1
|
Cullis PR, Felgner PL. The 60-year evolution of lipid nanoparticles for nucleic acid delivery. Nat Rev Drug Discov 2024; 23:709-722. [PMID: 38965378 DOI: 10.1038/s41573-024-00977-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/06/2024]
Abstract
Delivery of genetic information to the interior of target cells in vivo has been a major challenge facing gene therapies. This barrier is now being overcome, owing in part to dramatic advances made by lipid-based systems that have led to lipid nanoparticles (LNPs) that enable delivery of nucleic acid-based vaccines and therapeutics. Examples include the clinically approved COVID-19 LNP mRNA vaccines and Onpattro (patisiran), an LNP small interfering RNA therapeutic to treat transthyretin-induced amyloidosis (hATTR). In addition, a host of promising LNP-enabled vaccines and gene therapies are in clinical development. Here, we trace this success to two streams of research conducted over the past 60 years: the discovery of the transfection properties of lipoplexes composed of positively charged cationic lipids complexed with nucleic acid cargos and the development of lipid nanoparticles using ionizable cationic lipids. The fundamental insights gained from these two streams of research offer potential delivery solutions for most forms of gene therapies.
Collapse
Affiliation(s)
- P R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
| | - P L Felgner
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA.
| |
Collapse
|
2
|
Milani A, Bolhassani A, Rouhollah F, Naseroleslami M. Which one of the thermal approaches (heating DNA or cells) enhances the gene expression in mammalian cells? Biotechnol Lett 2021; 43:1955-1966. [PMID: 34482511 PMCID: PMC8418791 DOI: 10.1007/s10529-021-03176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/26/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Heat treatment as a physical method could increase the cellular uptake of nucleic acids. In this study, the effects of heat shock were evaluated to enhance the transfection efficiency of three plasmid DNAs into HeLa and TC-1 cancerous, and HEK-293 T and Vero non-cancerous cell lines using lipofectamine 2000 reagent. METHODS Two methods of cell- and DNA-based heat treatment were used. Heating DNA solution was performed at 94 °C for 5, 10 and 15 min, and also 72 °C for 30, 60 and 120 min, individually. Moreover, heating the cells was done by incubation at 42 °C for 2 h in different times such as before, during and after DNA transfection. RESULTS Our data showed that the conformation of plasmid DNAs was changed at different temperatures with increasing time. The heat-treated plasmid DNAs (94 °C for 10 min or 72 °C for 30 min) indicated higher transfection efficiency than untreated plasmid DNAs (p < 0.05). Furthermore, heat treatment of cells before and during the transfection was higher than untreated cells (p < 0.01). Our results demonstrated that DNA transfection efficiency in cancerous cells was less than non-cancerous cells (p < 0.01). CONCLUSION Generally, these findings showed that transfection mediated by thermal stimulation could enhance gene transfection in mammalian cell lines.
Collapse
Affiliation(s)
- Alireza Milani
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Fatemeh Rouhollah
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maryam Naseroleslami
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Oh N, Park S, Kim JW, Park JH. Photothermal Transfection for Effective Nonviral Genome Editing. ACS APPLIED BIO MATERIALS 2021; 4:5678-5685. [PMID: 35006736 DOI: 10.1021/acsabm.1c00465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The efficient nonviral delivery of nucleic acids into the cytoplasm is needed to fully realize the potential of gene therapy. Although cationic lipids and nanoparticles have been widely used to improve the intracellular delivery of nucleic acids, they suffer from cytotoxicity and poor endosomal escape, thus limiting the transfection efficacy. Here, we developed a photothermal transfection platform for efficient and biosafe intracellular delivery of nucleic acids. Photothermal transfection was carried out by irradiation of cells co-treated with Lipofectamine-plasmid DNA complexes and PEGylated gold nanorods (GNRs) using an NIR laser for 30 min and subsequent incubation of the cells for 30 min without laser irradiation. Compared to conventional Lipofectamine-based transfection, our photothermal transfection platform significantly improved the transfection efficiency in difficult-to-transfect human primary cells including human dermal fibroblasts while maintaining the cell viability. The photothermal heating did not leave the GNRs inside the cell, thereby minimizing the cellular damage. Furthermore, the photothermal transfection platform showed superior genome editing abilities (both gene cleavage and insertion) in human dermal fibroblasts than conventional Lipofectamine-based transfection.
Collapse
Affiliation(s)
- Nuri Oh
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sooyeon Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Rai N, Shihan M, Seeger W, Schermuly RT, Novoyatleva T. Genetic Delivery and Gene Therapy in Pulmonary Hypertension. Int J Mol Sci 2021; 22:ijms22031179. [PMID: 33503992 PMCID: PMC7865388 DOI: 10.3390/ijms22031179] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH) is a progressive complex fatal disease of multiple etiologies. Hyperproliferation and resistance to apoptosis of vascular cells of intimal, medial, and adventitial layers of pulmonary vessels trigger excessive pulmonary vascular remodeling and vasoconstriction in the course of pulmonary arterial hypertension (PAH), a subgroup of PH. Multiple gene mutation/s or dysregulated gene expression contribute to the pathogenesis of PAH by endorsing the proliferation and promoting the resistance to apoptosis of pulmonary vascular cells. Given the vital role of these cells in PAH progression, the development of safe and efficient-gene therapeutic approaches that lead to restoration or down-regulation of gene expression, generally involved in the etiology of the disease is the need of the hour. Currently, none of the FDA-approved drugs provides a cure against PH, hence innovative tools may offer a novel treatment paradigm for this progressive and lethal disorder by silencing pathological genes, expressing therapeutic proteins, or through gene-editing applications. Here, we review the effectiveness and limitations of the presently available gene therapy approaches for PH. We provide a brief survey of commonly existing and currently applicable gene transfer methods for pulmonary vascular cells in vitro and describe some more recent developments for gene delivery existing in the field of PH in vivo.
Collapse
Affiliation(s)
- Nabham Rai
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
| | - Mazen Shihan
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Ralph T. Schermuly
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
| | - Tatyana Novoyatleva
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
- Correspondence:
| |
Collapse
|
5
|
Hadi A, Rastgoo A, Bolhassani A, Haghighipour N. Effects of stretching on molecular transfer from cell membrane by forming pores. SOFT MATERIALS 2019; 17:391-399. [DOI: 10.1080/1539445x.2019.1610974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/21/2019] [Indexed: 10/06/2024]
Affiliation(s)
- Amin Hadi
- School of Mechanical Engineering, University of Tehran, Tehran, Iran
| | - Abbas Rastgoo
- School of Mechanical Engineering, University of Tehran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDs, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
6
|
Hattori Y, Hu S, Onishi H. Effects of cationic lipids in cationic liposomes and disaccharides in the freeze-drying of siRNA lipoplexes on gene silencing in cells by reverse transfection. J Liposome Res 2019; 30:235-245. [DOI: 10.1080/08982104.2019.1630643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yoshiyuki Hattori
- Department of Drug Delivery Research, Hoshi University, Tokyo, Japan
| | - Subin Hu
- Department of Drug Delivery Research, Hoshi University, Tokyo, Japan
| | - Hiraku Onishi
- Department of Drug Delivery Research, Hoshi University, Tokyo, Japan
| |
Collapse
|
7
|
Lee YW, Luther DC, Kretzmann JA, Burden A, Jeon T, Zhai S, Rotello VM. Protein Delivery into the Cell Cytosol using Non-Viral Nanocarriers. Theranostics 2019; 9:3280-3292. [PMID: 31244954 PMCID: PMC6567963 DOI: 10.7150/thno.34412] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022] Open
Abstract
Protein delivery into cells is a potentially transformative tool for treating "undruggable" targets in diseases associated with protein deficiencies or mutations. The vast majority of these targets are accessed via the cytosol, a challenging prospect for proteins with therapeutic and diagnostic relevance. In this review we will present promising non-viral approaches for intracellular and ultimately cytosolic delivery of proteins using nanocarriers. We will also discuss the mechanistic properties that govern the efficacy of nanocarrier-mediated protein delivery, applications of nanomaterials, and key challenges and opportunities in the use of nanocarriers for intracellular protein delivery.
Collapse
Affiliation(s)
- Yi-Wei Lee
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, USA
| | - David C. Luther
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, USA
| | - Jessica A. Kretzmann
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, USA
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Andrew Burden
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, USA
| | - Taewon Jeon
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, USA
| | - Shumei Zhai
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, USA
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, USA
| |
Collapse
|
8
|
Rasoulianboroujeni M, Kupgan G, Moghadam F, Tahriri M, Boughdachi A, Khoshkenar P, Ambrose J, Kiaie N, Vashaee D, Ramsey J, Tayebi L. Development of a DNA-liposome complex for gene delivery applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:191-197. [DOI: 10.1016/j.msec.2017.02.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/17/2016] [Accepted: 02/06/2017] [Indexed: 01/22/2023]
|
9
|
Ball RL, Bajaj P, Whitehead KA. Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization. Int J Nanomedicine 2016; 12:305-315. [PMID: 28115848 PMCID: PMC5221800 DOI: 10.2147/ijn.s123062] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The broadest clinical application of siRNA therapeutics will be facilitated by drug-loaded delivery systems that maintain stability and potency for long times under ambient conditions. In the present study, we seek to better understand the stability and effect of storage conditions on lipidoid nanoparticles (LNPs), which have been previously shown by our group and others to potently deliver RNA to various cell and organ targets both in vitro and in vivo. Specifically, this study evaluates the influence of pH, temperature, and lyophilization on LNP efficacy in HeLa cells. When stored under aqueous conditions, we found that refrigeration (2°C) kept LNPs the most stable over 150 days compared to storage in the −20°C freezer or at room temperature. Because the pH of the storage buffer was not found to influence stability, it is suggested that the LNPs be stored under physiologically appropriate conditions (pH 7) for ease of use. Although aggregation and loss of efficacy were observed when LNPs were subjected to freeze–thaw cycles, their stability was retained with the use of the cryoprotectants, trehalose, and sucrose. Initially, lyophilization of the LNPs followed by reconstitution in aqueous buffer also led to reductions in efficacy, most likely due to aggregation upon reconstitution. Although the addition of ethanol to the reconstitution buffer restored efficacy, this approach is not ideal, as LNP solutions would require dialysis prior to use. Fortunately, we found that the addition of trehalose or sucrose to LNP solutions prior to lyophilization facilitated room temperature storage and reconstitution in aqueous buffer without diminishing delivery potency.
Collapse
Affiliation(s)
| | - Palak Bajaj
- Department of Chemical Engineering; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kathryn A Whitehead
- Department of Chemical Engineering; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Zhang J, Yu J, Jiang J, Chen X, Sun Y, Yang Z, Yang T, Cai C, Zhao X, Ding P. Uptake Pathways of Guandinylated Disulfide Containing Polymers as Nonviral Gene Carrier Delivering DNA to Cells. J Cell Biochem 2016; 118:903-913. [PMID: 27764887 DOI: 10.1002/jcb.25769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/18/2016] [Indexed: 12/16/2022]
Abstract
Polymers of guanidinylated disulfide containing poly(amido amine)s (Gua-SS-PAAs), have shown high transfection efficiency and low cytotoxicity. Previously, we synthesized two Gua-SS-PAA polymers, using guanidino containing monomers (i.e., arginine and agmatine, denoted as ARG and AGM, respectively) and N,N'-cystaminebisacrylamide (CBA). In this study, these two polymers, AGM-CBA and ARG-CBA were complexed with plasmid DNA, and their uptake pathway was investigated. Complexes distribution in MCF-7 cells, and changes on cell endosomes/lysosomes and membrane after the cells were exposed to complexes were tested. In addition, how the transfection efficiency changed with the cell cycle status as well as endocytosis inhibitors were studied. The polymers of AGM-CBA and ARG-CBA can avoid endosomal/lysosomal trap, therefore, greatly delivering plasmid DNA (pDNA) to the cell nucleoli. It is the guanidine groups in the polymers that enhanced complexes' permeation through cell membrane with slight membrane damage, and targeting to the nucleoli. J. Cell. Biochem. 118: 903-913, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jinmin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiankun Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingzheng Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanping Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhen Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, Maine
| | - Cuifang Cai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoyun Zhao
- Department of Microbiology and Cell Biology, School of life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
11
|
Choi E, Han J, Tan X, Oh J, Lee D, Rhim T, Lee M. Combined delivery of temozolomide and the thymidine kinase gene for treatment of glioblastoma. J Drug Target 2016; 25:156-162. [PMID: 27401451 DOI: 10.1080/1061186x.2016.1212202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Glioblastoma is the most malignant form of brain tumor. In this study, combination therapy with temozolomide (TMZ) and the herpes simplex virus thymidine kinase (HSVtk) gene was evaluated in glioblastoma models. The R7L10 peptide was used as a carrier of TMZ and the HSVtk gene. TMZ was loaded into R7L10 micelles using the oil-in-water emulsion/solvent evaporation method. The TMZ-loaded R7L10 (R7L10-TMZ) micelles formed a complex with the HSVtk gene, pHSVtk. The formation of the R7L10-TMZ/pHSVtk complex was confirmed by gel retardation and heparin competition assays. An in vitro transfection assay demonstrated that the transfection efficiency of R7L10-TMZ was similar to that of R7L10 in C6 glioblastoma cells. R7L10-TMZ had greater anti-tumor effects than TMZ alone in C6 cells in vitro, suggesting that R7L10 is an efficient carrier of TMZ. The in vivo efficacy of the R7L10-TMZ/pHSVtk complex was evaluated in the intracranial glioblastoma model. HSVtk expression in tumors was confirmed by immunohistochemistry. Furthermore, a greater anti-tumor effect was observed in the R7L10-TMZ/pHSVtk group compared with the TMZ or R7L10/pHSVtk single injection group. In conclusion, combined delivery of TMZ and the HSVtk gene using R7L10 peptides may be useful for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Eunji Choi
- a Department of Bioengineering, College of Engineering , Hanyang University , Seongdong-Gu , Seoul , Korea
| | - Jaesik Han
- a Department of Bioengineering, College of Engineering , Hanyang University , Seongdong-Gu , Seoul , Korea
| | - Xiaonan Tan
- a Department of Bioengineering, College of Engineering , Hanyang University , Seongdong-Gu , Seoul , Korea
| | - Jungju Oh
- a Department of Bioengineering, College of Engineering , Hanyang University , Seongdong-Gu , Seoul , Korea
| | - Dahee Lee
- a Department of Bioengineering, College of Engineering , Hanyang University , Seongdong-Gu , Seoul , Korea
| | - Taiyoun Rhim
- a Department of Bioengineering, College of Engineering , Hanyang University , Seongdong-Gu , Seoul , Korea
| | - Minhyung Lee
- a Department of Bioengineering, College of Engineering , Hanyang University , Seongdong-Gu , Seoul , Korea
| |
Collapse
|
12
|
Youngren-Ortiz SR, Gandhi NS, España-Serrano L, Chougule MB. Aerosol Delivery of siRNA to the Lungs. Part 2: Nanocarrier-based Delivery Systems. KONA : POWDER SCIENCE AND TECHNOLOGY IN JAPAN 2016; 34:44-69. [PMID: 28392618 PMCID: PMC5381822 DOI: 10.14356/kona.2017005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In this article, applications of engineered nanoparticles containing siRNA for inhalation delivery are reviewed and discussed. Diseases with identified protein malfunctions may be mitigated through the use of well-designed siRNA therapeutics. The inhalation route of administration provides local delivery of siRNA therapeutics to the lungs for various pulmonary diseases. A siRNA delivery system can be used to overcome the barriers of pulmonary delivery, such as anatomical barriers, mucociliary clearance, cough clearance, and alveolar macrophage clearance. Apart from naked siRNA aerosol delivery, previously studied siRNA carrier systems include those of lipidic, polymeric, peptide, or inorganic origin. These delivery systems can achieve pulmonary delivery through the generation of an aerosol via an inhaler or nebulizer. The preparation methodologies for these siRNA nanocarrier systems will be discussed herein. The use of inhalable nanocarrier siRNA delivery systems have barriers to their effective delivery, but overcoming these constraints while formulating a safe and effective delivery system will offer unique advances to the field of inhaled medicine.
Collapse
Affiliation(s)
- Susanne R. Youngren-Ortiz
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
| | - Nishant S. Gandhi
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
| | - Laura España-Serrano
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
| | - Mahavir B. Chougule
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
- Natural Products and Experimental Therapeutics Program, The Cancer Research Center, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| |
Collapse
|
13
|
Hecker JG. Non-Viral, Lipid-Mediated DNA and mRNA Gene Therapy of the Central Nervous System (CNS): Chemical-Based Transfection. Methods Mol Biol 2016; 1382:307-24. [PMID: 26611597 DOI: 10.1007/978-1-4939-3271-9_23] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Appropriate gene delivery systems are essential for successful gene therapy in clinical medicine. Cationic lipid-mediated delivery is an alternative to viral vector-mediated gene delivery. Lipid-mediated delivery of DNA or mRNA is usually more rapid than viral-mediated delivery, offers a larger payload, and has a nearly zero risk of incorporation. Lipid-mediated delivery of DNA or RNA is therefore preferable to viral DNA delivery in those clinical applications that do not require long-term expression for chronic conditions. Delivery of RNA may be preferable to non-viral DNA delivery in some clinical applications, because transit across the nuclear membrane is not necessary and onset of expression with RNA is therefore even faster than with DNA, although both are faster than most viral vectors. Here, we describe techniques for cationic lipid-mediated delivery of nucleic acids encoding reporter genes in a variety of cell lines. We describe optimized formulations and transfection procedures that we previously assessed by bioluminescence and flow cytometry. RNA transfection demonstrates increased efficiency relative to DNA transfection in non-dividing cells. Delivery of mRNA results in onset of expression within 1 h after transfection and a peak in expression 5-7 h after transfection. Duration of expression in eukaryotic cells after mRNA transcript delivery depends on multiple factors, including transcript stability, protein turnover, and cell type. Delivery of DNA results in onset of expression within 5 h after transfection, a peak in expression 24-48 h after transfection, and a return to baseline that can be as long as several weeks after transfection. In vitro results are consistent with our in vivo delivery results, techniques for which are described as well. RNA delivery is suitable for short-term transient gene expression due to its rapid onset, short duration of expression and greater efficiency, particularly in non-dividing cells, while the longer duration and the higher mean levels of expression per cell that are ultimately obtained following DNA delivery confirm a continuing role for DNA gene delivery in clinical applications that require longer term transient gene expression.
Collapse
Affiliation(s)
- James G Hecker
- Department of Anesthesiology and Pain Medicine, Harborview Medical Center, University of Washington School of Medicine, Box 359724, 329 Ninth Ave., Seattle, WA, 98104, USA.
| |
Collapse
|
14
|
André EM, Pensado A, Resnier P, Braz L, Rosa da Costa AM, Passirani C, Sanchez A, Montero-Menei CN. Characterization and comparison of two novel nanosystems associated with siRNA for cellular therapy. Int J Pharm 2015; 497:255-67. [PMID: 26617318 DOI: 10.1016/j.ijpharm.2015.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/08/2015] [Accepted: 11/09/2015] [Indexed: 12/16/2022]
Abstract
To direct stem cell fate, a delicate control of gene expression through small interference RNA (siRNA) is emerging as a new and safe promising strategy. In this way, the expression of proteins hindering neuronal commitment may be transiently inhibited thus driving differentiation. Mesenchymal stem cells (MSC), which secrete tissue repair factors, possess immunomodulatory properties and may differentiate towards the neuronal lineage, are a promising cell source for cell therapy studies in the central nervous system. To better drive their neuronal commitment the repressor Element-1 silencing transcription (REST) factor, may be inhibited by siRNA technology. The design of novel nanoparticles (NP) capable of safely delivering nucleic acids is crucial in order to successfully develop this strategy. In this study we developed and characterized two different siRNA NP. On one hand, sorbitan monooleate (Span(®)80) based NP incorporating the cationic components poly-l-arginine or cationized pullulan, thus allowing the association of siRNA were designed. These NP presented a small size (205 nm) and a negative surface charge (-38 mV). On the other hand, lipid nanocapsules (LNC) associating polymers with lipids and allowing encapsulation of siRNA complexed with lipoplexes were also developed. Their size was of 82 nm with a positive surface charge of +7 mV. Both NP could be frozen with appropriate cryoprotectors. Cytotoxicity and transfection efficiency at different siRNA doses were monitored by evaluating REST expression. An inhibition of around 60% of REST expression was observed with both NP when associating 250 ng/mL of siRNA-REST, as recommended for commercial reagents. Span NP were less toxic for human MSCs than LNCs, but although both NP showed a similar inhibition of REST over time and the induction of neuronal commitment, LNC-siREST induced a higher expression of neuronal markers. Therefore, two different tailored siRNA NP offering great potential for human stem cell differentiation have been developed, encouraging the pursuit of further in vitro and in vivo in studies.
Collapse
Affiliation(s)
- E M André
- PRES LUNAM-University of Angers, F-49933 Angers, France; INSERM U1066-Micro et Nanomédecines Biomimétiques, 4 rue larrey, F-49933 Angers, France
| | - A Pensado
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain
| | - P Resnier
- PRES LUNAM-University of Angers, F-49933 Angers, France; INSERM U1066-Micro et Nanomédecines Biomimétiques, 4 rue larrey, F-49933 Angers, France
| | - L Braz
- CIQA-Algarve Chemistry Research Centre, University of Algarve, 8005-139 Faro, Portugal; School of Health-University of Algarve, 8000-510 Faro, Portugal; Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - A M Rosa da Costa
- CIQA-Algarve Chemistry Research Centre, University of Algarve, 8005-139 Faro, Portugal; Department of Chemistry and Pharmacy, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - C Passirani
- PRES LUNAM-University of Angers, F-49933 Angers, France; INSERM U1066-Micro et Nanomédecines Biomimétiques, 4 rue larrey, F-49933 Angers, France
| | - A Sanchez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain; Molecular Image Group. Health Research Institute-University Clinical Hospital of Santiago de Compostela (IDIS), A Choupana, 15706 Santiago de Compostela, Spain
| | - C N Montero-Menei
- PRES LUNAM-University of Angers, F-49933 Angers, France; INSERM U1066-Micro et Nanomédecines Biomimétiques, 4 rue larrey, F-49933 Angers, France.
| |
Collapse
|
15
|
Crowley ST, Rice KG. "Evolving nanoparticle gene delivery vectors for the liver: What has been learned in 30 years". J Control Release 2015; 219:457-470. [PMID: 26439664 DOI: 10.1016/j.jconrel.2015.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 12/18/2022]
Abstract
Nonviral gene delivery to the liver has been under evolution for nearly 30years. Early demonstrations established relatively simple nonviral vectors could mediate gene expression in HepG2 cells which understandably led to speculation that these same vectors would be immediately successful at transfecting primary hepatocytes in vivo. However, it was soon recognized that the properties of a nonviral vector resulting in efficient transfection in vitro were uncorrelated with those needed to achieve efficient nonviral transfection in vivo. The discovery of major barriers to liver gene transfer has set the field on a course to design biocompatible vectors that demonstrate increased DNA stability in the circulation with correlating expression in liver. The improved understanding of what limits nonviral vector gene transfer efficiency in vivo has resulted in more sophisticated, low molecular weight vectors that allow systematic optimization of nanoparticle size, charge and ligand presentation. While the field has evolved DNA nanoparticles that are stable in the circulation, target hepatocytes, and deliver DNA to the cytosol, breaching the nucleus remains the last major barrier to a fully successful nonviral gene transfer system for the liver. The lessons learned along the way are fundamentally important to the design of all systemically delivered nanoparticle nonviral gene delivery systems.
Collapse
Affiliation(s)
- Samuel T Crowley
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA 52242,USA
| | - Kevin G Rice
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA 52242,USA.
| |
Collapse
|
16
|
Chandra N, Tyagi VK. Studies on SDLC (Sodium Dilauraminocystine) and SDMC (Sodium Dimyristaminocystine) Gemini Surfactants. J DISPER SCI TECHNOL 2014. [DOI: 10.1080/01932691.2013.833855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Oligopeptide-terminated poly(β-amino ester)s for highly efficient gene delivery and intracellular localization. Acta Biomater 2014; 10:2147-58. [PMID: 24406199 DOI: 10.1016/j.actbio.2013.12.054] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/13/2013] [Accepted: 12/26/2013] [Indexed: 11/24/2022]
Abstract
The main limitation of gene therapy towards clinics is the lack of robust, safe and efficient gene delivery vectors. This paper describes new polycations for gene delivery based on poly(β-amino ester)s (pBAE) containing terminal oligopeptides. The authors developed oligopeptide-modified pBAE-pDNA nanoparticles that achieve better cellular viability and higher transfection efficacy than other end-modified pBAE and commercial transfection agents. Gene expression in highly permissive cell lines was remarkably high, but transfection efficiency in less-permissive cell lines was highly dependent on oligopeptide composition and nanoparticle formulation. Moreover, the use of selected oligopeptides in the pBAE formulation led to preferential intracellular localization of the particles. Particle analysis of highly efficient pBAE formulations revealed different particle sizes and charge features, which indicates chemical pseudotyping of the particle surface, related to the oligopeptide chemical nature. In conclusion, chemical modification at the termini of pBAE with amine-rich oligopeptides is a powerful strategy for developing delivery systems for future gene therapy applications.
Collapse
|
18
|
High efficacy gold-KDEL peptide-siRNA nanoconstruct-mediated transfection in C2C12 myoblasts and myotubes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:329-37. [DOI: 10.1016/j.nano.2013.07.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/16/2013] [Accepted: 07/22/2013] [Indexed: 12/15/2022]
|
19
|
Maitra A. Calcium phosphate nanoparticles: second-generation nonviral vectors in gene therapy. Expert Rev Mol Diagn 2014; 5:893-905. [PMID: 16255631 DOI: 10.1586/14737159.5.6.893] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adverse effects of viral vectors, instability of naked DNA, cytotoxicity and low transfection of cationic lipids, cationic polymers and other synthetic vectors are currently severe limitations in gene therapy. In addition to targeting a specific cell type, an ideal nonviral vector must manifest an efficient endosomal escape, render sufficient protection of DNA in the cytosol and help provide an easy passage of cytosolic DNA to the nucleus. Virus-like size calcium phosphate nanoparticles have been found to overcome many of these limitations in delivering genes to the nucleus of specific cells. This review has focused on some applications of DNA-loaded calcium phosphate nanoparticles as nonviral vectors in gene delivery, and their potential use in gene therapy, as well as highlighting the mechanistic studies to probe the reason for high transfection efficiency of the vector. It has been demonstrated that calcium ions play an important role in endosomal escape, cytosolic stability and enhanced nuclear uptake of DNA through nuclear pore complexes. The special role of exogenous calcium ions to overcome obstacles in practical realization of this field suggests that calcium phosphate nanoparticles are not 'me too' synthetic vectors and can be designated as second-generation nonviral vectors for gene therapy.
Collapse
Affiliation(s)
- Amarnath Maitra
- Department of Chemistry, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
20
|
Geyik C, Evran S, Timur S, Telefoncu A. The covalent bioconjugate of multiwalled carbon nanotube and amino-modified linearized plasmid DNA for gene delivery. Biotechnol Prog 2013; 30:224-32. [DOI: 10.1002/btpr.1836] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 10/15/2013] [Indexed: 12/24/2022]
Affiliation(s)
- Caner Geyik
- Dept. of Biochemistry; Faculty of Science; Ege University; 35100 Bornova-Izmir Turkey
| | - Serap Evran
- Dept. of Biochemistry; Faculty of Science; Ege University; 35100 Bornova-Izmir Turkey
| | - Suna Timur
- Dept. of Biochemistry; Faculty of Science; Ege University; 35100 Bornova-Izmir Turkey
| | - Azmi Telefoncu
- Dept. of Biochemistry; Faculty of Science; Ege University; 35100 Bornova-Izmir Turkey
| |
Collapse
|
21
|
Chandra N, Tyagi VK. Synthesis, Properties, and Applications of Amino Acids Based Surfactants: A Review. J DISPER SCI TECHNOL 2013. [DOI: 10.1080/01932691.2012.695967] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Intelligent design of multifunctional lipid-coated nanoparticle platforms for cancer therapy. Ther Deliv 2013; 3:1429-45. [PMID: 23323560 DOI: 10.4155/tde.12.127] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nanotechnology is rapidly evolving and dramatically changing the paradigms of drug delivery. The small sizes, unique chemical properties, large surface areas, structural diversity and multifunctionality of nanoparticles prove to be greatly advantageous for combating notoriously therapeutically evasive diseases such as cancer. Multifunctional nanoparticles have been designed to enhance tumor uptake through either passive or active targeting, while also avoiding reticuloendothelial system uptake through the incorporation of PEG onto the surface. First-generation nanoparticle systems, such as liposomes, are good carriers for drugs and nucleic acid therapeutics, although they have some limitations. These lipid bilayers are now being utilized as excellent carriers for drug-loaded, solid core particles such as iron oxide, mesoporus silica and calcium phosphate. In this article, their design, as well as their multifunctional role in cancer therapy are discussed.
Collapse
|
23
|
Abstract
Appropriate gene delivery systems are essential for successful gene therapy in clinical medicine. Cationic lipid-mediated delivery is an alternative to viral vector-mediated gene delivery where transient gene expression is desirable. However, cationic lipid-mediated delivery of DNA to post-mitotic cells is often of low efficiency, due to the difficulty of DNA translocation to the nucleus. Rapid lipid-mediated delivery of RNA is preferable to nonviral DNA delivery in some clinical applications, because transit across the nuclear membrane is not necessary. Here we describe techniques for cationic lipid-mediated delivery of RNA encoding reporter genes in a variety of in vitro cell lines and in vivo. We describe optimized formulations and transfection procedures that we have previously assessed by flow cytometry. RNA transfection demonstrates increased efficiency relative to DNA transfection in nondividing cells. Delivery of mRNA results in onset of expression within 1 h after transfection and a peak in expression 5-7 h after transfection. These results are consistent with our in vivo delivery results, techniques for which are shown as well. Longer duration and the higher mean levels of expression per cell that are ultimately obtained following DNA delivery confirm a continuing role for DNA gene delivery in clinical applications that require long term transient gene expression. RNA delivery is suitable for short-term transient gene expression due to its rapid onset, short duration of expression, and greater efficiency, particularly in nondividing cells.
Collapse
Affiliation(s)
- James G Hecker
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
24
|
Khan M, Ong ZY, Wiradharma N, Attia ABE, Yang YY. Advanced materials for co-delivery of drugs and genes in cancer therapy. Adv Healthc Mater 2012. [PMID: 23184770 DOI: 10.1002/adhm.201200109] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
With cancer being the major cause of mortality worldwide, the continued development of safe and efficacious treatments is warranted. A better understanding of the molecular mechanism and genetic basis of tumor initiation and progression, coupled with advances in chemistry, molecular biology and engineering have led to discovery of a wide range of therapeutic agents for cancer therapy. However, multidrug-resistance, which is mainly caused by malfunction of genes, has become a major problem in chemotherapy. To overcome this problem, the simultaneous delivery of genes to cancer cells has been proposed to correct the malfunctioned genes to sensitize the cells to chemotherapeutics. This progress report summarizes key advances in drug and gene delivery with focus on the development of polymers, peptides, liposomes and inorganic materials as nanocarriers for co-delivery of small molecular drugs and macromolecular genes or proteins. In addition, challenges and future perspectives in the design of nanocarriers for the co-delivery of therapeutic drugs and genes are discussed.
Collapse
Affiliation(s)
- Majad Khan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669
| | | | | | | | | |
Collapse
|
25
|
Li WB, Yuan W, Xu FJ, Zhao C, Ma J, Zhan QM. Functional study of dextran-graft-poly((2-dimethyl amino)ethyl methacrylate) gene delivery vector for tumor therapy. J Biomater Appl 2012; 28:125-35. [PMID: 22628165 DOI: 10.1177/0885328212440345] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The obstacle of gene therapy is the shortage of efficient delivery system. The development of the gene delivery system with high transfection efficiency and low toxicity appears to be crucial. Recently, we reported that the dextran-graft-poly((2-dimethyl amino)ethyl methacrylate) (DPD) can be potentially used as efficient gene vector. Herein, DPD was systematically studied for its potential in tumor gene therapy. DPD was synthesized and characterized by agarose gel electrophoresis, particle size and zeta potential. The particle size and zeta potential of the DPD/enhanced green fluorescent protein (pEGFP-C1) plasmid complexes at various N/P ratios were 130-150 nm and about 40 mV, respectively. The results showed that DPD exhibit a higher transfection effect compared with Lipofectamine 2K (Lipo 2K), a commercialized vector. The possibility of DPD in gene therapy was evaluated using p53, a gene that has been wildly applied in the research of cancer gene therapy. DPD/pEGFP-C1-p53 complex was found to be able to inhibit tumor cell proliferation through cell cycle arrest and apoptosis. Moreover, the tumor growth was found to be restrained when DPD/pEGFP-C1-p53 complex was used in a xenograft MCF7 tumor model in vivo. These observations indicated that DPD/pEGFP-C1-p53 complex may be considered to be an efficient delivery system for tumor gene therapy.
Collapse
Affiliation(s)
- Wen-Bin Li
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | | | | | | | | | | |
Collapse
|
26
|
Chen H, Zhang H, Thor D, Rahimian R, Guo X. Novel pH-sensitive cationic lipids with linear ortho ester linkers for gene delivery. Eur J Med Chem 2012; 52:159-72. [PMID: 22480493 DOI: 10.1016/j.ejmech.2012.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 03/02/2012] [Accepted: 03/06/2012] [Indexed: 01/08/2023]
Abstract
In an effort to develop pH-sensitive lipoplexes for efficient gene delivery, we report three novel cationic lipids containing a linear ortho ester linker that conjugates either the headgroup (Type I) or one hydrocarbon chain (Type II) with the rest of the lipid molecule. The cationic lipids carry either an iodide or a chloride counterion. Compared to our previously reported cyclic ortho ester linker, the linear ortho ester linker facilitated the construction of cationic liposomes and lipoplexes with different helper lipids. The chloride counterion not only facilitated the hydration of the lipid films during liposome construction, but also enhanced the hydrolysis of the ortho ester linker in the lipoplexes. After incubation at endosomal pH 5.5, the Type I lipoplexes aggregated and destabilized the endosome-mimicking model liposomes, but not the Type II lipoplexes. The helper lipids (DOPE or cholesterol) of the lipoplexes enhanced the pH-sensitivity of the Type I lipoplexes. In CV-1 cells (monkey kidney fibroblast), the Type I ortho ester-based lipoplexes, especially those with the chloride counterion, significantly improved the gene transfection efficiency, in some cases by more than 100 fold, compared to their pH-insensitive counterparts consisting of DOTAP. The gene transfection efficiency of the ortho ester-based lipoplexes was well correlated with their rate of aggregation and membrane destabilization in response to the endosomal pH 5.5.
Collapse
Affiliation(s)
- Haigang Chen
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA 95211, USA
| | | | | | | | | |
Collapse
|
27
|
Baumgart J, Humbert L, Boulais É, Lachaine R, Lebrun JJ, Meunier M. Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells. Biomaterials 2012; 33:2345-50. [DOI: 10.1016/j.biomaterials.2011.11.062] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 11/22/2011] [Indexed: 11/28/2022]
|
28
|
Peng C, Wang L, Chen Z, Ma L, Wei Y, Long Z. Construction of porcine growth hormone eukaryotic expression vector and its transfection mediated by cationic liposome in mice. Anim Biotechnol 2011; 22:223-35. [PMID: 22132815 DOI: 10.1080/10495398.2011.630437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The present study was designed to construct the eukaryotic expression vector for pGH mature peptide (mpGH) and to investigate its transfection mediated by cationic liposome (CLs) in COS-7 cells and mice. The cDNA of mpGH ORF was successfully cloned by reverse transcription-PCR (RT-PCR) using the adult pig pituitary gland RNA. The recombinant eukaryotic expression vector, VmpGH, was constructed by ligating the cDNA fragment to the vector VR1020. The successful construction was confirmed by restriction enzyme digestion, and the expression of mpGH was confirmed by RT-PCR, immunofluorescence analyses (IFA), and ELISA in COS-7 cells. The VmpGH and VR1020 plasmids were entrapped with CLs, and four experimental groups of male Kunming mice were administrated with VmpGH / lipoplex or naked VmpGH plasmids at two dosages (0.5 and 1.0 mg/kg), while the mice injected with VR1020-lipoplex at the dosage of 0.5 mg/kg body weight (BW) were used as control. The BWs of the mice administrated with VmpGH-lipoplex at both dosages were significantly higher than not only those of the control (P < 0.01) but also those of mice injected with naked plasmids (P < 0.01), from 30 to 60 days post-transfection. The transcription of VmpGH was detected by RT-PCR in six tissues, including the liver, kidney, spleen, heart, muscle, and blood, of the mice injected with VmpGH-lipoplex, but not in the same tissues of control mice. Furthermore, the mice injected with VmpGH-lipoplex showed higher plasma GH contents than the control mice (P < 0.05), although their IgG contents did not show much difference. Our study demonstrates that the VmpGH plasmids' transfection mediated by CLs can significantly promote the growth of mice, which may be used to improve the livestock production.
Collapse
Affiliation(s)
- Chenchen Peng
- College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | | | | | | | | | | |
Collapse
|
29
|
Tiwari S, Agrawal GP, Vyas SP. Molecular basis of the mucosal immune system: from fundamental concepts to advances in liposome-based vaccines. Nanomedicine (Lond) 2010; 5:1617-40. [DOI: 10.2217/nnm.10.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The mucosal immune system, the primary portal for entry of most prevalent and devastating pathogens, is guarded by the special lymphoid tissues (mucosally associated lymphoid tissues) for immunity. Mucosal immune infection results in induction of IgA-manifested humoral immunity. Cell-mediated immunity may also be generated, marked by the presence of CD4+ Th1 and CD8+ cells. Furthermore, the immunity generated at the mucosal site is transported to the distal mucosal site as well as to systemic tissues. An understanding of the molecular basis of the mucosal immune system provides a unique platform for designing a mucosal vaccine. Coadministration of immunostimulatory molecules further accelerates functioning of the immune system. Mimicking receptor-mediated binding of the pathogen may be achieved by direct conjugation of antigen with an immunostimulatory molecule or encapsulation in a carrier followed by anchoring of a ligand having affinity to the cells of the mucosal immune system. Nanotechnology has played a significant role in mucosal vaccine development and among the available options liposomes are the most promising. Liposomes are phospholipid bilayered vesicles that can encapsulate protein as well as DNA-based vaccines and offer coencapsulation of adjuvant along with the antigen. At the same, time ligand-conjugated liposomes augment interaction of antigen with the cells of the mucosal immune system and thereby serve as suitable candidates for the mucosal delivery of vaccines. This article exhaustively explores strategies involved in the generation of mucosal immunity and also provides an insight to the progress that has been made in the development of liposome-based mucosal vaccine.
Collapse
Affiliation(s)
- Shailja Tiwari
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India
| | - Govind P Agrawal
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India
| | | |
Collapse
|
30
|
Prevette LE, Mullen DG, Holl MMB. Polycation-induced cell membrane permeability does not enhance cellular uptake or expression efficiency of delivered DNA. Mol Pharm 2010; 7:870-83. [PMID: 20349965 DOI: 10.1021/mp100027g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polycationic materials commonly used to delivery DNA to cells are known to induce cell membrane porosity in a charge-density dependent manner. It has been suggested that these pores may provide a mode of entry of the polymer-DNA complexes (polyplexes) into cells. To examine the correlation between membrane permeability and biological activity, we used two-color flow cytometry on two mammalian cell lines to simultaneously measure gene expression of a plasmid DNA delivered with four common nonviral vectors and cellular uptake of normally excluded fluorescent dye molecules of two different sizes, 668 Da and 2 MDa. We also followed gene expression in cells sorted based on the retention of endogenous fluorescein. We have found that cell membrane porosity caused by polycationic vectors does not enhance internalization or gene expression. Based on this single-cell study, membrane permeability is found to be an unwanted side effect that limits transfection efficiency, possibly through leakage of the delivered nucleic acid through the pores prior to transcription and translation and/or activation of cell defense mechanisms that restrict transgene expression.
Collapse
Affiliation(s)
- Lisa E Prevette
- Department of Chemistry, Macromolecular Science and Engineering Program, and Michigan Nanotechnology Institute for Medicine and Biological Sciences (MNIMBS), University of Michigan, 911 North University Avenue, Ann Arbor, MI 48109-1055, USA
| | | | | |
Collapse
|
31
|
Fernandez CA, Baumhover NJ, Duskey JT, Khargharia S, Kizzire K, Ericson MD, Rice KG. Metabolically stabilized long-circulating PEGylated polyacridine peptide polyplexes mediate hydrodynamically stimulated gene expression in liver. Gene Ther 2010; 18:23-37. [PMID: 20720577 PMCID: PMC2990782 DOI: 10.1038/gt.2010.117] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel class of PEGylated polyacridine peptides was developed that mediate potent stimulated gene transfer in the liver of mice. Polyacridine peptides, (Acr-X)n-Cys-PEG, possessing 2–6 repeats of Lys-acridine (Acr) spaced by either Lys, Arg, Leu or Glu, were Cys derivatized with polyethylene glycol (PEG 5000 Da) and evaluated as in vivo gene transfer agents. An optimal peptide of (Acr-Lys)6-Cys-PEG was able to bind to plasmid DNA (pGL3) with high affinity by polyintercalation, stabilize DNA from metabolism by DNAse and extend the pharmacokinetic half-life of DNA in the circulation for up to 2 hrs. A tail vein dose of PEGylated polyacridine peptide pGL3 polyplexes (1 μg in 50 μl), followed by a stimulatory hydrodynamic dose of normal saline at times ranging from 5–60 min post-DNA administration, led to a high level of luciferase expression in the liver, equivalent to levels mediated by direct hydrodynamic dosing of 1 μg of pGL3. The results establish the unique properties of PEGylated polyacridine peptides as a new and promising class of gene delivery peptides that facilitate reversible binding to plasmid DNA, protecting it from DNase in vivo resulting in an extended circulatory half-life, and release of transfection-competent DNA into the liver to mediate a high-level of gene expression upon hydrodynamic boost.
Collapse
Affiliation(s)
- C A Fernandez
- Divisions of Pharmaceutics and Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Danilevich VN, Kadykov VA, Grishin EV. Condensed DNA particles formed in a PCR with plasmid templates: An electron microscopy study. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2010; 36:535-46. [DOI: 10.1134/s1068162010040084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Lattová E, Tomanek B, Bartusik D, Perreault H. N-glycomic changes in human breast carcinoma MCF-7 and T-lymphoblastoid cells after treatment with herceptin and herceptin/Lipoplex. J Proteome Res 2010; 9:1533-40. [PMID: 20063903 DOI: 10.1021/pr9010266] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The humanized monoclonal antibody IgG1 in combination with chemotherapy has been demonstrated to enhance survival benefit in cancer treatment. Despite positive outcomes, some cancer cells develop multidrug resistance. Numerous mechanisms in cancers can be involved in the process of treatment therapy and most of them are not still well understood. To address how the carbohydrate moieties of cells are affected during treatment, the glycan profiles from the two most common cancer cell lines - human breast MCF-7 carcinoma and T-lymphoblastoid CEM cells - were studied here and compared with profiles after treatment with Herceptin alone or in combination with Lipofectamine mixed with plasmid DNA to form Lipoplex. N-Glycans were released from total cells by digestion with PNGaseF and analyzed by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). In summary, both original cell lines showed a dominant occurrence of high-mannose glycans. After treatment, these structures were suppressed and biantennary core-fucosylated glycans originating from IgG1 were the major carbohydrate products identified in cells. The high incidence of additional fucosylated or nonfucosylated galactosylated oligosaccharides, which were not detected in original cells or Herceptin, varied with conditions and time of exposure of cells to the antibody. The results presented in this study provide strong evidence for a role of glycosylation during antibody treatment.
Collapse
Affiliation(s)
- Erika Lattová
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| | | | | | | |
Collapse
|
34
|
Abstract
Application of nanotechnology to medical biology has brought remarkable success. Water-soluble fullerenes are molecules with great potential for biological use because they can endow unique characteristics of amphipathic property and form a self-assembled structure by chemical modification. Effective gene delivery in vitro with tetra(piperazino)fullerene epoxide (TPFE) and its superiority to Lipofectin have been described in a previous report. For this study, we evaluated the efficacy of in vivo gene delivery by TPFE. Delivery of enhanced green fluorescent protein gene (EGFP) by TPFE on pregnant female ICR mice showed distinct organ selectivity compared with Lipofectin; moreover, higher gene expression by TPFE was found in liver and spleen, but not in the lung. No acute toxicity of TPFE was found for the liver and kidney, although Lipofectin significantly increased liver enzymes and blood urea nitrogen. In fetal tissues, neither TPFE nor Lipofectin induced EGFP gene expression. Delivery of insulin 2 gene to female C57/BL6 mice increased plasma insulin levels and reduced blood glucose concentrations, indicating the potential of TPFE-based gene delivery for clinical application. In conclusion, this study demonstrated effective gene delivery in vivo for the first time using a water-soluble fullerene.
Collapse
|
35
|
Namgung R, Brumbach JH, Jeong JH, Yockman JW, Kim SW, Lin C, Zhong Z, Feijen J, Engbersen JFJ, Kim WJ. Dual bio-responsive gene delivery via reducible poly(amido amine) and survivin-inducible plasmid DNA. Biotechnol Lett 2010; 32:755-64. [PMID: 20155385 DOI: 10.1007/s10529-010-0219-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 01/18/2010] [Accepted: 01/21/2010] [Indexed: 11/29/2022]
Abstract
A bioreducible poly(amido amine) (SS-PAA) gene carrier, known as poly (amido-butanol) (pABOL), was used to transfect a variety of cancer and non-cancer cell lines. To obtain cancer-specific transgene expression for therapeutic efficiency in cancer treatment, we constructed survivin-inducible plasmid DNA expressing the soluble VEGF receptor, sFlt-1, downstream of the survivin promoter (pSUR-sFlt-1). Cancer-specific expression of sFlt-1 was observed in the mouse renal carcinoma (RENCA) cell line. pABOL enhanced the efficiency of gene delivery compared to traditional carriers used in the past. Thus, a dual bio-responsive gene delivery system was developed by using bioreducible p(ABOL) for enhanced intracellular gene delivery and survivin-inducible gene expression system (pSUR-sFlt-1 or pSUR-Luc reporter gene) that demonstrates increased gene expression in cancer that has advantages over current gene delivery systems.
Collapse
Affiliation(s)
- Ran Namgung
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zou S, Scarfo K, Nantz MH, Hecker JG. Lipid-mediated delivery of RNA is more efficient than delivery of DNA in non-dividing cells. Int J Pharm 2010; 389:232-43. [PMID: 20080162 DOI: 10.1016/j.ijpharm.2010.01.019] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/04/2010] [Accepted: 01/10/2010] [Indexed: 12/13/2022]
Abstract
The design of appropriate gene delivery systems is essential for the successful application of gene therapy to clinical medicine. Cationic lipid-mediated delivery is a viable alternative to viral vector-mediated gene delivery in applications where transient gene expression is desirable. However, cationic lipid-mediated delivery of DNA to post-mitotic cells such as neurons is often reported to be of low efficiency, due to the presumed inability of the DNA to translocate to the nucleus. Lipid-mediated delivery of RNA is an attractive alternative to non-viral DNA delivery in some clinical applications, because transit across the nuclear membrane is not necessary. Here we report a comparative investigation of cationic lipid-mediated delivery of RNA versus DNA vectors encoding the reporter gene green fluorescent protein (GFP) in Chinese Hamster Ovary (CHO) and NIH3T3 cells following chemical inhibition of proliferation, and in primary mixed neuronal cell cultures. Using optimized formulations and transfection procedures, we assess gene expression by flow cytometry to specifically address some of the advantages and disadvantages of lipid-mediated RNA and DNA gene transfer. Despite inhibition of cell proliferation, over 45% of CHO cells express GFP after lipid-mediated transfection with RNA vectors. Transfection efficiency of DNA encoding GFP in proliferation-inhibited CHO cells was less than 5%. Detectable expression after RNA transfection occurs at least 3h earlier than after DNA transfection, but DNA transfection eventually produces a mean level of per cell GFP expression (as assayed by flow cytometry) that is higher than after RNA transfection. Transfection of proliferation-inhibited NIH3T3 cells and primary mixed neuronal cultures produced similar results, with RNA encoded GFP expression in 2-4 times the number of cells as after DNA encoded GFP expression. These results demonstrate the increased efficiency of RNA transfection relative to DNA transfection in non-dividing cells. We used firefly luciferase encoded by RNA and DNA vectors to investigate the time course of gene expression after delivery of RNA or DNA to primary neuronal cortical cells. Delivery of mRNA resulted in rapid onset (within 1h) of luciferase expression after transfection, a peak in expression 5-7h after transfection, and a return to baseline within 12h after transfection. After DNA delivery significant luciferase activity did not appear until 7h after transfection, but peak luciferase expression was always at least one order of magnitude higher than after RNA delivery. The peak expression after luciferase-expressing DNA delivery occurred 36-48 h after transfection and remained at a significant level for at least one week before dropping to baseline. This observation is consistent with our in vivo delivery results, which are shown as well. RNA delivery may therefore be more suitable for short-term transient gene expression due to rapid onset, shorter duration of expression and greater efficiency, particularly in non-dividing cells. Higher mean levels of expression per cell obtained following DNA delivery and the longer duration of expression confirm a continuing role for DNA gene delivery in clinical applications that require longer term transient gene expression.
Collapse
Affiliation(s)
- S Zou
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, Morgan 305, 3620 Hamilton Walk, Philadelphia, PA 19104-6112, USA
| | | | | | | |
Collapse
|
37
|
Bondì ML, Craparo EF. Solid lipid nanoparticles for applications in gene therapy: a review of the state of the art. Expert Opin Drug Deliv 2009; 7:7-18. [DOI: 10.1517/17425240903362410] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
38
|
Lee SE, Sasaki DY, Perroud TD, Yoo D, Patel KD, Lee LP. Biologically functional cationic phospholipid-gold nanoplasmonic carriers of RNA. J Am Chem Soc 2009; 131:14066-74. [PMID: 19746908 DOI: 10.1021/ja904326j] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Biologically functional cationic phospholipid-gold nanoplasmonic carriers have been designed to simultaneously exhibit carrier capabilities, demonstrate improved colloidal stability, and show no cytotoxicity under physiological conditions. Cargo, such as RNA, DNA, proteins, or drugs, can be adsorbed onto or incorporated into the cationic phospholipid bilayer membrane. These carriers are able to retain their unique nanoscale optical properties under physiological conditions, making them particularly useful in a wide range of imaging, therapeutic, and gene delivery applications that utilize selective nanoplasmonic properties.
Collapse
Affiliation(s)
- Somin Eunice Lee
- Biomolecular Nanotechnology Center, Department of Bioengineering, University of California-Berkeley, UCSF/UCB Joint Graduate Group in Bioengineering, Berkeley, California 94720-1762, USA
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Improving the transfection efficiencies of nonviral gene delivery requires properly engineered nanoscaled delivery carriers that can overcome the multiple barriers associated with the delivery of oligonucleotides from the site of administration to the nucleus or cytoplasm of the target cell. This article reviews the current advantages and limitation of polyplex nonviral delivery systems, including the apparent barriers that limit gene expression efficiency compared to physical methods such as hydrodynamic dosing and electroporation. An emphasis is placed on engineered nanoscaled polyplexes (NSPs) of modular design that both self-assemble and systematically disassemble at the desired stage of delivery. It is suggested that NSPs of increasingly sophisticated designs are necessary to improve the efficiency of the rate limiting steps in gene delivery.
Collapse
Affiliation(s)
- Christian A Fernandez
- Division of Pharmaceutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
40
|
Namgung R, Nam S, Kim SK, Son S, Singha K, Kwon JS, Ahn Y, Jeong MH, Park IK, Garripelli VK, Jo S, Kim WJ. An acid-labile temperature-responsive sol–gel reversible polymer for enhanced gene delivery to the myocardium and skeletal muscle cells. Biomaterials 2009; 30:5225-33. [DOI: 10.1016/j.biomaterials.2009.05.073] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 05/22/2009] [Indexed: 11/25/2022]
|
41
|
Sauer AM, de Bruin KG, Ruthardt N, Mykhaylyk O, Plank C, Bräuchle C. Dynamics of magnetic lipoplexes studied by single particle tracking in living cells. J Control Release 2009; 137:136-45. [PMID: 19358868 DOI: 10.1016/j.jconrel.2009.04.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 03/30/2009] [Accepted: 04/02/2009] [Indexed: 10/20/2022]
Abstract
Magnetofection, gene delivery under the influence of a magnetic field, is a technique to increase transfection efficiency by enforcing gene vector contact with a target cell. Mechanisms of magnetic lipoplex internalization and intracellular details of magnetofection are still unknown. In this study, cellular dynamics of magnetic lipoplexes were examined in real time by means of highly sensitive dual-color fluorescence microscopy. Single particle tracking of magnetic lipoplexes provided trajectories representing the movement of the lipoplexes during internalization and subsequent intracellular processes. Magnetic lipoplexes show a three-phase behavior similar to polyplexes. During phase I lipoplexes are attached to the cell surface and show slow cooperative transport behavior. Phase II takes place inside the cell and was characterized by anomalous and confined diffusion. Phase III represented active transport along microtubules inside the cell. The majority of lipoplexes were internalized via endocytosis during phase I. On later time scales the formation of a perinuclear ring was observed. Persisting colocalization of fluid phase marker and lipoplexes after 24 h indicated slow endosomal release. In short, the internalization characteristics of magnetic lipoplexes are very similar to that of polyplexes. Furthermore our results suggest that the magnetic field induces an increased concentration of magnetic complexes on the cell surface resulting in higher transfection efficiency.
Collapse
Affiliation(s)
- A M Sauer
- Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, D-81377 München, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Kim Y, Tewari M, Pajerowski JD, Cai S, Sen S, Williams JH, Williams J, Sirsi SR, Sirsi S, Lutz GJ, Lutz G, Discher DE. Polymersome delivery of siRNA and antisense oligonucleotides. J Control Release 2008; 134:132-40. [PMID: 19084037 DOI: 10.1016/j.jconrel.2008.10.020] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 10/24/2008] [Indexed: 01/07/2023]
Abstract
siRNA and antisense oligonucleotides, AON, have similar size and negative charge and are often packaged for in vitro delivery with cationic lipids or polymers-but exposed positive charge is problematic in vivo. Here we demonstrate loading and functional delivery of RNAi and AON with non-ionic, nano-transforming polymersomes. These degradable carriers are taken up passively by cultured cells after which the vesicles transform into micelles that allow endolysosomal escape and delivery of either siRNA into cytosol for mRNA knockdown or else AON into the nucleus for exon skipping within pre-mRNA. Polymersome-mediated knockdown appears as efficient as common cationic-lipid transfection and about half as effective as Lenti-virus after sustained selection. For AON, initial results also show that intramuscular injection into a mouse model of muscular dystrophy leads to the expected protein expression, which occurs along the entire length of muscle. The lack of cationic groups in antisense polymersomes together with initial tests of efficacy suggests broader utility of these non-viral carriers.
Collapse
Affiliation(s)
- Younghoon Kim
- Department of Chemical and Biomolecular Engineering and Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ross PC, Hensen ML, Supabphol R, Hui SW. Multilamellar Cationic Liposomes are Efficient Vectors for in Vitro Gene Transfer in Serum. J Liposome Res 2008. [DOI: 10.3109/08982109809039934] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Extra- and Intranuclear Dynamics and Distribution of Modified-PAMAM Polyplexes in Living Cells: A Single-Molecule Analysis. B KOREAN CHEM SOC 2008. [DOI: 10.5012/bkcs.2008.29.8.1565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Lee JH, Ahn HH, Kim KS, Lee JY, Kim MS, Lee B, Khang G, Lee HB. Polyethyleneimine‐mediated gene delivery into rat pheochromocytoma PC‐12 cells. J Tissue Eng Regen Med 2008; 2:288-95. [DOI: 10.1002/term.94] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
46
|
Pizzey CL, Jewell CM, Hays ME, Lynn DM, Abbott NL, Kondo Y, Golan S, Talmon Y. Characterization of the nanostructure of complexes formed by a redox-active cationic lipid and DNA. J Phys Chem B 2008; 112:5849-57. [PMID: 18419168 DOI: 10.1021/jp7103903] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report characterization of the nanostructures of complexes formed between the redox-active lipid bis(n-ferrocenylundecyl)dimethylammonium bromide (BFDMA) and DNA using small-angle neutron scattering (SANS) and cryogenic transmission electron microscopy (cryo-TEM). A particular focus was directed to the influence of lipid oxidation state (where reduced BFDMA has a net charge of +1 and oxidized BFDMA has a charge of +3) on the nanostructures of the solution aggregates formed. Complexes were characterized over a range of charge ratios of reduced BFDMA to DNA (1.1:1, 2.75:1, and 4:1) in solutions of 1 mM Li2SO4. For these complexes, a single peak in the SANS data at 1.2 nm(-1) indicated that a nanostructure with a periodicity of 5.2 nm was present, similar to that observed with complexes of the classical lipids DODAB/DOPE and DNA (multilamellar spacing of 7.0 nm). The absence of additional Bragg peaks in all the SANS data indicated that the periodicity did not extend over large distances. Both inverse Fourier transform analysis and form factor fitting suggested formation of a multilamellar vesicle. These results were confirmed by cryo-TEM images in which multilamellar complexes with diameters between 50 and 150 nm were observed with no more than seven lamellae per aggregate. In contrast to complexes of reduced BFDMA and DNA, Bragg peaks were absent in SANS spectra of complexes formed by oxidized BFDMA and DNA at all charge ratios investigated. The low-q behavior of the SANS data obtained using oxidized BFDMA and DNA complexes suggested that large, loose aggregates were formed, consistent with complementary cryo-TEM images showing predominantly loose disordered aggregates. Some highly ordered spongelike and cubic phase nanostructures were also detected in cryo-TEM images. We conclude that control of BFDMA oxidation state can be used to manipulate the nanostructures of lipid-DNA complexes formed using BFDMA.
Collapse
Affiliation(s)
- Claire L Pizzey
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706-1607, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
The relative immunogenicity of DNA vaccines delivered by the intramuscular needle injection, electroporation and gene gun methods. Vaccine 2008; 26:2100-10. [PMID: 18378365 DOI: 10.1016/j.vaccine.2008.02.033] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 02/08/2008] [Accepted: 02/11/2008] [Indexed: 11/21/2022]
Abstract
Immunogenicity of DNA vaccines varies significantly due to many factors including the inherent immunogenicity of the protein antigen encoded in the DNA vaccine, the optimal immune responses that can be achieved in different animal models and in humans with different genetic backgrounds and, to a great degree, the delivery methods used to administer the DNA vaccines. Based on published results, only the gene gun-mediated delivery approach has been able to elicit protective levels of immune responses in healthy, adult volunteers by DNA immunization alone without the use of another vaccine modality as a boost. Recent results from animal studies suggest that electroporation is also effective in eliciting high level immune responses. However, there have been no reports to identify the similarities and differences between these two leading physical delivery methods for DNA vaccines against infectious disease targets. In the current study, we compared the relative immunogenicity of a DNA vaccine expressing a hemagglutinin (HA) antigen from an H5N1 influenza virus in two animal models (rabbit and mouse) when delivered by either intramuscular needle immunization (IM), gene gun (GG) or electroporation (EP). HA-specific antibody, T cell and B cell responses were analyzed. Our results indicate that, overall, both the GG and EP methods are more immunogenic than the IM method. However, EP and IM stimulated a Th-1 type antibody response and the antibody response to GG was Th-2 dominated. These findings provide important information for the further selection and optimization of DNA vaccine delivery methods for human applications.
Collapse
|
48
|
Targeted gene therapy of LS174 T human colon carcinoma by anti-TAG-72 immunoliposomes. Cancer Gene Ther 2008; 15:331-40. [DOI: 10.1038/cgt.2008.11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Chen T, Wang Z, Wang R, Lu T, Wang W. Polyethylenimine-DNA solid particles for gene delivery. J Drug Target 2008; 15:714-20. [PMID: 18041639 DOI: 10.1080/10611860701637974] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Polyethylenimine (PEI), a cationic polymer, was used to develop a non-viral vector for gene delivery. A simple, reproducible process is described with which to condense plasmid DNA with PEI. When prepared at the optimum charge ratio of 6.3 ( +/- ; PEI:DNA, 5:1 w/w), PEI-DNA complexes were 30-60 nm in diameter and excluded intercalating dyes from the plasmid DNA. The particles were stable for more than one month at 4 degrees C with respect to size and transfection activity. PEI-condensed DNA transfected a broad range of murine and human tumor cell lines (B16, Lewis Lung, SK-OV-3 and LS180) in vitro in the presence of fetal calf serum. Intraperitoneal administration of PEI-condensed DNA resulted in significant gene expression in a human ovarian cancer peritoneal xenograft model.
Collapse
Affiliation(s)
- Tao Chen
- Faculty of Life Sciences, Northwestern Polytechnical University, Shaanxi Xi'an, People's Republic of China.
| | | | | | | | | |
Collapse
|
50
|
Abstract
Liposomal nanoparticles (LNs) encapsulating therapeutic agents, or liposomal nanomedicines (LNMs), represent one of the most advanced classes of drug delivery systems, with several currently on the market and many more in clinical trials. During the past 20 years, a variety of techniques have been developed for encapsulating both conventional drugs and the new genetic drugs (plasmid DNA–containing therapeutic genes, anti-sense oligonucleotides, and small, interfering RNA [siRNA]) within LNs encompassing a very specific set of properties: a diameter centered on 100 nm, a high drug-to-lipid ratio, excellent retention of the encapsulated drug, and a long (> 6 hours) circulation lifetime. Particles with these properties tend to accumulate at sites of disease, such as tumors, where the endothelial layer is “leaky” and allows extravasation of particles with small diameters. Thus, LNs protect the drug during circulation, prevent it from reaching healthy tissues, and permit its accumulation at sites of disease. We will discuss recent advances in this field involving conventional anticancer drugs as well as gene-delivery, immunostimulatory, and gene-silencing applications involving the new genetic drugs. LNMs have the potential to offer new treatments in such areas as cancer therapy, vaccine development, and cholesterol management.
Collapse
|