1
|
Naert G, Pasdelou MP, Le Prell CG. Use of the guinea pig in studies on the development and prevention of acquired sensorineural hearing loss, with an emphasis on noise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3743. [PMID: 31795705 PMCID: PMC7195866 DOI: 10.1121/1.5132711] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 05/10/2023]
Abstract
Guinea pigs have been used in diverse studies to better understand acquired hearing loss induced by noise and ototoxic drugs. The guinea pig has its best hearing at slightly higher frequencies relative to humans, but its hearing is more similar to humans than the rat or mouse. Like other rodents, it is more vulnerable to noise injury than the human or nonhuman primate models. There is a wealth of information on auditory function and vulnerability of the inner ear to diverse insults in the guinea pig. With respect to the assessment of potential otoprotective agents, guinea pigs are also docile animals that are relatively easy to dose via systemic injections or gavage. Of interest, the cochlea and the round window are easily accessible, notably for direct cochlear therapy, as in the chinchilla, making the guinea pig a most relevant and suitable model for hearing. This article reviews the use of the guinea pig in basic auditory research, provides detailed discussion of its use in studies on noise injury and other injuries leading to acquired sensorineural hearing loss, and lists some therapeutics assessed in these laboratory animal models to prevent acquired sensorineural hearing loss.
Collapse
Affiliation(s)
| | | | - Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| |
Collapse
|
2
|
Staudt AM, Whitworth KW, Chien LC, Whitehead LW, Gimeno Ruiz de Porras D. Association of organic solvents and occupational noise on hearing loss and tinnitus among adults in the U.S., 1999-2004. Int Arch Occup Environ Health 2019; 92:403-413. [PMID: 30806784 PMCID: PMC8849935 DOI: 10.1007/s00420-019-01419-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE Exposure to organic solvents and noise may be causal agents in the development of hearing loss and tinnitus. The objectives of the present study were to examine the association of organic solvents with hearing loss and tinnitus and to assess the interaction of organic solvent and occupational noise exposure on hearing loss and tinnitus. METHODS A secondary data analysis of data from the National Health and Nutrition Examination Survey and Occupational Information Network (O*NET) among a study population ranging from 1085 to 2471 study participants from 1999 to 2004. Multiple multivariate logistic regression models were used to assess the associations of individual organic solvent exposures as measured by blood biomarkers (1,4-dichlorobenzene, benzene, ethylbenzene, styrene, toluene, o-xylene, and m-/p-xylene) with self-reported hearing loss, audiometrically assessed hearing loss, and self-reported tinnitus. Models were adjusted for age, gender, race/ethnicity, diabetes, non-occupational noise exposure, smoking, and income. Organic solvents found to be statistically significantly associated with the outcome after adjusting for covariates were tested for interaction with occupational noise exposure. RESULTS Solvent exposure was not statistically significantly associated with self-reported tinnitus. Benzene (OR 1.43, 95% CI 1.15-1.78), ethylbenzene (OR 1.24, 95% CI 1.02-1.50), and toluene (OR 1.27, 95% CI 1.06-1.52) concentrations were statistically significantly associated with increased adjusted odds of high-frequency hearing loss. No statistically significant interaction was observed between these solvents and occupational noise on high-frequency hearing loss. CONCLUSIONS We found no evidence of an association between organic solvents and tinnitus; however, there was evidence of an association between organic solvent exposure and prevalence of high-frequency hearing loss.
Collapse
Affiliation(s)
- Amanda M. Staudt
- Systems of Care for Complex Patients (SCCP) Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX 78234, USA,Southwest Center for Occupational and Environmental Health, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health in San Antonio, The University of Texas Health Science Center at Houston, San Antonio, TX, USA
| | - Kristina W. Whitworth
- Southwest Center for Occupational and Environmental Health, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health in San Antonio, The University of Texas Health Science Center at Houston, San Antonio, TX, USA
| | - Lung-Chang Chien
- Epidemiology and Biostatistics Program, Department of Environmental and Occupational Health, School of Community Health Sciences, University of Nevada, Las Vegas, USA
| | - Lawrence W. Whitehead
- Southwest Center for Occupational and Environmental Health, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David Gimeno Ruiz de Porras
- Southwest Center for Occupational and Environmental Health, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health in San Antonio, The University of Texas Health Science Center at Houston, San Antonio, TX, USA,Center for Research in Occupational Health (CISAL), Universitat Pompeu Fabra, Barcelona, Spain,CIBER of Epidemiology and Public Health, Barcelona, Spain
| |
Collapse
|
3
|
Gauvin DV, Yoder JD, Tapp RL, Baird TJ. Small Compartment Toxicity: CN VIII and Quality of Life: Hearing Loss, Tinnitus, and Balance Disorders. Int J Toxicol 2017; 36:8-20. [PMID: 27194512 DOI: 10.1177/1091581816648905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Life experiences, industrial/environmental exposures, and administration of Food and Drug Administration (FDA)-approved drugs may have unintended but detrimental effects on peripheral and central auditory pathways. Most relevant to the readership of this journal is the role that drug treatments approved by the FDA as safe and effective appear to interact with 3 independent modes of toxicity within the small compartment of the ear. What may seem to be trivial drug-induced toxicity has the potential to change important measures of quality of life and functional capacity of mid- to late-life patients. Drugs meant to treat can become the source of interference in the activities of daily living, and as a result, treatment compliance may be jeopardized. Ototoxicity has been defined as the tendency of certain therapeutic agents and other chemical substances to cause functional impairments and cellular degeneration of the tissues of the inner ear resulting in hearing loss. However, one of the largest contributors to hospitalizations is fall-related injuries in the elderly patients associated with disorders of vestibular function linked to progressive and drug-induced toxicities. Tinnitus affects 35 to 50 million adults representing approximately 25% of the US population, with 12 million seeking medical care and 2 to 3 million reporting symptoms that were severely debilitating. This review is intended to highlight these targets of neurotoxicity that threaten the usefulness of drug treatments deemed safe and effective prior to access by the general public.
Collapse
Affiliation(s)
- David V Gauvin
- Neurobehavioral Sciences, MPI Research Inc, Mattawan, MI, USA
| | - Joshua D Yoder
- Neurobehavioral Sciences, MPI Research Inc, Mattawan, MI, USA
| | - Rachel L Tapp
- Neurobehavioral Sciences, MPI Research Inc, Mattawan, MI, USA
| | | |
Collapse
|
4
|
Cannizzaro E, Cannizzaro C, Plescia F, Martines F, Soleo L, Pira E, Lo Coco D. Exposure to ototoxic agents and hearing loss: A review of current knowledge. HEARING BALANCE AND COMMUNICATION 2014. [DOI: 10.3109/21695717.2014.964939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Abstract
This article discusses various theories of aging and their relative plausibility related to the human aging process. Structural and physiologic changes of aging are discussed in detail by organ system. Each of the organ systems is discussed when applicable to the various theories of aging. Normal versus abnormal aging is discussed in the context of specific aging processes, with atypical presentations of disease and general links to life expectancy. Life expectancy and lifespan are discussed in the context of advances in medical science and the potential ultimate link to human life span.
Collapse
Affiliation(s)
- Charles A Cefalu
- Department of Medicine, Louisiana State University Health Sciences Center, 1542 Tulane Avenue, New Orleans, LA 70113, USA.
| |
Collapse
|
6
|
Zheng Y, Rayner M, Feng L, Hu X, Zheng X, Bearth E, Lin J. EGF Mediates Survival of Rat Cochlear Sensory Cells via an NF-κB Dependent Mechanism In Vitro. ACTA ACUST UNITED AC 2008; 2:9-15. [PMID: 19920873 DOI: 10.2174/1874082000802010009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The survival of cochlear epithelial cells is of considerable importance, biologically. However, little is known about the growth factor(s) that are involved in the survival of cochlear sensory epithelial cells. In this study, we demonstrated that epidermal growth factor (EGF) plays a role in the survival of cochlear epithelial cells. Firstly, the presence of the EGF signaling pathway was demonstrated in the developing cochlear tissues of rats and a sensory epithelial cell line (OC1): -- epidermal growth factor receptor (EGFR), mitogen-activated protein kinase kinase (MAPKK), I kappa B alpha (IκBα), nuclear factor kappa B (NF-κB), and B cell lymphoma 2 (Bcl-2). Secondly, the addition of EGF to OC1 increased the promoter activity of NF-κB and cell viability but not cell cycle progression and cell number increase -- which suggests that EGF is for cellular survival rather than cell proliferation of OC1. Finally, pyrrolidine dithiocarbamate (PDTC, an inhibitor of NF-κB) and inhibitor kappa B alpha (IκBα) mutant (IκBαM, a specific inhibitor of NF-κB) abrogated the EGF-induced NF-κB activity and cell survival. These data suggest that EGF plays a role in the survival of cochlear sensory epithelial cells through the EGFR/MAPKK/IκBα/NF-κB/Bcl-2 pathway.
Collapse
Affiliation(s)
- Yiqing Zheng
- Departments of Otolaryngology, University of Minnesota School of Medicine, Minneapolis, MN
| | | | | | | | | | | | | |
Collapse
|
7
|
Pfannenstiel S, Praetorius M. [Protection and regeneration of sensory epithelia of the inner ear]. HNO 2008; 56:13-20. [PMID: 18210008 DOI: 10.1007/s00106-007-1631-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dysfunctions of the inner ear such as hearing impairment due to noise exposure or presbycusis and vertigo are often caused by loss of hair cells in the sensory epithelium. There is still no specific therapy, just technical aids. Options for protecting and regenerating hair cells are explained here. The inhibition of apoptosis via caspases is presently the main target of research. They are involved in damage caused by aminoglycosides, cisplatin, or noise exposure. Bcl-2, growth factors, and oxidative stress are discussed. In regeneration the transdifferentiation of supporting cells to hair cells is explained. This can be achieved with local gene therapy using math1. Approach and media for the application are discussed, while viral vectors such as the adenovector seem the most promising in research.
Collapse
Affiliation(s)
- S Pfannenstiel
- Sektion Otologie und Neuro-Otologie, Hals-Nasen-Ohrenklinik,Universitätsklinikum, Im Neuenheimer Feld 400 , 69120, Heidelberg, Deutschland
| | | |
Collapse
|
8
|
Thomas Dickey D, Muldoon LL, Kraemer DF, Neuwelt EA. Protection against cisplatin-induced ototoxicity by N-acetylcysteine in a rat model. Hear Res 2004; 193:25-30. [PMID: 15219317 DOI: 10.1016/j.heares.2004.02.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Accepted: 02/27/2004] [Indexed: 11/19/2022]
Abstract
Cisplatin (CDDP) is a widely used chemotherapeutic agent that is highly ototoxic. Animal studies and clinical trials have shown that thiosulfates can protect against platinum-induced ototoxicity. This study investigated a new model for CDDP ototoxicity in the rat, and tested the potential chemoprotective effect of administering N-acetylcysteine (NAC) before giving CDDP. Long Evans rats were treated with CDDP 6 mg/kg delivered to the aorta via a retrograde right external carotid artery infusion, 15 min after intravenous (IV) infusion of saline (n=8) or NAC 400 mg/kg (n=8), such that the vertebral arteries were perfused. Subsequent groups were similarly treated with NAC 30 min before (n=7) and 4 h after (n=7) CDDP. Auditory brainstem response (ABR) thresholds were tested at 4-20 kHz, 7 days after treatment and compared to baseline ABR values. The NAC-treated rats exhibited no significant change from baseline values at all time intervals, while the saline-treated rats showed marked ototoxicity, especially at higher frequencies. Furthermore, the rats treated with NAC 15 min before CDDP exhibited less overall toxicity to CDDP, as evidenced in weight loss 7 days post-treatment (mean for saline=-39.63 g; mean for NAC=-21.13 g; p=0.0084). These data show that treatment with NAC can prevent CDDP-induced ototoxicity in rats.
Collapse
Affiliation(s)
- D Thomas Dickey
- Department of Neurology, Oregon Health and Science University, Portland, OR 97201-3098, USA
| | | | | | | |
Collapse
|
9
|
Blakley BW, Cohen JI, Doolittle ND, Muldoon LL, Campbell KC, Dickey DT, Neuwelt EA. Strategies for prevention of toxicity caused by platinum-based chemotherapy: review and summary of the annual meeting of the Blood-Brain Barrier Disruption Program, Gleneden Beach, Oregon, March 10, 2001. Laryngoscope 2002; 112:1997-2001. [PMID: 12439169 DOI: 10.1097/00005537-200211000-00016] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To summarize the findings relevant to otolaryngology from the annual meeting of the Blood-Brain Barrier Disruption Consortium in Gleneden Beach, Oregon, March 10, 2001. STUDY DESIGN Summaries are provided by the speakers, as well as related data from the published literature. Findings in otology and oncology regarding ototoxicity that were discussed at the meeting are included. RESULTS Data considered included physiological research, animal studies, and clinical trials that relate to platinum-based chemotherapy and prevention of toxicity. CONCLUSIONS The dose-limiting side effects of platinum-based chemotherapy are preventable, but questions about the effect of the protective agents on oncological efficacy remain. Strategies for prevention of chemotherapy-induced toxicity include temporal or anatomical separation of cisplatin or carboplatin from sodium thiosulfate, D-methionine, or N-acetyl-cysteine. Clinical application of these methods has begun. The mechanisms presumably involve free radicals or drug conjugation, or both. Understanding the role of free radicals in medicine is likely to become important in the future.
Collapse
Affiliation(s)
- Brian W Blakley
- Department of Otolaryngology, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | | | |
Collapse
|