1
|
Ao L, Song X, Li X, Tong M, Guo Y, Li J, Li H, Cai H, Li M, Guan Q, Yan H, Guo Z. An individualized prognostic signature and multi‑omics distinction for early stage hepatocellular carcinoma patients with surgical resection. Oncotarget 2018; 7:24097-110. [PMID: 27006471 PMCID: PMC5029687 DOI: 10.18632/oncotarget.8212] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/02/2016] [Indexed: 12/31/2022] Open
Abstract
Previously reported prognostic signatures for predicting the prognoses of postsurgical hepatocellular carcinoma (HCC) patients are commonly based on predefined risk scores, which are hardly applicable to samples measured by different laboratories. To solve this problem, using gene expression profiles of 170 stage I/II HCC samples, we identified a prognostic signature consisting of 20 gene pairs whose within-sample relative expression orderings (REOs) could robustly predict the disease-free survival and overall survival of HCC patients. This REOs-based prognostic signature was validated in two independent datasets. Functional enrichment analysis showed that the patients with high-risk of recurrence were characterized by the activations of pathways related to cell proliferation and tumor microenvironment, whereas the low-risk patients were characterized by the activations of various metabolism pathways. We further investigated the distinct epigenomic and genomic characteristics of the two prognostic groups using The Cancer Genome Atlas samples with multi-omics data. Epigenetic analysis showed that the transcriptional differences between the two prognostic groups were significantly concordant with DNA methylation alternations. The signaling network analysis identified several key genes (e.g. TP53, MYC) with epigenomic or genomic alternations driving poor prognoses of HCC patients. These results help us understand the multi-omics mechanisms determining the outcomes of HCC patients.
Collapse
Affiliation(s)
- Lu Ao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - Xuekun Song
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Xiangyu Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - Mengsha Tong
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - You Guo
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - Jing Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - Hongdong Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - Hao Cai
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - Mengyao Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - Qingzhou Guan
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - Haidan Yan
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - Zheng Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| |
Collapse
|
2
|
Ao L, Guo Y, Song X, Guan Q, Zheng W, Zhang J, Huang H, Zou Y, Guo Z, Wang X. Evaluating hepatocellular carcinoma cell lines for tumour samples using within-sample relative expression orderings of genes. Liver Int 2017; 37:1688-1696. [PMID: 28481424 DOI: 10.1111/liv.13467] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/28/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Concerns are raised about the representativeness of cell lines for tumours due to the culture environment and misidentification. Liver is a major metastatic destination of many cancers, which might further confuse the origin of hepatocellular carcinoma cell lines. Therefore, it is of crucial importance to understand how well they can represent hepatocellular carcinoma. METHODS The HCC-specific gene pairs with highly stable relative expression orderings in more than 99% of hepatocellular carcinoma but with reversed relative expression orderings in at least 99% of one of the six types of cancer, colorectal carcinoma, breast carcinoma, non-small-cell lung cancer, gastric carcinoma, pancreatic carcinoma and ovarian carcinoma, were identified. RESULTS With the simple majority rule, the HCC-specific relative expression orderings from comparisons with colorectal carcinoma and breast carcinoma could exactly discriminate primary hepatocellular carcinoma samples from both primary colorectal carcinoma and breast carcinoma samples. Especially, they correctly classified more than 90% of liver metastatic samples from colorectal carcinoma and breast carcinoma to their original tumours. Finally, using these HCC-specific relative expression orderings from comparisons with six cancer types, we identified eight of 24 hepatocellular carcinoma cell lines in the Cancer Cell Line Encyclopedia (Huh-7, Huh-1, HepG2, Hep3B, JHH-5, JHH-7, C3A and Alexander cells) that are highly representative of hepatocellular carcinoma. Evaluated with a REOs-based prognostic signature for hepatocellular carcinoma, all these eight cell lines showed the same metastatic properties of the high-risk metastatic hepatocellular carcinoma tissues. CONCLUSIONS Caution should be taken for using hepatocellular carcinoma cell lines. Our results should be helpful to select proper hepatocellular carcinoma cell lines for biological experiments.
Collapse
Affiliation(s)
- Lu Ao
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - You Guo
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Preventive Medicine, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, China
| | - Xuekun Song
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Qingzhou Guan
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Weicheng Zheng
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jiahui Zhang
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Haiyan Huang
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yi Zou
- Department of Automation and Key Laboratory of China MOE for System Control and Information Processing, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Guo
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Xianlong Wang
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
3
|
O'Bryan MK, Clark BJ, McLaughlin EA, D'Sylva RJ, O'Donnell L, Wilce JA, Sutherland J, O'Connor AE, Whittle B, Goodnow CC, Ormandy CJ, Jamsai D. RBM5 is a male germ cell splicing factor and is required for spermatid differentiation and male fertility. PLoS Genet 2013; 9:e1003628. [PMID: 23935508 PMCID: PMC3723494 DOI: 10.1371/journal.pgen.1003628] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/30/2013] [Indexed: 12/30/2022] Open
Abstract
Alternative splicing of precursor messenger RNA (pre-mRNA) is common in mammalian cells and enables the production of multiple gene products from a single gene, thus increasing transcriptome and proteome diversity. Disturbance of splicing regulation is associated with many human diseases; however, key splicing factors that control tissue-specific alternative splicing remain largely undefined. In an unbiased genetic screen for essential male fertility genes in the mouse, we identified the RNA binding protein RBM5 (RNA binding motif 5) as an essential regulator of haploid male germ cell pre-mRNA splicing and fertility. Mice carrying a missense mutation (R263P) in the second RNA recognition motif (RRM) of RBM5 exhibited spermatid differentiation arrest, germ cell sloughing and apoptosis, which ultimately led to azoospermia (no sperm in the ejaculate) and male sterility. Molecular modelling suggested that the R263P mutation resulted in compromised mRNA binding. Within the adult mouse testis, RBM5 localises to somatic and germ cells including spermatogonia, spermatocytes and round spermatids. Through the use of RNA pull down coupled with microarrays, we identified 11 round spermatid-expressed mRNAs as putative RBM5 targets. Importantly, the R263P mutation affected pre-mRNA splicing and resulted in a shift in the isoform ratios, or the production of novel spliced transcripts, of most targets. Microarray analysis of isolated round spermatids suggests that altered splicing of RBM5 target pre-mRNAs affected expression of genes in several pathways, including those implicated in germ cell adhesion, spermatid head shaping, and acrosome and tail formation. In summary, our findings reveal a critical role for RBM5 as a pre-mRNA splicing regulator in round spermatids and male fertility. Our findings also suggest that the second RRM of RBM5 is pivotal for appropriate pre-mRNA splicing. The production of functional spermatozoa is an extraordinarily complex process that transforms a conventional round cell into the highly specialised sperm cell. These events require the coordinated activation of thousands of genes. It is likely that this complexity contributes to the large number of idiopathic infertility cases seen in humans. In an effort to improve the field's understanding of male fertility, we used a random mutagenesis screen to produce the Joey mouse line and to conclusively define RBM5 as an essential regulator of male fertility. The Joey line carries a mutation in the Rbm5 gene, which leads to a complete block of spermatid (haploid male germ cell) differentiation and ultimately a total loss of sperm production. Our results reveal a physiological role for RBM5 in the splicing of several spermatid-expressed mRNAs that are critical for the production of spermatozoa. This study is the first to show that RBM5, via its effects on mRNA splicing in the testis, is required for male fertility. These data improve our understanding of the regulatory networks of gene expression that control sperm production and as such may lead to the development of novel approaches to enhance or suppress fertility in men.
Collapse
Affiliation(s)
- Moira K. O'Bryan
- Department of Anatomy & Developmental Biology, Monash University, Melbourne, Australia
- The ARC Centre of Excellence in Biotechnology & Development, Monash University, Melbourne, Australia
| | - Brett J. Clark
- Department of Anatomy & Developmental Biology, Monash University, Melbourne, Australia
| | - Eileen A. McLaughlin
- Department of Anatomy & Developmental Biology, Monash University, Melbourne, Australia
- Priority Research Centre in Chemical Biology, The University of Newcastle, Callaghan, Australia
| | - Rebecca J. D'Sylva
- Department of Anatomy & Developmental Biology, Monash University, Melbourne, Australia
| | - Liza O'Donnell
- Department of Anatomy & Developmental Biology, Monash University, Melbourne, Australia
- Prince Henry's Institute, Melbourne, Australia
| | - Jacqueline A. Wilce
- Department of Biochemistry & Molecular Biology, Monash University, Melbourne, Australia
| | - Jessie Sutherland
- Priority Research Centre in Chemical Biology, The University of Newcastle, Callaghan, Australia
| | - Anne E. O'Connor
- Department of Anatomy & Developmental Biology, Monash University, Melbourne, Australia
- The ARC Centre of Excellence in Biotechnology & Development, Monash University, Melbourne, Australia
| | - Belinda Whittle
- Australian Phenomics Facility, The Australian National University, Canberra, Australia
| | | | | | - Duangporn Jamsai
- Department of Anatomy & Developmental Biology, Monash University, Melbourne, Australia
- The ARC Centre of Excellence in Biotechnology & Development, Monash University, Melbourne, Australia
- * E-mail:
| |
Collapse
|
4
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 2: changes in spermatid organelles associated with development of spermatozoa. Microsc Res Tech 2010; 73:279-319. [PMID: 19941292 DOI: 10.1002/jemt.20787] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spermiogenesis is a long process whereby haploid spermatids derived from the meiotic divisions of spermatocytes undergo metamorphosis into spermatozoa. It is subdivided into distinct steps with 19 being identified in rats, 16 in mouse and 8 in humans. Spermiogenesis extends over 22.7 days in rats and 21.6 days in humans. In this part, we review several key events that take place during the development of spermatids from a structural and functional point of view. During early spermiogenesis, the Golgi apparatus forms the acrosome, a lysosome-like membrane bound organelle involved in fertilization. The endoplasmic reticulum undergoes several topographical and structural modifications including the formation of the radial body and annulate lamellae. The chromatoid body is fully developed and undergoes structural and functional modifications at this time. It is suspected to be involved in RNA storing and processing. The shape of the spermatid head undergoes extensive structural changes that are species-specific, and the nuclear chromatin becomes compacted to accommodate the stream-lined appearance of the sperm head. Microtubules become organized to form a curtain or manchette that associates with spermatids at specific steps of their development. It is involved in maintenance of the sperm head shape and trafficking of proteins in the spermatid cytoplasm. During spermiogenesis, many genes/proteins have been implicated in the diverse dynamic events occurring at this time of development of germ cells and the absence of some of these have been shown to result in subfertility or infertility.
Collapse
Affiliation(s)
- Louis Hermo
- Faculty of Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
5
|
Belmonte SA, Romano PS, Sosa MA. Mannose-6-phosphate receptors as a molecular indicator of maturation of epididymal sperm. ARCHIVES OF ANDROLOGY 2002; 48:53-63. [PMID: 11789684 DOI: 10.1080/014850102753385215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
This review discusses some of the changes in sperm during maturation within the context of current concepts of membrane structure and fertilization. Mammalian sperm are surrounded by a limiting plasma membrane that undergoes remodeling during passage through the epididymis. This process confers on the gamete vigorous motility and the ability to fertilize the egg. The repositioning of some surface proteins may follow redistribution of lipids in the plasmalemma, and thus represent a critical step in the maturation of the gametes. Among the various affected proteins of the sperm plasmalemma, mannose-6-phosphate receptors undergo redistribution as the gametes transit through the epididymal duct. The authors summarize their studies of the redistribution of phosphomannosyl receptors during maturation of sperm and discuss possible roles of these glycoproteins in the fertilizing capability of sperm.
Collapse
Affiliation(s)
- S A Belmonte
- Instituto de Histologia y Embriologia, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| | | | | |
Collapse
|
6
|
Belmonte SA, Romano PS, Fornés WM, Sosa MA. Changes in distribution of phosphomannosyl receptors during maturation of rat spermatozoa. Biol Reprod 2000; 63:1172-8. [PMID: 10993842 DOI: 10.1095/biolreprod63.4.1172] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The aim of the present work was to study the distribution of the cation-independent (CI) and cation-dependent (CD) mannose-6-phosphate receptors (MPRs) in spermatozoa obtained from either rete testis or three regions of rat epididymis. We observed that both receptors underwent changes in distribution as spermatozoa passed from rete testis to cauda epididymis. CI-MPR was concentrated in the dorsal region of the head in rete testis sperm and that this labeling extended to the equatorial segment of epididymal spermatozoa. CD-MPR, however, changed from a dorsal distribution in rete testis, caput, and corpus to a double labeling on the dorsal and ventral regions in cauda spermatozoa. The percentages of spermatozoa that showed staining for either CI-MPR or CD-MPR increased from rete testis to epididymis. The observed changes were probably the result of a redistribution during transit rather than an unmasking of receptors. The fluorescence corresponding to CD-MPR and CI-MPR on the dorsal region disappeared when caudal spermatozoa underwent the acrosomal reaction. Receptors were localized on the plasmalemma of spermatozoa, as observed by immunoelectron microscopy. Changes in distribution may be related to a maturation process, which suggests new roles for the phosphomannosyl receptors.
Collapse
Affiliation(s)
- S A Belmonte
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| | | | | | | |
Collapse
|
7
|
Press B, Feng Y, Hoflack B, Wandinger-Ness A. Mutant Rab7 causes the accumulation of cathepsin D and cation-independent mannose 6-phosphate receptor in an early endocytic compartment. J Cell Biol 1998; 140:1075-89. [PMID: 9490721 PMCID: PMC2132709 DOI: 10.1083/jcb.140.5.1075] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/1997] [Revised: 01/08/1998] [Indexed: 02/06/2023] Open
Abstract
Stable BHK cell lines inducibly expressing wild-type or dominant negative mutant forms of the rab7 GTPase were isolated and used to analyze the role of a rab7-regulated pathway in lysosome biogenesis. Expression of mutant rab7N125I protein induced a dramatic redistribution of cation-independent mannose 6-phosphate receptor (CI-MPR) from its normal perinuclear localization to large peripheral endosomes. Under these circumstances approximately 50% of the total receptor and several lysosomal hydrolases cofractionated with light membranes containing early endosome and Golgi markers. Late endosomes and lysosomes were contained exclusively in well-separated, denser gradient fractions. Newly synthesized CI-MPR and cathepsin D were shown to traverse through an early endocytic compartment, and functional rab7 was crucial for delivery to later compartments. This observation was evidenced by the fact that 2 h after synthesis, both markers were more prevalent in fractions containing light membranes. In addition, both were sensitive to HRP-DAB- mediated cross-linking of early endosomal proteins, and the late endosomal processing of cathepsin D was impaired. Using similar criteria, the lysosomal membrane glycoprotein 120 was not found accumulated in an early endocytic compartment. The data are indicative of a post-Golgi divergence in the routes followed by different lysosome-directed molecules.
Collapse
Affiliation(s)
- B Press
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | | | | | |
Collapse
|
8
|
Hille-Rehfeld A. Mannose 6-phosphate receptors in sorting and transport of lysosomal enzymes. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1241:177-94. [PMID: 7640295 DOI: 10.1016/0304-4157(95)00004-b] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mannose 6-phosphate receptors have been intensively studied with regard to their genomic organization, protein structure, ligand binding properties, intracellular trafficking and sorting functions. That their main function is sorting of newly synthesized lysosomal enzymes is commonly accepted, but much more remains to be learned about their precise recycling pathways and the mechanisms which regulate their vesicular transport. Additional functions have been reported, e.g., export of newly synthesized lysosomal enzymes from the cell by MPR 46 or a--probably indirect--participation in growth factor-mediated signal transduction by MPR 300. To understand the physiological relevance of these observations will be a challenge for future research.
Collapse
Affiliation(s)
- A Hille-Rehfeld
- Department of Biochemistry and Molecular Cell Biology, Universität Göttingen, Germany
| |
Collapse
|
9
|
|