1
|
Ambrosio E, Podmore A, Gomes dos Santos AL, Magarkar A, Bunker A, Caliceti P, Mastrotto F, van der Walle CF, Salmaso S. Control of Peptide Aggregation and Fibrillation by Physical PEGylation. Biomacromolecules 2018; 19:3958-3969. [DOI: 10.1021/acs.biomac.8b00887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Elena Ambrosio
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Adrian Podmore
- Formulation Sciences, MedImmune Ltd., Granta Park, Cambridge CB21 6GH, United Kingdom
| | | | - Aniket Magarkar
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki FI-00014, Finland
| | - Alex Bunker
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki FI-00014, Finland
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, via F. Marzolo 5, 35131 Padova, Italy
| | | | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, via F. Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
2
|
Identification of a conformational heparin-recognition motif on the peptide hormone secretin: key role for cell surface binding. Biochem J 2017; 474:2249-2260. [PMID: 28536157 DOI: 10.1042/bcj20170035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/30/2017] [Accepted: 05/23/2017] [Indexed: 11/17/2022]
Abstract
Secretin is a peptide hormone that exerts pleiotropic physiological functions by specifically binding to its cognate membrane-bound receptor. The membrane catalysis model of peptide-receptor interactions states that soluble peptidic ligands initially interact with the plasma membrane. This interaction increases the local concentration and structures the peptide, enhancing the rate of receptor binding. However, this model does not consider the dense network of glycosaminoglycans (GAGs) at the surface of eukaryotic cells. These sulfated polysaccharide chains are known to sequester numerous proteic signaling molecules. In the present study, we evaluated the interaction between the peptide hormone secretin and sulfated GAGs and its contribution to cell surface binding. Using GAG-deficient cells and competition experiments with soluble GAGs, we observed by confocal microscopy and flow cytometry that GAGs mediate the sequestration of secretin at the cell surface. Isothermal titration calorimetry and surface plasmon resonance revealed that secretin binds to heparin with dissociation constants ranging between 0.9 and 4 μM. By designing secretin derivatives with a restricted conformational ensemble, we observed that this interaction is mediated by the presence of a specific conformational GAG-recognition motif that decorates the surface of the peptide upon helical folding. The present study identifies secretin as a novel GAG-binding polypeptide and opens new research direction on the functional role of GAGs in the biology of secretin.
Collapse
|
3
|
Ramos-Álvarez I, Mantey SA, Nakamura T, Nuche-Berenguer B, Moreno P, Moody TW, Maderdrut JL, Coy DH, Jensen RT. A structure-function study of PACAP using conformationally restricted analogs: Identification of PAC1 receptor-selective PACAP agonists. Peptides 2015; 66:26-42. [PMID: 25698233 PMCID: PMC4420714 DOI: 10.1016/j.peptides.2015.01.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 11/22/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) has widespread physiological/pathophysiological actions and there is increased interest for its use therapeutically, especially in the CNS (neuroprotection). Unfortunately, no selective PACAP-analogs exist for PACAP-preferring PAC1-receptors, primarily because of its high sequence identity to VIP and particularly, because of the inability of structure-function studies to separate the pharmacophore of PAC1-R from VPAC1-R, which has high affinity for PACAP and VIP. The present study attempted to develop PAC1-R-selective agonists primarily by making conformationally restricted PACAP-analogs in positions important for receptor-selectivity/affinity. Forty-six PACAP-related-analogs were synthesized with substitutions in positions 1-4, 14-17, 20-22, 28, 34, 38 and receptor-selectivity determined in PAC1-R,VPAC1-R,VPAC2-R-transfected or native cells from binding or cAMP-generation experiments. Fifteen PACAP-analogs had 6-78-fold higher affinities for PAC1-R than VPAC1-R and 13 were agonists. Although binding-affinities correlated significantly with agonist potency, the degree of receptor-spareness varied markedly for the different PACAP-analogs, resulting in selective potencies for activating the PAC1 receptor over the VPAC1 receptor from 0- to 103-fold. In addition, a number of PACAP-analogs were identified that had high selectivity for PAC1-R over VPAC2-R as well as PACAP-analogs that could prove more useful therapeutically because of substitutions known to extend their half-lives (substitutions at potential sites of proteolysis and attachment of long-chain fatty acids). This study provides for the first time a separation of the pharmacophores for PAC1-R and VPAC1-R, resulting in PACAP-related analogs that are PAC1-R-preferring. Some of these analogs, or their modifications, could prove useful as therapeutic agents for various diseases.
Collapse
Affiliation(s)
- Irene Ramos-Álvarez
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Samuel A Mantey
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Taichi Nakamura
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Bernardo Nuche-Berenguer
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Paola Moreno
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Terry W Moody
- Center for Cancer Research, Office of the Director, NCI, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Jerome L Maderdrut
- Peptide Research Laboratory, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, United States
| | - David H Coy
- Peptide Research Laboratory, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, United States
| | - Robert T Jensen
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States.
| |
Collapse
|
4
|
Abstract
In mammals, secretin is a 27-amino acid peptide that was first studied in 1902 by Bayliss and Starling from the extracts of the jejunal mucosa for its ability to stimulate pancreatic secretion. To date, secretin has only been identified in tetrapods, with the earliest diverged secretin found in frogs. Despite being the first hormone discovered, secretin's evolutionary origin remains enigmatic, it shows moderate sequence identity in nonmammalian tetrapods but is highly conserved in mammals. Current hypotheses suggest that although secretin has already emerged before the divergence of osteichthyans, it was lost in fish and retained only in land vertebrates. Nevertheless, the cognate receptor of secretin has been identified in both actinopterygian fish (zebrafish) and sarcopterygian fish (lungfish). However, the zebrafish secretin receptor was shown to be nonbioactive. Based on the present information that the earliest diverged bioactive secretin receptor was found in lungfish, and its ability to interact with both vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide potently suggested that secretin receptor was descended from a VPAC-like receptor gene before the Actinopterygii-Sarcopterygii split in the vertebrate lineage. Hence, secretin and secretin receptor have gone through independent evolutionary trajectories despite their concurrent emergence post-2R. A functional secretin-secretin receptor axis has probably emerged in the amphibians. Although the pleiotropic actions of secretin are well documented in the literature, only limited information of its physiological functions in nonmammalian tetrapods have been reported. To decipher the structural and functional divergence of secretin and secretin receptor, functional characterization of the ligand-receptor pair in nonmammals would be the next perspective for investigation.
Collapse
Affiliation(s)
- Janice K V Tam
- School of Biological SciencesThe University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Leo T O Lee
- School of Biological SciencesThe University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Jun Jin
- School of Biological SciencesThe University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Billy K C Chow
- School of Biological SciencesThe University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| |
Collapse
|
5
|
Doan ND, Létourneau M, Vaudry D, Doucet N, Folch B, Vaudry H, Fournier A, Chatenet D. Design and characterization of novel cell-penetrating peptides from pituitary adenylate cyclase-activating polypeptide. J Control Release 2012; 163:256-65. [PMID: 22922050 DOI: 10.1016/j.jconrel.2012.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 08/11/2012] [Accepted: 08/17/2012] [Indexed: 10/28/2022]
Abstract
The discovery of cell-penetrating peptide opened up new promising avenues for the non-invasive delivery of non-permeable biomolecules within the intracellular compartment. However, some setbacks such as possible toxic effects or unexpected immunological responses have limited their use in clinic. To overcome these obstacles, we investigated the use of novel cell-penetrating peptides (CPPs) derived from the endogenous neuropeptide Pituitary adenylate cyclase-activating polypeptide (PACAP). First, we demonstrated the propensity of native PACAP isoforms (PACAP27 and PACAP38) to efficiently deliver a large and non-permeable molecule, i.e. streptavidin, into cells. An inactive modified fragment of PACAP38, i.e. [Arg(17)]PACAP(11-38), with preserved cell-penetrating physico-chemical properties, was also synthesized and successfully use for the intracellular delivery of various cargoes such as small molecules, peptides, proteins, and polynucleotides. Especially, its effectiveness as a transfection agent was comparable to Lipofectamine 2000 while being non-toxic for cells. Uptake mechanism studies demonstrated that direct translocation, caveolae-dependent endocytosis and macropinocytosis were involved in the internalization of [Arg(17)]PACAP(11-38). This study not only opened up a new aspect in the usefulness of PACAP and its derivatives for therapeutic application but also contributed to the identification of new members of the CPP family. As such, inactive PACAP-related analogs could represent excellent vectors for in vitro and in vivo applications.
Collapse
Affiliation(s)
- Ngoc-Duc Doan
- INRS-Institut Armand-Frappier, Université du Québec, 531 boulevard des Prairies, Ville de Laval, Québec, Canada H7V 1B7
| | | | | | | | | | | | | | | |
Collapse
|
6
|
The structure of secretin family GPCR peptide ligands: implications for receptor pharmacology and drug development. Drug Discov Today 2012; 17:1006-14. [PMID: 22579744 DOI: 10.1016/j.drudis.2012.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/03/2012] [Accepted: 05/04/2012] [Indexed: 11/23/2022]
Abstract
The secretin family G protein-coupled receptors, characterized by a large N-terminal extracellular domain and seven transmembrane helices, are drug targets in many diseases, including migraine, cardiovascular disease, diabetes, osteoporosis and inflammatory disorders. Their activating ligands are peptides with an average length of 30 amino acids. In this article we review the available structural data for these peptides and how this explains their activity. We emphasize how this information may be used to accelerate the development of new drugs against these receptors.
Collapse
|
7
|
Development of PACAP38 analogue with improved stability: physicochemical and in vitro/in vivo pharmacological characterization. J Mol Neurosci 2010; 43:85-93. [PMID: 20585898 DOI: 10.1007/s12031-010-9415-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 06/15/2010] [Indexed: 10/19/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide 38 (PACAP38), one of the major peptide transmitters, has emerged as a promising drug candidate for the treatment of type 2 diabetes. In the present study, on the basis of previous structure-activity relationships, a new PACAP38 derivative, [R(15, 20, 21), L(17)]-PACAP38, was chemically synthesized with the aim of enhancing the therapeutic potential of PACAP38. The solution structure of the new derivative was almost identical to that of PACAP38 as evaluated by circular dichroic spectroscopy, and both PACAP38 and the new derivative stimulated adenylate cyclase in rat insulinoma RIN-m5F cells with EC(50) values of 4.6 and 5.5 nM, respectively. Stability studies revealed the gradual degradation of PACAPs in rat serum, although there appeared to be a 42% reduction in degradation kinetics for [R(15, 20, 21), L(17)]-PACAP38 compared with that of PACAP38. The novel derivative also exhibited more potent protective effects against streptozotocin (STZ)-induced apoptotic death of RIN-m5F cells, possibly due to the enhanced stability. The n0-STZ model, in which neonatal rats were injected with STZ at birth, developed a typical diabetic condition; however, chronic administration of [R(15, 20, 21), L(17)]-PACAP38 resulted in protection of pancreatic islets, followed by the improvement of glycemic control. Thus, the chemical modification of PACAP38 led to the development of a new promising derivative with enhanced stability and biological activity, and early administration of [R(15, 20, 21), L(17)]-PACAP38 might be of help for preventing the development of diabetes in type 2 diabetic model rats.
Collapse
|
8
|
Cardoso JCR, Vieira FA, Gomes AS, Power DM. The serendipitous origin of chordate secretin peptide family members. BMC Evol Biol 2010; 10:135. [PMID: 20459630 PMCID: PMC2880984 DOI: 10.1186/1471-2148-10-135] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 05/06/2010] [Indexed: 01/15/2023] Open
Abstract
Background The secretin family is a pleotropic group of brain-gut peptides with affinity for class 2 G-protein coupled receptors (secretin family GPCRs) proposed to have emerged early in the metazoan radiation via gene or genome duplications. In human, 10 members exist and sequence and functional homologues and ligand-receptor pairs have been characterised in representatives of most vertebrate classes. Secretin-like family GPCR homologues have also been isolated in non-vertebrate genomes however their corresponding ligands have not been convincingly identified and their evolution remains enigmatic. Results In silico sequence comparisons failed to retrieve a non-vertebrate (porifera, cnidaria, protostome and early deuterostome) secretin family homologue. In contrast, secretin family members were identified in lamprey, several teleosts and tetrapods and comparative studies revealed that sequence and structure is in general maintained. Sequence comparisons and phylogenetic analysis revealed that PACAP, VIP and GCG are the most highly conserved members and two major peptide subfamilies exist; i) PACAP-like which includes PACAP, PRP, VIP, PH, GHRH, SCT and ii) GCG-like which includes GCG, GLP1, GLP2 and GIP. Conserved regions flanking secretin family members were established by comparative analysis of the Takifugu, Xenopus, chicken and human genomes and gene homologues were identified in nematode, Drosophila and Ciona genomes but no gene linkage occurred. However, in Drosophila and nematode genes which flank vertebrate secretin family members were identified in the same chromosome. Conclusions Receptors of the secretin-like family GPCRs are present in protostomes but no sequence homologues of the vertebrate cognate ligands have been identified. It has not been possible to determine when the ligands evolved but it seems likely that it was after the protostome-deuterostome divergence from an exon that was part of an existing gene or gene fragment by rounds of gene/genome duplication. The duplicate exon under different evolutionary pressures originated the chordate PACAP-like and GCG-like subfamily groups. This event occurred after the emergence of the metazoan secretin GPCRs and led to the establishment of novel peptide-receptor interactions that contributed to the generation of novel physiological functions in the chordate lineage.
Collapse
Affiliation(s)
- João C R Cardoso
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal.
| | | | | | | |
Collapse
|
9
|
Dickson L, Finlayson K. VPAC and PAC receptors: From ligands to function. Pharmacol Ther 2008; 121:294-316. [PMID: 19109992 DOI: 10.1016/j.pharmthera.2008.11.006] [Citation(s) in RCA: 282] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 11/18/2008] [Indexed: 02/03/2023]
Abstract
Vasoactive intestinal peptide (VIP) and the pituitary adenylate cyclase activating polypeptides (PACAPs) share 68% identity at the amino acid level and belong to the secretin peptide family. Following the initial discovery of VIP almost four decades ago a substantial amount of knowledge has been presented describing the mechanisms of action, distribution and pleiotropic functions of these related peptides. It is now known that the physiological actions of these widely distributed peptides are produced through activation of three common G-protein coupled receptors (VPAC(1), VPAC(2) and PAC(1)R) which preferentially stimulate adenylate cyclase and increase intracellular cAMP, although stimulation of other intracellular messengers, including calcium and phospholipase D, has been reported. Using a range of in vitro and in vivo approaches, including cell-based functional assays, transgenic animals and rodent models of disease, VPAC/PAC receptor activation has been associated with numerous physiological processes (e.g. control of circadian rhythms) and clinical conditions (e.g. pulmonary hypertension), which underlies on-going research efforts and makes these peptides and their cognate receptors attractive targets for the pharmaceutical industry. However, despite the considerable interest in VPAC/PAC receptors and the processes which they mediate, there is still a paucity of selective and available, non-peptide ligands, which has hindered further advances in this field both at the basic research and clinical level. This review summarises the current knowledge of VIP/PACAP and the VPAC/PAC receptors with regard to their distribution, pharmacology, signalling pathways, splice variants and finally, the utility of animal models in exploring their physiological roles.
Collapse
Affiliation(s)
- Louise Dickson
- Centre for Integrative Physiology, University of Edinburgh, EH8 9XD, UK
| | | |
Collapse
|
10
|
Structure-activity relationship of vasoactive intestinal peptide (VIP): potent agonists and potential clinical applications. Naunyn Schmiedebergs Arch Pharmacol 2008; 377:579-90. [DOI: 10.1007/s00210-007-0232-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 11/23/2007] [Indexed: 12/23/2022]
|
11
|
Sze KH, Zhou H, Yang Y, He M, Jiang Y, Wong AOL. Pituitary adenylate cyclase-activating polypeptide (PACAP) as a growth hormone (GH)-releasing factor in grass carp: II. Solution structure of a brain-specific PACAP by nuclear magnetic resonance spectroscopy and functional studies on GH release and gene expression. Endocrinology 2007; 148:5042-59. [PMID: 17615143 DOI: 10.1210/en.2007-0576] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) has been proposed to be the ancestral GHRH. Recently, using grass carp as a model for modern-day bony fish, we demonstrated that PACAP nerve fibers are present in close proximity to carp somatotrophs, and mammalian PACAPs can induce GH secretion in carp pituitary cells. To further examine the role of PACAP as a GH-releasing factor in fish, the structural identity of grass carp PACAP was established by molecular cloning. The newly cloned PACAP was found to be a single-copy gene and expressed in the brain but not other tissues. The mature peptides of PACAP, namely PACAP(27) and PACAP(38), were synthesized. As revealed by nuclear magnetic resonance spectroscopies, carp PACAP(38) is composed of a flexible N terminal from His(1) to Ile(5), an extended central helix from Phe(6) to Val(26), and a short helical tail in the C terminal from Arg(29) to Arg(34). The C-terminal helix is located after a hinge region at Leu(27) to Gly(28) and is absent in the solution structures of PACAP(27). The two forms of PACAPs were effective in elevating GH release and GH transcript expression in grass carp pituitary cells. These stimulatory effects occurred with parallel rises in cAMP and Ca(2+) entry via voltage-sensitive Ca(2+) channels in carp somatotrophs. The present study represents the first report for solution structures of nonmammalian PACAPs and provides evidence that a brain-specific isoform of PACAP in fish can stimulate GH synthesis and release at the pituitary level, presumably by activating the appropriate postreceptor signaling mechanisms.
Collapse
Affiliation(s)
- Kong Hung Sze
- Department of Zoology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P.R. China
| | | | | | | | | | | |
Collapse
|
12
|
Potetinova Z, Barbier JR, Suen T, Dean T, Gardella TJ, Willick GE. C-terminal analogues of parathyroid hormone: effect of C-terminus function on helical structure, stability, and bioactivity. Biochemistry 2006; 45:11113-21. [PMID: 16964972 DOI: 10.1021/bi060500q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have studied the effects of C-terminal group modifications (amide, methylamide, dimethylamide, aldehyde, and alcohol) on the conformation, adenylyl cyclase stimulation (AC), or binding of parathyroid hormone (hPTH) analogues, hPTH(1-28)NH(2) and hPTH(1-31)NH(2). hPTH(1-31)NH(2) has a C-terminal alpha-helix bounded by residues 17-29 [Chen, Z., et al. (2000) Biochemistry 39, 12766]. In both cases, relative to the natural analogue with a carboxyl C-terminus, the amide and methylamide had increased helix content whereas the dimethylamide forms had CD spectra more similar to the carboxyl one. Conformational effects were more pronounced with hPTH(1-28) than with hPTH(1-31), with increases in helix content of approximately 30% in contrast to 10%. Stabilization of the C-terminal helix of residues 1-28 seemed to correlate with an ability of the C-terminal function to H-bond appropriately. None of the analogues affected the AC stimulating activity significantly, but there was an up to 15-fold decrease in the level of apparent binding of the carboxyl hPTH(1-28) analogue compared to that of the methylamide and a 4-fold decrease in the level of binding of the aldehyde or dimethylamide. There was no significant change in binding activities for the 1-31 analogues. These observations are consistent with previous studies that imply the importance of a region of the hormone's C-terminal alpha-helix for tight binding to the receptor. They also show that modulation of helix stability does have an effect on the binding of the hormone, but only when the C-terminus is at the putative end of the helix. The similarity of AC stimulation even when binding changed 10-fold can be explained by assuming greater efficacy of the weaker binding PTH-receptor complexes in stimulating AC.
Collapse
Affiliation(s)
- Zhanna Potetinova
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada K1A 0R6
| | | | | | | | | | | |
Collapse
|
13
|
Onoue S, Matsumoto A, Nagano Y, Ohshima K, Ohmori Y, Yamada S, Kimura R, Yajima T, Kashimoto K. Alpha-helical structure in the C-terminus of vasoactive intestinal peptide: functional and structural consequences. Eur J Pharmacol 2004; 485:307-16. [PMID: 14757155 DOI: 10.1016/j.ejphar.2003.11.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The conformational properties of vasoactive intestinal peptide (VIP) include the N-terminal randomized structure and the C-terminal long alpha-helical structure. We have previously observed that the N-terminal random coil structure plays a crucial role in the receptor-selectivity. Here, to clarify how the formation of the alpha-helix plays a role in its biological functions, we chemically synthesized VIP analogues modified at the C-terminus, mid-chain, and N-terminus of the alpha-helical region, and evaluated the relationship between their alpha-helical contents and their biological activities including relaxant effects on murine stomach and receptor-binding activities. VIP and VIP-(1-27) showed equipotent biological activities with 48% and 50% alpha-helical content, respectively, each of which corresponds to 14 amino acid residues. VIP-(1-26) was 10% and threefold less potent in relaxant and binding activities, respectively, compared with VIP, and its 49% alpha-helical content resulted in 13 residues involved in the alpha-helix. Further truncation from 25 to 21 resulted in decrease in the alpha-helical content from 43% to 29%, corresponding residues from 11 to 6, the relaxant activity from 72% to 4%, and the affinity to the membrane from 60-fold to over 10(4)-fold less potency. In addition, disruption of the mid-chain and the N-terminus in the alpha-helical stretch by oxidation of Met(17) and deletion of Thr(11) also inhibited biological activities. These findings suggest that the presence of alpha-helical structure forming in 14 amino acid residues between position 10 and 23 in VIP is essential to its biological functions and the C-terminal amino acid residues between position 24 and 27 are requisite for this alpha-helical formation.
Collapse
Affiliation(s)
- Satomi Onoue
- Health Science Division, Itoham Foods Inc., 1-2-1 Kubogaoka, Moriya, Ibaraki 302-0104, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nachtergael I, Vertongen P, Langer I, Perret J, Robberecht P, Waelbroeck M. Evidence for a direct interaction between the Thr11 residue of vasoactive intestinal polypeptide and Tyr184 located in the first extracellular loop of the VPAC2 receptor. Biochem J 2003; 370:1003-9. [PMID: 12475394 PMCID: PMC1223231 DOI: 10.1042/bj20020811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2002] [Revised: 11/26/2002] [Accepted: 12/11/2002] [Indexed: 11/17/2022]
Abstract
We developed previously VPAC(1) [vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating peptide (PACAP) receptor]>VPAC(2) receptor selective ligands. Replacement of the VIP-Thr(11) by an Arg(11) in these ligands contributed to their selectivity: Arg(11)-VIP had a 200-fold lower affinity when compared with VIP at VPAC(2) receptors as opposed to 3- to 5-fold higher affinity at VPAC(1) receptors. Comparison of the binding and functional properties of related VIP analogues suggested that the VPAC(1) selectivity of Arg(11)-VIP was due to the loss of a hydrogen bond between the hydroxy group of Thr residue and the VPAC(2) receptor, steric hindrance between the Arg side chain and the VPAC(2) receptor and charge attraction by the VPAC(1) receptor. Comparison of the ability of VIP analogues to activate adenylate cyclase through chimaeric VPAC(1)/VPAC(2) and VPAC(2)/VPAC(1) receptors indicated that the first extracellular receptor loop carried most of the VPAC(2) receptors' ability to discriminate VIP from Arg(11)-VIP. Based on results obtained for a truncated VPAC(2) receptor and the closely related PACAP-preferring receptor (PAC(1)) and secretin receptors, we hypothesized that Thr(11) interacted with the VPAC(2) receptor Tyr(184) (similar to the VPAC(1) receptor Phe(200) residue). The Y184F (Tyr(184)-->Phe) VPAC(2) mutant lost the ability to discriminate VIP from Val(11)-VIP, and the F200Y VPAC(1) mutant acquired the ability to discriminate the natural peptide from Val(11)-VIP. These results support the hypothesis that the hydroxy group of the native VIP-Thr(11) side chain can indeed form a hydrogen bond with the Tyr side chain in the VPAC(2) receptor.
Collapse
Affiliation(s)
- Ingrid Nachtergael
- Department of Biochemistry and Nutrition, School of Medicine, Université Libre de Bruxelles, Bât G/E, CP 611, 808 route de Lennik, B-1070 Bruxelles, Belgium
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
The effects of vasoactive intestinal peptide (VIP) on the proliferation of central nervous system (CNS) and cancer cells were investigated. VIP has important actions during CNS development. During neurogenesis, VIP stimulates the proliferation and differentiation of brain neurons. Addition of VIP to embryonic mouse spinal cord cultures increases neuronal survival and activity dependent neurotrophic factor (ADNF) secretion from astroglial cells. VIP is an integrative regulator of brain growth and development during neurogenesis and embryogenesis. Also, VIP causes increased proliferation of human breast and lung cancer cells in vitro. VIP binds with high affinity to cancer cells, elevates the cAMP and increases gene expression of c-fos, c-jun, c-myc and vascular endothelial cell growth factor. The effects of VIP on cancer cells are reversed by VIPhybrid, a synthetic VPAC(1) receptor antagonist. VIPhyb inhibits the basal growth of lung cancer cells in vitro and tumors in vivo and potentiates the ability of chemotherapeutic drugs to kill cancer cells. Due to the high density of VPAC(1) receptors in cancer cells, VIP has been radiolabeled with 123I, 18F and 99mTc to image tumors. It remains to be determined if radiolabeled VIP analogs will be useful agents for early detection of cancer in patients.
Collapse
Affiliation(s)
- Terry W Moody
- NCI Office of the Director, Center for Cancer Research, National Cancer Institute, Bldg 31, Rm 3A34, 31 Center Dr, Bethesda, MD, USA.
| | | | | |
Collapse
|
16
|
Igarashi H, Ito T, Hou W, Mantey SA, Pradhan TK, Ulrich CD, Hocart SJ, Coy DH, Jensen RT. Elucidation of vasoactive intestinal peptide pharmacophore for VPAC(1) receptors in human, rat, and guinea pig. J Pharmacol Exp Ther 2002; 301:37-50. [PMID: 11907155 DOI: 10.1124/jpet.301.1.37] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) is a neurotransmitter involved in a number of pathological and physiological processes. VIP is rapidly degraded and simplified stable analogs are needed. VIP's action was extensively studied in rat and guinea pig. However, it is largely unknown whether its pharmacophore in these species resembles human. To address this issue we investigated the VIP pharmacophore for VPAC(1) (the predominant receptor subtype in cancers and widely distributed in normal tissues) by using alanine and D-amino acid scanning. Interaction with rat, guinea pig, and human VPAC(1) was assessed using transfected Chinese hamster ovary (CHO) and PANC1 cells and cells possessing native VPAC(1). Important species differences existed in the VIP pharmacophore. The human VPAC(1) expressed in CHO cells, which were used almost exclusively in previous studies, differed markedly from the native VPAC(1) in T47D cells. The most important amino acids for determining affinity are His(1), Asp(3), Phe(6), Arg(12), Arg(14), and Leu(23). Ser(2), Asp(8), Asn(9), Thr(11), Val(19), Asn(24), Ser(25), Leu(27), and Asn(28) are not essential for high-affinity interaction/activation. [Ala(2,8,9,11,19,24,25,27,28)]VIP, which contained 11 alanines, was synthesized and it was equipotent to VIP at VPAC(1) receptors in all species and was metabolically stable. Our results show in any design of simplified VIP analogs for VPAC(1) it will be important to consider species differences and it is essential to use transfected systems that reflect the native receptor's pharmacophore. Last, with our results a simplified, metabolically stable VIP analog was identified that should be useful as a prototype for design of selective agonists/antagonists that could be useful therapeutically.
Collapse
Affiliation(s)
- Hisato Igarashi
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hinke SA, Manhart S, Pamir N, Demuth H, W Gelling R, Pederson RA, McIntosh CH. Identification of a bioactive domain in the amino-terminus of glucose-dependent insulinotropic polypeptide (GIP). BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1547:143-55. [PMID: 11343800 DOI: 10.1016/s0167-4838(01)00181-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The incretins are a class of hormones released from the small bowel that act on the endocrine pancreas to potentiate insulin secretion in a glucose-dependent manner. Due to the requirement for an elevated glucose concentration for activity, the incretins, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1, have potential in the treatment of non-insulin-dependent diabetes mellitus. A series of synthetic peptide GIP fragments was generated for the purpose of elucidating the bioactive domain of the molecule. Peptides were screened for stimulation of cyclic AMP (cAMP) accumulation in Chinese hamster ovary cells transfected with the rat islet GIP receptor. Of the GIP fragments tested, GIP(1-14) and GIP(19-30) demonstrated the greatest cAMP-stimulating ability over the range of concentrations tested (up to 20 microM). In contrast, GIP fragments corresponding to amino acids 15-42, 15-30, 16-30 and 17-30 all demonstrated weak antagonism of GIP(1-42) activity. Competitive-binding displacement studies indicated that these peptides were low-affinity ligands for the GIP receptor. To examine biological activity in vivo, a bioassay was developed in the anesthetized rat. Intravenous infusion of GIP(1-42) (1 pmol/min/100 g) with a concurrent intraperitoneal glucose load (1 g/kg) significantly reduced circulating blood glucose excursions through stimulation of insulin release. Higher doses of GIP(1-14) and GIP(19-30) (100 pmol/min/100 g) also reduced blood glucose excursions.
Collapse
Affiliation(s)
- S A Hinke
- Department of Physiology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Wong AOL, Li WS, Lee EKY, Leung MY, Tse LY, Chow BKC, Lin HR, Chang JP. Pituitary adenylate cyclase activating polypeptide as a novel hypophysiotropic factor in fish. Biochem Cell Biol 2000. [DOI: 10.1139/o00-055] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a novel member of the secretin-glucagon peptide family. In mammals, this peptide has been located in a wide range of tissues and is involved in a variety of biological functions. In lower vertebrates, especially fish, increasing evidence suggests that PACAP may function as a hypophysiotropic factor regulating pituitary hormone secretion. PACAP has been identified in the brain-pituitary axis of representative fish species. The molecular structure of fish PACAP is highly homologous to mammalian PACAP. The prepro-PACAP in fish, however, is distinct from that of mammals as it also contains the sequence of fish GHRH. In teleosts, the anterior pituitary is under direct innervation of the hypothalamus and PACAP nerve fibers have been identified in the pars distalis. Using the goldfish as a fish model, mRNA transcripts of PACAP receptors, namely the PAC1 and VPAC1 receptors, have been identified in the pituitary as well as in various brain areas. Consistent with the pituitary expression of PACAP receptors, PACAP analogs are effective in stimulating growth hormone (GH) and gonadotropin (GTH)-II secretion in the goldfish both in vivo and in vitro. The GH-releasing action of PACAP is mediated via pituitary PAC1 receptors coupled to the adenylate cyclase-cAMP-protein kinase A and phospholipase C-IP3-protein kinase C pathways. Subsequent stimulation of Ca2+ entry through voltage-sensitive Ca2+ channels followed by activation of Ca2+-calmodulin protein kinase II is likely the downstream mechanism mediating PACAP-stimulated GH release in goldfish. Although the PACAP receptor subtype(s) and the associated post-receptor signaling events responsible for PACAP-stimulated GTH-II release have not been characterized in goldfish, these findings support the hypothesis that PACAP is produced in the hypothalamus and delivered to the anterior pituitary to regulate GH and GTH-II release in fish.Key words: PACAP, VIP, PAC1 receptor, VPAC1 receptor, VPAC2 receptor, growth hormone, gonadotropin-II, cAMP, protein kinase A, protein kinase C, calcium, pituitary cells, goldfish, and teleost.
Collapse
|