosymbiosis to explain its existence. Proposals of microbes whose ancestors may have served as either a host or a guest in various endosymbiotic scenarios abound, none of which have been able to sufficiently incorporate the cell biological as well as phylogenetic data which links these organisms to the nucleus. While it is generally agreed that eukaryotic nuclei share more features in common with archaea rather than with bacteria, different studies have identified either one or the other of the two major groups of archaea as potential ancestors, leading to somewhat of a stalemate. This paper seeks to resolve this impasse by presenting evidence that not just one, but a pair of archaea might have served as host to the bacterial ancestor of the mitochondria. This pair may have consisted of ancestors of both Ignicoccus hospitalis as well as its ectosymbiont/ectoparasite ‘Nanoarchaeum equitans’.
Collapse
Affiliation(s)
- James S Godde
- Department of Biology, Monmouth College, 700 East Broadway, Monmouth, IL 61430, USA.
| |
Collapse
|
44
|
A Short-Term Advantage for Syngamy in the Origin of Eukaryotic Sex: Effects of Cell Fusion on Cell Cycle Duration and Other Effects Related to the Duration of the Cell Cycle-Relationship between Cell Growth Curve and the Optimal Size of the Species, and Circadian Cell Cycle in Photosynthetic Unicellular Organisms. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:746825. [PMID: 22666626 PMCID: PMC3361227 DOI: 10.1155/2012/746825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 11/24/2022]
Abstract
The origin of sex is becoming a vexatious issue for Evolutionary Biology. Numerous hypotheses have been proposed, based on the genetic effects of sex, on trophic effects or on the formation of cysts and syncytia. Our approach addresses the change in cell cycle duration which would cause cell fusion. Several results are obtained through graphical and mathematical analysis and computer simulations. (1) In poor environments, cell fusion would be an advantageous strategy, as fusion between cells of different size shortens the cycle of the smaller cell (relative to the asexual cycle), and the majority of mergers would occur between cells of different sizes. (2) The easiest-to-evolve regulation of cell proliferation (sexual/asexual) would be by modifying the checkpoints of the cell cycle. (3) A regulation of this kind would have required the existence of the G2 phase, and sex could thus be the cause of the appearance of this phase. Regarding cell cycle, (4) the exponential curve is the only cell growth curve that has no effect on the optimal cell size in unicellular species; (5) the existence of a plateau with no growth at the end of the cell cycle explains the circadian cell cycle observed in unicellular algae.
Collapse
|
45
|
Potential key bases of ribosomal RNA to kingdom-specific spectra of antibiotic susceptibility and the possible archaeal origin of eukaryotes. PLoS One 2012; 7:e29468. [PMID: 22247777 PMCID: PMC3256160 DOI: 10.1371/journal.pone.0029468] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 11/29/2011] [Indexed: 11/19/2022] Open
Abstract
In support of the hypothesis of the endosymbiotic origin of eukaryotes, much evidence has been found to support the idea that some organelles of eukaryotic cells originated from bacterial ancestors. Less attention has been paid to the identity of the host cell, although some biochemical and molecular genetic properties shared by archaea and eukaryotes have been documented. Through comparing 507 taxa of 16S-18S rDNA and 347 taxa of 23S-28S rDNA, we found that archaea and eukaryotes share twenty-six nucleotides signatures in ribosomal DNA. These signatures exist in all living eukaryotic organisms, whether protist, green plant, fungus, or animal. This evidence explicitly supports the archaeal origin of eukaryotes. In the ribosomal RNA, besides A2058 in Escherichia coli vs. G2400 in Saccharomyces cerevisiae, there still exist other twenties of sites, in which the bases are kingdom-specific. Some of these sites concentrate in the peptidyl transferase centre (PTC) of the 23S-28S rRNA. The results suggest potential key sites to explain the kingdom-specific spectra of drug resistance of ribosomes.
Collapse
|
46
|
Fujimoto M, Ueda T. Conserved and plant-unique mechanisms regulating plant post-Golgi traffic. FRONTIERS IN PLANT SCIENCE 2012; 3:197. [PMID: 22973281 PMCID: PMC3428585 DOI: 10.3389/fpls.2012.00197] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 08/08/2012] [Indexed: 05/18/2023]
Abstract
Membrane traffic plays crucial roles in diverse aspects of cellular and organelle functions in eukaryotic cells. Molecular machineries regulating each step of membrane traffic including the formation, tethering, and fusion of membrane carriers are largely conserved among various organisms, which suggests that the framework of membrane traffic is commonly shared among eukaryotic lineages. However, in addition to the common components, each organism has also acquired lineage-specific regulatory molecules that may be associated with the lineage-specific diversification of membrane trafficking events. In plants, comparative genomic analyses also indicate that some key machineries of membrane traffic are significantly and specifically diversified. In this review, we summarize recent progress regarding plant-unique regulatory mechanisms for membrane traffic, with a special focus on vesicle formation and fusion components in the post-Golgi trafficking pathway.
Collapse
Affiliation(s)
- Masaru Fujimoto
- Department of Biological Sciences, Graduate School of Science, The University of TokyoTokyo, Japan
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, The University of TokyoTokyo, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and TechnologyKawaguchi, Japan
- *Correspondence: Takashi Ueda, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. e-mail:
| |
Collapse
|
47
|
Hydrogenosomes and Mitosomes: Mitochondrial Adaptations to Life in Anaerobic Environments. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2012. [DOI: 10.1007/978-94-007-1896-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Abstract
Since its discovery over three decades ago, it has become abundantly clear that the ubiquitin (Ub) system is a quintessential feature of all aspects of eukaryotic biology. At the heart of the system lies the conjugation and deconjugation of Ub and Ub-like (Ubls) proteins to proteins or lipids drastically altering the biochemistry of the targeted molecules. In particular, it represents the primary mechanism by which protein stability is regulated in eukaryotes. Ub/Ubls are typified by the β-grasp fold (β-GF) that has additionally been recruited for a strikingly diverse range of biochemical functions. These include catalytic roles (e.g., NUDIX phosphohydrolases), scaffolding of iron-sulfur clusters, binding of RNA and other biomolecules such as co-factors, sulfur transfer in biosynthesis of diverse metabolites, and as mediators of key protein-protein interactions in practically every conceivable cellular context. In this chapter, we present a synthetic overview of the structure, evolution, and natural classification of Ub, Ubls, and other members of the β-GF. The β-GF appears to have differentiated into at least seven clades by the time of the last universal common ancestor of all extant organisms, encompassing much of the structural diversity observed in extant versions. The β-GF appears to have first emerged in the context of translation-related RNA-interactions and subsequently exploded to occupy various functional niches. Most biochemical diversification of the fold occurred in prokaryotes, with the eukaryotic phase of its evolution mainly marked by the expansion of the Ubl clade of the β-GF. Consequently, at least 70 distinct Ubl families are distributed across eukaryotes, of which nearly 20 families were already present in the eukaryotic common ancestor. These included multiple protein and one lipid conjugated forms and versions that functions as adapter domains in multimodule polypeptides. The early diversification of the Ubl families in eukaryotes played a major role in the emergence of characteristic eukaryotic cellular substructures and systems pertaining to nucleo-cytoplasmic compartmentalization, vesicular trafficking, lysosomal targeting, protein processing in the endoplasmic reticulum, and chromatin dynamics. Recent results from comparative genomics indicate that precursors of the eukaryotic Ub-system were already present in prokaryotes. The most basic versions are those combining an Ubl and an E1-like enzyme involved in metabolic pathways related to metallopterin, thiamine, cysteine, siderophore and perhaps modified base biosynthesis. Some of these versions also appear to have given rise to simple protein-tagging systems such as Sampylation in archaea and Urmylation in eukaryotes. However, other prokaryotic systems with Ubls of the YukD and other families, including one very close to Ub itself, developed additional elements that more closely resemble the eukaryotic state in possessing an E2, a RING-type E3, or both of these components. Additionally, prokaryotes have evolved conjugation systems that are independent of Ub ligases, such as the Pup system.
Collapse
|
49
|
Burroughs AM, Iyer LM, Aravind L. The natural history of ubiquitin and ubiquitin-related domains. Front Biosci (Landmark Ed) 2012; 17:1433-60. [PMID: 22201813 DOI: 10.2741/3996] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The ubiquitin (Ub) system is centered on conjugation and deconjugation of Ub and Ub-like (Ubls) proteins by a system of ligases and peptidases, respectively. Ub/Ubls contain the beta-grasp fold, also found in numerous proteins with biochemically distinct roles unrelated to the conventional Ub-system. The beta-GF underwent an early radiation spawning at least seven clades prior to the divergence of extant organisms from their last universal common ancestor, first emerging in the context of translation-related RNA-interactions and subsequently exploding to occupy various functional niches. Most beta-GF diversification occurred in prokaryotes, with the Ubl clade showing dramatic expansion in the eukaryotes. Diversification of Ubl families in eukaryotes played a major role in emergence of characteristic eukaryotic cellular sub-structures and systems. Recent comparative genomics studies indicate precursors of the eukaryotic Ub-system emerged in prokaryotes. The simplest of these combine an Ubl and an E1-like enzyme in metabolic pathways. Sampylation in archaea and Urmylation in eukaryotes appear to represent recruitment of such systems as simple protein-tagging apparatuses. However, other prokaryotic systems incorporated further components and mirror the eukaryotic condition in possessing an E2, a RING-type E3 or both of these components. Additionally, prokaryotes have evolved conjugation systems independent of Ub ligases, such as the Pup system.
Collapse
Affiliation(s)
- Alexander Maxwell Burroughs
- Omics Science Center (OSC), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama-shi, 230-0045 Kanagawa, Japan
| | | | | |
Collapse
|
50
|
Hodges ME, Wickstead B, Gull K, Langdale JA. Conservation of ciliary proteins in plants with no cilia. BMC PLANT BIOLOGY 2011; 11:185. [PMID: 22208660 PMCID: PMC3268115 DOI: 10.1186/1471-2229-11-185] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/30/2011] [Indexed: 05/10/2023]
Abstract
BACKGROUND Eukaryotic cilia are complex, highly conserved microtubule-based organelles with a broad phylogenetic distribution. Cilia were present in the last eukaryotic common ancestor and many proteins involved in cilia function have been conserved through eukaryotic diversification. However, cilia have also been lost multiple times in different lineages, with at least two losses occurring within the land plants. Whereas all non-seed plants produce cilia for motility of male gametes, some gymnosperms and all angiosperms lack cilia. During these evolutionary losses, proteins with ancestral ciliary functions may be lost or co-opted into different functions. RESULTS Here we identify a core set of proteins with an inferred ciliary function that are conserved in ciliated eukaryotic species. We interrogate this genomic dataset to identify proteins with a predicted ancestral ciliary role that have been maintained in non-ciliated land plants. In support of our prediction, we demonstrate that several of these proteins have a flagellar localisation in protozoan trypanosomes. The phylogenetic distribution of these genes within the land plants indicates evolutionary scenarios of either sub- or neo-functionalisation and expression data analysis shows that these genes are highly expressed in Arabidopsis thaliana pollen cells. CONCLUSIONS A large number of proteins possess a phylogenetic ciliary profile indicative of ciliary function. Remarkably, many genes with an ancestral ciliary role are maintained in non-ciliated land plants. These proteins have been co-opted to perform novel functions, most likely before the loss of cilia, some of which appear related to the formation of the male gametes.
Collapse
Affiliation(s)
- Matthew E Hodges
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford OX1 3RB, UK
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Bill Wickstead
- Centre for Genetics and Genomics, University of Nottingham, Nottingham NG7 2UH, UK
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford OX1 3RB, UK
| |
Collapse
|