1
|
Yao Y, Shu X, Wang D, Kan W, Su P, Hu H, Chen X, Wang D, Huang S, Wu L. Non-enzymatic Transformation of Aflatoxin B 1 by Pseudomonas geniculata m29. Front Microbiol 2021; 12:724103. [PMID: 34447365 PMCID: PMC8383447 DOI: 10.3389/fmicb.2021.724103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/12/2021] [Indexed: 11/25/2022] Open
Abstract
Aflatoxin B1 (AFB1) is the most harmful mycotoxin produced by filamentous fungi and presents a serious threat to human and animal health. Therefore, it is essential to protect humans and animals from AFB1-induced acute and chronic toxicity. In this study, Pseudomonas strain m29 having a high efficiency of AFB1 transformation was isolated from soil. The transformation ratio by m29 was more than 97% within 24 h, and the optimum temperature for transformation was 37°C. Moreover, the AFB1 transforming activity was mainly attributed to the cell-free supernatant of strain m29. The metabolite that plays a crucial role in AFB1 transformation is likely 1,2-dimethylhydrazine or 1,1-dimethylhydrazine, as identified by GC-MS and LC-MS analysis. AFB1 was transformed into a product with molecular formula C17H14O7. To the best of our knowledge, this is the first study of non-enzymatic AFB1 transformation by bacteria. Importantly, this AFB1 transformation mechanism could be universal to various microorganisms.
Collapse
Affiliation(s)
- Yuanyuan Yao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xian Shu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Dongdong Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Wenjie Kan
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Pengfei Su
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Hao Hu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Xu Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Dacheng Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Shengwei Huang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Lifang Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
4
|
Guan S, Zhou T, Yin Y, Xie M, Ruan Z, Young J. Microbial strategies to control aflatoxins in food and feed. WORLD MYCOTOXIN J 2011. [DOI: 10.3920/wmj2011.1290] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aflatoxins are a group of toxic and carcinogenic fungal metabolites. They are commonly found in cereals, nuts and animal feeds and create a significant threat to the food industry and animal production. Several strategies have been developed to avoid or reduce harmful effects of aflatoxins since the 1960s. However, prevention of aflatoxin contamination pre/post harvest or during storage has not been satisfactory and control strategies such as physical removing and chemical inactivating used in food commodities have their deficiencies, which limit their large scale application. It is expected that progress in the control of aflatoxin contamination will depend on the introduction of technologies for specific, efficient and environmentally sound detoxification. The utilisation of biological detoxification agents, such as microorganisms and/or their enzymatic products to detoxify aflatoxins in contaminated food and feed can be a choice of such technology. To date, many of the microbial strategies have only showed reduced concentration of aflatoxins and the structure and toxicity of the detoxified products are unclear. More attention should be paid to the detoxification reactions, the structure of biotransformed products and the enzymes responsible for the detoxification. In this article, microbial strategies for aflatoxin control such as microbial binding and microbial biotransformation are reviewed.
Collapse
Affiliation(s)
- S. Guan
- State Key Laboratory of Food Science and Technology and College of Life Science and Food Engineering, Nanchang University, Nanchang 330031, China P.R
- Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agro-Ecological Processes in Subtropical Region, 410125 Hunan, Changsha, China P.R
- Guelph Food Research Center, Agriculture and Agri-Food Canada, 93 Stone Rd W, Guelph N1G 5C9, Canada
| | - T. Zhou
- Guelph Food Research Center, Agriculture and Agri-Food Canada, 93 Stone Rd W, Guelph N1G 5C9, Canada
| | - Y. Yin
- State Key Laboratory of Food Science and Technology and College of Life Science and Food Engineering, Nanchang University, Nanchang 330031, China P.R
- Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agro-Ecological Processes in Subtropical Region, 410125 Hunan, Changsha, China P.R
| | - M. Xie
- State Key Laboratory of Food Science and Technology and College of Life Science and Food Engineering, Nanchang University, Nanchang 330031, China P.R
| | - Z. Ruan
- State Key Laboratory of Food Science and Technology and College of Life Science and Food Engineering, Nanchang University, Nanchang 330031, China P.R
| | - J. Young
- Guelph Food Research Center, Agriculture and Agri-Food Canada, 93 Stone Rd W, Guelph N1G 5C9, Canada
| |
Collapse
|