1
|
Amantea D, Bagetta G. Excitatory and inhibitory amino acid neurotransmitters in stroke: from neurotoxicity to ischemic tolerance. Curr Opin Pharmacol 2017; 35:111-119. [DOI: 10.1016/j.coph.2017.07.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 12/22/2022]
|
2
|
Monge-Fuentes V, Gomes FMM, Campos GAA, Silva JDC, Biolchi AM, Dos Anjos LC, Gonçalves JC, Lopes KS, Mortari MR. Neuroactive compounds obtained from arthropod venoms as new therapeutic platforms for the treatment of neurological disorders. J Venom Anim Toxins Incl Trop Dis 2015; 21:31. [PMID: 26257776 PMCID: PMC4529710 DOI: 10.1186/s40409-015-0031-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 07/28/2015] [Indexed: 01/25/2023] Open
Abstract
The impact of neurological disorders in society is growing with alarming estimations for an incidence increase in the next decades. These disorders are generally chronic and can affect individuals early during productive life, imposing real limitations on the performance of their social roles. Patients can have their independence, autonomy, freedom, self-image, and self-confidence affected. In spite of their availability, drugs for the treatment of these disorders are commonly associated with side effects, which can vary in frequency and severity. Currently, no effective cure is known. Nowadays, the biopharmaceutical research community widely recognizes arthropod venoms as a rich source of bioactive compounds, providing a plethora of possibilities for the discovery of new neuroactive compounds, opening up novel and attractive opportunities in this field. Several identified molecules with a neuropharmacological profile can act in the central nervous system on different neuronal targets, rendering them useful tools for the study of neurological disorders. In this context, this review aims to describe the current main compounds extracted from arthropod venoms for the treatment of five major existing neurological disorders: stroke, Alzheimer’s disease, epilepsy, Parkinson’s disease, and pathological anxiety.
Collapse
Affiliation(s)
- Victoria Monge-Fuentes
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Flávia Maria Medeiros Gomes
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Gabriel Avohay Alves Campos
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Juliana de Castro Silva
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Andréia Mayer Biolchi
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Lilian Carneiro Dos Anjos
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Jacqueline Coimbra Gonçalves
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Kamila Soares Lopes
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Márcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| |
Collapse
|
3
|
Meng H, Liu Y, Zhai Y, Lai L. Optimization of 5-hydroxytryptamines as dual function inhibitors targeting phospholipase A2 and leukotriene A4 hydrolase. Eur J Med Chem 2013; 59:160-7. [DOI: 10.1016/j.ejmech.2012.10.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 10/26/2012] [Accepted: 10/27/2012] [Indexed: 12/13/2022]
|
4
|
Bialobok P, Cregan EF, Sydserff SG, Eisman MS, Miller JA, Cross AJ, Simmons R, Gendron P, McCarthy DJ, Palmer GC. Efficacy of AR-R15896AR in the rat monofilament model of transient middle cerebral artery occlusion. J Stroke Cerebrovasc Dis 2012; 8:388-97. [PMID: 17895192 DOI: 10.1016/s1052-3057(99)80046-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The monofilament technique of transient middle cerebral artery occlusion (MCAO) was used in 3 separate studies to evaluate the efficacy of the low-affinity, use-dependent N-methyl-d-aspartate receptor antagonist, AR-R15896AR. First, a dose-response curve was attempted. Wister Kyoto rats received 2 hours of MCAO. Five minutes later, a 30-minute intravenous infusion of AR-R15896AR was given, followed by subcutaneous implantation of Alzet minipumps that were calibrated to maintain specified plasma levels (approximately 682, 1885, or 2682 ng/mL) of AR-R15896 (free base) for 1 week. The highest plasma level attained significantly decreased the percentage of damage to the subcortex, cortex, and total brain. Second, the high-dose, 1-week treatment regimen was repeated to determine if neuroprotection would extend to 8 weeks after MCAO. Indeed, in separate groups of animals, significant reduction in the percentage of damage, which was generally confined to the cortex and subcortex, was observed at 1, 2, 4, and 8 weeks. Third, verification was achieved in another laboratory. Lister Hooded rats received 60 minutes of transient MCAO. At 70 minutes, an acute dose of AR-R15896AR (20.3 mg/kg) was injected intraperitoneally and the rats were killed 23 hours later. This treatment group also exhibited significant reduction in the volume of infarction in the subcortex, cortex, and total brain. The outcome of these investigations supports the ongoing Phase II clinical trials in patients with acute stroke.
Collapse
|
5
|
Antonelli T, Tomasini MC, Fournier J, Mazza R, Tanganelli S, Pirondi S, Fuxe K, Ferraro L, Luca F. Neurotensin receptor involvement in the rise of extracellular glutamate levels and apoptotic nerve cell death in primary cortical cultures after oxygen and glucose deprivation. Cereb Cortex 2007; 18:1748-57. [PMID: 18063561 DOI: 10.1093/cercor/bhm217] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In view of the ability of neurotensin (NT) to increase glutamate release, the role of NT receptor mechanisms in oxygen-glucose deprivation (OGD)-induced neuronal degeneration in cortical cultures has been evaluated by measuring lactate dehydrogenase (LDH) levels, mitochondrial dehydrogenase activity with 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide levels, and microtubule-associated protein 2 (MAP2) immunoreactivity. Apoptotic nerve cell death was analyzed measuring chromatin condensation with Hoechst 33258, annexin V staining, and caspase-3 activity. Furthermore, the involvement of glutamate excitotoxicity in the neurodegeneration-enhancing actions of NT was analyzed by measurement of extracellular glutamate levels. NT enhanced the OGD-induced increase of LDH, endogenous extracellular glutamate levels, and apoptotic nerve cell death. In addition, the peptide enhanced the OGD-induced loss of mitochondrial functionality and increase of MAP2 aggregations. These effects were blocked by the neurotensin receptor 1 (NTR1) antagonist SR48692. Unexpectedly, the antagonist at 100 nM counteracted not only the NT effects but also some OGD-induced biochemical and morphological alterations. These results suggest that NTR1 receptors may participate in neurodegenerative events induced by OGD in cortical cultures, used as an in vitro model of cortical ischemia. The NTR1 receptor antagonists could provide a new tool to explore the clinical possibilities and thus to move from chemical compound to effective drug.
Collapse
Affiliation(s)
- Tiziana Antonelli
- Department of Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Mortari MR, Cunha AOS, Ferreira LB, dos Santos WF. Neurotoxins from invertebrates as anticonvulsants: From basic research to therapeutic application. Pharmacol Ther 2007; 114:171-83. [PMID: 17399793 DOI: 10.1016/j.pharmthera.2007.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 01/19/2007] [Accepted: 01/19/2007] [Indexed: 12/21/2022]
Abstract
Invertebrate venoms have attracted considerable interest as a potential source of bioactive substances, especially neurotoxins. These molecules have proved to be extremely useful tools for the understanding of synaptic transmission events, and they have contributed to the design of novel drugs for the treatment of neurological disorders and pain. In this context, as epilepsy involves neuronal substrates, which are sites of action of many neurotoxins; venoms may be particularly useful for antiepileptic drug (AED) research. Epilepsy is a chronic disease whose treatment consists of controlling seizures with antiepileptics that very often induce strong undesirable side effects that may limit treatment. Here, we review the vast, but yet unexplored, world of neurotoxins from invertebrates used as probes in pharmacological screening for novel and less toxic antiepileptics. We briefly review (1) the molecular basis of epilepsy, as well as the sites of action of commonly used anticonvulsants (we bring a comprehensive review of the elements from invertebrate venoms which are mostly studied in neuroscience research and may be useful for drug development); (2) peptides from conus snails; (3) peptides and polyamine toxins from spiders and wasps; and (4) peptides from scorpions.
Collapse
Affiliation(s)
- Márcia Renata Mortari
- Neurobiology and Venoms Laboratory, Department of Biology, School of Philosophy, Sciences and Literature, University of São Paulo Ribeirão Preto, Brazil
| | | | | | | |
Collapse
|
7
|
Abstract
Ion channels are membrane proteins that flicker open and shut to regulate the flow of ions down their electrochemical gradient across the membrane and consequently regulate cellular excitability. Every living cell expresses ion channels, as they are critical life-sustaining proteins. Ion channels are generally either activated by voltage or by ligand interaction. For each group of ion channels the channels' molecular biology and biophysics will be introduced and the pharmacology of that group of channels will be reviewed. The in vitro and in vivo literature will be reviewed and, for ion channel groups in which clinical trials have been conducted, the efficacy and therapeutic potential of the neuroprotective compounds will be reviewed. A large part of this article will deal with glutamate receptors, focusing specifically on N-methyl-D-aspartate (NMDA) receptors. Although the outcome of clinical trials for NMDA receptor antagonists as therapeutics for acute stroke is disappointing, the culmination of these failed trials was preceded by a decade of efforts to develop these agents. Sodium and calcium channel antagonists will be reviewed and the newly emerging efforts to develop therapeutics targeting potassium channels will be discussed. The future development of stroke therapeutics targeting ion channels will be discussed in the context of the failures of the last decade in hopes that this decade will yield successful stroke therapeutics.
Collapse
Affiliation(s)
- D L Small
- Institute or Biological Sciences, National Research Council of Canada, Building M-54, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6.
| |
Collapse
|
8
|
Tarral A, Dostert P, Guillevic Y, Fabbri L, Rondelli I, Mariotti F, Imbimbo BP. Safety, pharmacokinetics, and pharmacodynamics of CHF 3381, a novel N-methyl-D-aspartate antagonist, after single oral doses in healthy subjects. J Clin Pharmacol 2003; 43:901-11. [PMID: 12953347 DOI: 10.1177/0091270003256137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A double-blind, randomized, placebo-controlled study was performed to assess the safety, tolerability, and pharmacokinetics of single oral doses of CHF 3381 in 56 young healthy male volunteers. The central nervous system effects of CHF 3381 were also evaluated, as well as the effect of food on the rate and extent of CHF 3381 absorption. Seven doses of CHF 3381 (25, 50, 100, 200, 300, 450, and 600 mg) were evaluated in an escalating order. At each dose level, 6 subjects were given CHF 3381, and 2 subjects were given placebo. Safety and tolerability evaluation included adverse events, physical examination, vital functions, electrocardiogram, laboratory tests, and 24-hour Holter (100-mg and 450-mg dose panels). Plasma and urinary concentrations of CHF 3381 and its two main metabolites (CHF 3567 and 2-aminoindane) were measured with a validated high-performance liquid chromatography method. Central nervous system effects were evaluated with the simple reaction time (SRT); learning memory task (LMT); Bond & Lader Visual Analog Scale for alertness, contentedness, and calmness; Addiction Research Center Inventory (ARCI); and electroencephalogram. There were no serious adverse events; the most frequent adverse events were dizziness, abnormal thinking, and asthenia. The number of adverse events with moderate intensity increased sharply with the dose, with no or few events up to 450 mg and 17 events with 600 mg. Therefore, 600 mg was defined as the maximum tolerated dose. There were no significant treatment effects on cardiovascular function and electrocardiogram parameters at any CHF 3381 dose or on oral temperature or laboratory tests. There were no clinically significant changes in laboratory variables. CHF 3381 was absorbed rapidly (tmax = 0.5-2 h) and cleared from plasma with a half-life of 3 to 4 hours. Plasma levels of CHF 3381 and its two major metabolites were found to be proportional to the dose. 2-Aminoindane formed slowly and reached much lower concentrations compared to the parent compound and the other metabolite (CHF 3567). Within 48 hours after dosing, 2% to 6% of the administered dose was found in the urine as unchanged drug, about 50% to 55% as the acid derivative (CHF 3567), and 2% to 3% as 2-aminoindane. Ingestion of food did not affect the extent of absorption of the drug, while the rate of absorption was considerably reduced (tmax = 4 h). No significant effects of CHF 3381 were observed on attention (SRT) or memory (LMT). Visual analog scales revealed a decreasing effect of CHF 3381 on alertness at 1 hour that reached statistical significance at 300 and 600 mg. EEG spectral analysis revealed minor decreasing effects of the 200-mg dose on total electric power measured at 2 hours. A stimulant effect was detected by the ARCI scale 24 hours after the 300-mg dose and might be related to the slow formation of the 2-aminoindane metabolite. In conclusion, this study has shown that the maximum tolerated dose of CHF 3381 after single oral administration in young healthy male volunteers is 600 mg. CHF 3381 displays linear pharmacokinetics in the dose range of 25 to 600 mg. The compound is rapidly absorbed and cleared from plasma with a half-life of 3 to 4 hours. The ingestion of food seems to not affect the extent of absorption of the drug. Minor effects on the central nervous system were detected at doses equal to or greater than 300 mg.
Collapse
|
9
|
Fuchigami T, Haradahira T, Arai T, Okauchi T, Maeda J, Suzuki K, Yamamoto F, Suhara T, Sasaki S, Maeda M. Synthesis and Brain Regional Distribution of [11C]NPS 1506 in Mice and Rat: an N-Methyl-D-aspartate (NMDA) Receptor Antagonist. Biol Pharm Bull 2003; 26:1570-3. [PMID: 14600403 DOI: 10.1248/bpb.26.1570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
NPS 1506 [3-fluoro-gamma-(3-fluorophenyl)-N-methylbenzenepropamine] is representative of a non-psychotomimetic class of N-methyl-D-aspartate (NMDA) receptor antagonists. [11C]NPS 1506 was prepared at high radiochemical purity (>98%) with a specific activity of around 50 GBq/micromol at the end of synthesis by methylation of the desmethyl precursor with [11C]methyl iodide in the presence of NaH. Biodistribution of [11C]NPS 1506 in mice and rat demonstrated that uptake into the brain was rapid and occurred at high levels. [11C]NPS 1506 showed no appreciable specific binding in rodent brains under in vivo conditions, possibly because of both a large non-specific bound fraction and low in vitro binding affinity for NMDA receptors.
Collapse
Affiliation(s)
- Takeshi Fuchigami
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kimura M, Masuda T, Yamada K, Kubota N, Kawakatsu N, Mitani M, Kishii K, Inazu M, Namiki T. Novel diphenylalkyl piperazine derivatives with dual calcium antagonistic and antioxidative activities. Bioorg Med Chem Lett 2002; 12:1947-50. [PMID: 12113815 DOI: 10.1016/s0960-894x(02)00322-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Two types of novel diphenylalkyl piperazine derivatives containing the thio or aminopropanol moiety substituted by phenyl or benzyl group were synthesized, and evaluated for their calcium antagonistic and antioxidative activities. These compounds showed apparent inhibitions against KCl-induced contractions in isolated rat aorta. Among them, phenylamino compound 9 and benzylamino compound 13 also possessed potent inhibitory activities against auto-oxidative lipid peroxidations in canine brain homogenates. Two representative compounds 3a and 9 were evaluated for their inhibitory activities against KCl-induced contractions in isolated canine arteries (basilar, coronary, mesenteric, and renal). Both compounds showed the most potent inhibitions to basilar artery.
Collapse
Affiliation(s)
- Makoto Kimura
- Pharmaceutical R & D Laboratories, POLA Chemical Industries Inc., 560, Kashio-cho, Totsuka-ku, Yokohama, Kanagawa 244-0812, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Legos JJ, Tuma RF, Barone FC. Pharmacological interventions for stroke: failures and future. Expert Opin Investig Drugs 2002; 11:603-14. [PMID: 11996643 DOI: 10.1517/13543784.11.5.603] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Given the few options currently available for patients following ischaemic stroke, the recent disappointing failures of several large-scale Phase III clinical trials has made the search for novel therapeutic approaches even more critical. Experimental evidence has suggested that the majority of stroke patients have a slow evolution of brain injury which can occur over several hours. Progressive microcirculatory failure following the initial onset of ischaemia may contribute to the expansion of brain injury. Included among the pathophysiological changes that are speculated to occur as a secondary response to the initial ischaemia are free radical production, excitotoxicity (for example, glutamate) disruption of ionic homeostasis (for example, sodium and calcium influx), enzymatic changes, stimulation of the inflammatory process, endothelin release, activation of platelets and leukocytes, delayed coagulation and endothelial dysfunction. All of these pathophysiological reactions could contribute to an increase in local vascular resistance and therefore cause progressive hypoperfusion of the brain following the onset of stroke. The scope of this review will focus on recent clinical failures in addition to agents currently in clinical development, comparing vascular targets to the common neuroprotective strategies.
Collapse
Affiliation(s)
- Jeffrey J Legos
- High Throughput Biology, Discovery Research, GlaxoSmithKline, King of Prussia, PA, USA.
| | | | | |
Collapse
|
12
|
Higuchi T, Takeda Y, Hashimoto M, Nagano O, Hirakawa M. Dynamic changes in cortical NADH fluorescence and direct current potential in rat focal ischemia: relationship between propagation of recurrent depolarization and growth of the ischemic core. J Cereb Blood Flow Metab 2002; 22:71-9. [PMID: 11807396 DOI: 10.1097/00004647-200201000-00009] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Forty rats were subjected to 3 hours of focal ischemia by occluding the left middle cerebral and left common carotid arteries. The propagation of recurrent depolarization around the ischemic core was analyzed using direct-current potential and NADH (reduced nicotinamide adenine dinucleotide) fluorescence images by irradiating the parietal-temporal cortex with ultraviolet light. Based on histological evaluation at direct-current recording sites, the total time of depolarization causing 50% neuronal injury was estimated to be 18.2 minutes. The sites showing recurrent depolarizations resulted in 23 +/- 29% neuronal injury due to the short depolarization time, whereas the sites showing recurrent depolarizations and eventually persistent depolarization resulted in infarction. The NADH fluorescence images showed that recurrent depolarizations propagated along the margin of the ischemic core. In 85.9% of the recurrent depolarizations, the fluorescence disappeared without leaving any traces and did not affect the area of the ischemic core. However, in 47.5% of the animals, 14.1% of recurrent depolarizations merged with the ischemic core and increased the area by 6 +/- 4 mm(2). These findings suggest that recurrent depolarization increases the severity of neuronal injury but does not cause infarction by itself if persistent depolarization does not follow, and that the area of persistent depolarization is enlarged with 14.1% of recurrent depolarizations.
Collapse
Affiliation(s)
- Tomoyasu Higuchi
- Department of Anesthesiology and Resuscitology, Okayama University Medical School, Okayama City, Okayama, Japan
| | | | | | | | | |
Collapse
|
13
|
Palmer GC, Peeling J, Corbett D, Del Bigio MR, Hudzik TJ. T2-weighted MRI correlates with long-term histopathology, neurology scores, and skilled motor behavior in a rat stroke model. Ann N Y Acad Sci 2001; 939:283-96. [PMID: 11462782 DOI: 10.1111/j.1749-6632.2001.tb03636.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The intraluminal suture model of transient middle cerebral artery occlusion (MCAO) in the Sprague Dawley strain of rats characteristically results in an inconsistently sized brain lesion. The purpose of the investigation reported here was to determine whether there were strong point-to-point correlations between the degree of cortical lesion size, as assessed in vivo using T2-weighted magnetic resonance imaging (MRI) and corresponding cortical lesion size using routine histopathological techniques. Moreover, we aimed to investigate if cortical lesion size as determined by these two modalities correlates with neurological and/or skilled motor deficits observed in individual animals. Baseline behavioral scores were obtained on the animals prior to receiving 60 min of transient MCAO. Following MCAO, animals were tested for 1-21 days for neurological deficits. T2-weighted MRIs of the cortex were taken at two and seven days post-MCAO. At 30 and 60 days the rats were retested for forelimb dexterity in the staircase test. Subsequently, the cortex was examined for histopathological damage. Indeed, there were highly significant correlations between lesion size determined by MRI and histopathology. The degree of cortical damage observed in the T2-weighted MRI, as well as the size of the histopathological lesions were, in turn, highly correlated with the degrees of deficiencies observed in the composite neurological assessments and with the deficits involving skilled use of the contralateral forepaw (damaged side).
Collapse
Affiliation(s)
- G C Palmer
- AstraZeneca R&D Boston, 3 Biotech, One Innovation Dr. Worcester, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
14
|
Lorber A, Artru AA, Lam MA, Mueller LA, Karpas Z, Roytblat L, Shapira Y. NPS 1506: a novel NMDA receptor antagonist: neuroprotective effects in a model of closed head trauma in rats. J Neurosurg Anesthesiol 2000; 12:345-55. [PMID: 11147383 DOI: 10.1097/00008506-200010000-00007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We examined whether NPS 1506, a novel uncompetitive N-methyl-D-aspartate receptor antagonist, influences neurological outcome following closed head trauma (CHT) in rats. One hundred ten rats were divided into 11 groups: CHT (yes/no), treatment with NPS 1506 (yes/no), and time of euthanization (24 h/48 h). The dose of NPS 1506 was 1 mg/kg IV at 1 and 4 hours following CHT or sham operation. Closed head trauma induced the following changes in the injured hemisphere: Decreased specific gravity (sg) (1.036 +/- 0.006) and magnesium (Mg) (0.042 +/- 0.005 microg/mg) at 24 hours, and potassium (K) at 24 (1.145 +/- 0.376 microg/mg) and 48 hours, and increased water content (W) (84.9 +/- 2.5%) and sodium (Na) (2.135 +/- 0.699 microg/mg) at 24 hours, and calcium (Ca) at 24 (0.543 +/- 0.157 microg/mg) and 48 hours. These were reversed by NPS 1506; sg of 1.043 +/- 0.004, Mg of 0.077 +/- 0.009 microg/mg, K of 1.930 +/- 0.238 microg/mg, W of 81.5 +/- 1.9%, Ca of 0.043 +/- 0.023 microg/mg, and Na of 0.688 +/- 0.110 microg/mg. In groups not given NPS 1506, a nonsignificant decrease in neurological severity score (NSS) occurred at 24 and 48 hours as compared to NSS at 1 hour after CHT. In groups given NPS 1506, NSS at 24 and 48 hours decreased significantly (improved) compared to NSS at 1 hour, but not compared to NSS at 24 and 48 hours in groups not given NPS 1506. NPS 1506 caused no significant change in ischemic tissue volume or hemorrhagic necrosis volume in the injured hemisphere at 24 hours or 48 hours. These findings indicate that NPS 1506 improved measures of brain tissue edema (at 24 hours but not at 48 hours) and ion homeostasis, and this improvement was not related to other measures of outcome.
Collapse
Affiliation(s)
- A Lorber
- Department of Analytical Chemistry, Nuclear Research Center of the Negev, Beer Sheva, Israel
| | | | | | | | | | | | | |
Collapse
|
15
|
Vanderklish PW, Bahr BA. The pathogenic activation of calpain: a marker and mediator of cellular toxicity and disease states. Int J Exp Pathol 2000; 81:323-39. [PMID: 11168679 PMCID: PMC2517738 DOI: 10.1111/j.1365-2613.2000.00169.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2000] [Accepted: 08/14/2000] [Indexed: 11/30/2022] Open
Abstract
Over-activation of calpain, a ubiquitous calcium-sensitive protease, has been linked to a variety of degenerative conditions in the brain and several other tissues. Dozens of substrates for calpain have been identified and several of these have been used to measure activation of the protease in the context of experimentally induced and naturally occurring pathologies. Calpain-mediated cleavage of the cytoskeletal protein spectrin, in particular, results in a set of large breakdown products (BDPs) that are unique in that they are unusually stable. Over the last 15 years, measurements of BDPs in experimental models of stroke-type excitotoxicity, hypoxia/ischemia, vasospasm, epilepsy, toxin exposure, brain injury, kidney malfunction, and genetic defects, have established that calpain activation is an early and causal event in the degeneration that ensues from acute, definable insults. The BDPs also have been found to increase with normal ageing and in patients with Alzheimer's disease, and the calpain activity may be involved in related apoptotic processes in conjunction with the caspase family of proteases. Thus, it has become increasingly clear that regardless of the mode of disturbance in calcium homeostasis or the cell type involved, calpain is critical to the development of pathology and therefore a distinct and powerful therapeutic target. The recent development of antibodies that recognize the site at which spectrin is cleaved has greatly facilitated the temporal and spatial resolution of calpain activation in situ. Accordingly, sensitive spectrin breakdown assays now are utilized to identify potential toxic side-effects of compounds and to develop calpain inhibitors for a wide range of indications including stroke, cerebral vasospasm, and kidney failure.
Collapse
Affiliation(s)
- P W Vanderklish
- Department of Neurobiology, Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|