1
|
Gruber KA, Ji RL, Gallazzi F, Jiang S, Van Doren SR, Tao YX, Newton Northup J. Development of a Therapeutic Peptide for Cachexia Suggests a Platform Approach for Drug-like Peptides. ACS Pharmacol Transl Sci 2022; 5:344-361. [PMID: 35592439 PMCID: PMC9112415 DOI: 10.1021/acsptsci.1c00270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 12/19/2022]
Abstract
During the development of a melanocortin (MC) peptide drug to treat the condition of cachexia (a hypermetabolic state producing lean body mass wasting), we were confronted with the need for peptide transport across the blood-brain barrier (BBB): the MC-4 receptors (MC4Rs) for metabolic rate control are located in the hypothalamus, i.e., behind the BBB. Using the term "peptides with BBB transport", we screened the medical literature like a peptide library. This revealed numerous "hits"-peptides with BBB transport and/or oral activity. We noted several features common to most peptides in this class, including a dipeptide sequence of nonpolar residues, primary structure cyclization (whole or partial), and a Pro-aromatic motif usually within the cyclized region. Based on this, we designed an MC4R antagonist peptide, TCMCB07, that successfully treated many forms of cachexia. As part of our pharmacokinetic characterization of TCMCB07, we discovered that hepatobiliary extraction from blood accounted for a majority of the circulating peptide's excretion. Further screening of the literature revealed that TCMCB07 is a member of a long-forgotten peptide class, showing active transport by a multi-specific bile salt carrier. Bile salt transport peptides have predictable pharmacokinetics, including BBB transport, but rapid hepatic clearance inhibited their development as drugs. TCMCB07 shares the general characteristics of the bile salt peptide class but with a much longer half-life of hours, not minutes. A change in its C-terminal amino acid sequence slows hepatic clearance. This modification is transferable to other peptides in this class, suggesting a platform approach for producing drug-like peptides.
Collapse
Affiliation(s)
- Kenneth A Gruber
- John M. Dalton Cardiovascular Research Center, and Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, Missouri 65211, United States.,Tensive Controls, Inc., Columbia, Missouri 65211, United States
| | - Ren-Lai Ji
- Department of Anatomy, Physiology and Pharmacology, Auburn University, College of Veterinary Medicine, Auburn, Alabama 36849, United States
| | - Fabio Gallazzi
- Department of Chemistry and Molecular Interaction Core, University of Missouri, Columbia, Missouri 65211, United States
| | - Shaokai Jiang
- Department of Chemistry and NMR Core, University of Missouri, Columbia, Missouri 65211, United States
| | - Steven R Van Doren
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States`
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, Auburn University, College of Veterinary Medicine, Auburn, Alabama 36849, United States
| | | |
Collapse
|