1
|
Hadadi M, Farazi MM, Mehrabani M, Tashakori-Miyanroudi M, Behroozi Z. Curcumin reduces pain after spinal cord injury in rats by decreasing oxidative stress and increasing GABAA receptor and GAD65 levels. Sci Rep 2025; 15:12910. [PMID: 40234536 PMCID: PMC12000590 DOI: 10.1038/s41598-025-93726-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
About 70% of spinal cord injury (SCI) patients experience neuropathic pain (NP), posing an important medical challenge. Painkillers are used to manage pain today and often have undesirable side effects. Curcumin's antioxidant properties may help alleviate NP following SCI (NP-SCI). We decided to study curcumin's effects on NP-SCI for the first time. Male Wistar rats were divided into five groups (n = 8): Control (no injury/no treatment), Sham (laminectomy), SCI (spinal cord compression at T11-T12 using a clip), Curcumin100 and Curcumin200 (Curcumin at 100 and 200 mg/kg administered 30 min after SCI for 10days). Motor function, allodynia, and hyperalgesia were assessed using the BBB scale, acetone, and tail-flick until six weeks after SCI. H&E staining for assaying cavity, western blot for measuring GAD65 and GABA-A receptors, and biochemical kits for assaying SOD, catalase, total antioxidant capacity, and MDA were used. PRISM software analyzed data. Results showed significant improvements in motion, allodynia, hyperalgesia, cavity, urinary retention (P < 0.0001), and weight in curcumin treatments. There was also a reduction in MDA, with increasing GABA-A receptors, GAD65, and antioxidants in them. Findings suggest curcumin may provide good analgesic effects through its antioxidants, and extensive studies are needed to confirm it as a treatment for NP-SCI in the clinic. Keyboards: spinal cord injury, curcumin, antioxidant, pain, GABA, GAD65 enzyme.
Collapse
Affiliation(s)
- Maryam Hadadi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Mojtaba Farazi
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahsa Tashakori-Miyanroudi
- Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Behroozi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Tassou A, Richebe P, Rivat C. Mechanisms of chronic postsurgical pain. Reg Anesth Pain Med 2025; 50:77-85. [PMID: 39909543 DOI: 10.1136/rapm-2024-105964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/25/2024] [Indexed: 02/07/2025]
Abstract
Chronic pain after surgery, also known as chronic postsurgical pain (CPSP), is recognized as a significant public health issue with serious medical and economic consequences. Current research on CPSP underscores the significant roles of both peripheral and central sensitization in pain development and maintenance. Peripheral sensitization occurs at the site of injury, through the hyperexcitability of nerve fibers due to surgical damage and the release of inflammatory mediators. This leads to increased expression of pronociceptive ion channels and receptors, such as transient receptor potential and acid-sensing ion channels (ASIC), enhancing pain signal transmission. Central sensitization involves long-term changes in the central nervous system, particularly in the spinal cord. In this context, sensitized spinal neurons become more responsive to pain signals, driven by continuous nociceptive input from the periphery, which results in an enhanced pain response characterized by hyperalgesia and/or allodynia. Key players in this process include N-methyl-D-aspartate receptor and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, along with proinflammatory cytokines and chemokines released by activated glia. These glial cells release substances that further increase neuronal excitability, maintaining the sensitized state and contributing to persistent pain. The activation of antinociceptive systems is required for the resolution of pain after surgery, and default in these systems may also be considered as an important component of CPSP. In this review, we will examine the clinical factors underlying CPSP in patients and the mechanisms previously established in preclinical models of CPSP that may explain how acute postoperative pain may transform into chronic pain in patients.
Collapse
Affiliation(s)
- Adrien Tassou
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Philippe Richebe
- Department of Anesthesiology and Pain Medicine, Polyclinique Bordeaux Nord Aquitaine (PBNA), Bordeaux, France
- Anesthesiology and Pain Medicine, Maisonneuve Rosemont Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Cyril Rivat
- University of Montpellier, Montpellier, France
- Institut des Neurosciences de Montpellier INSERM U1298, Montpellier, France
| |
Collapse
|
3
|
Oweidat A, Kalagara H, Sondekoppam RV. Current concepts and targets for preventing the transition of acute to chronic postsurgical pain. Curr Opin Anaesthesiol 2024; 37:588-596. [PMID: 39087396 DOI: 10.1097/aco.0000000000001424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
PURPOSE OF REVIEW It is estimated that approximately a third of patients undergoing certain surgeries may report some degree of persistent pain postoperatively. Chronic postsurgical pain (CPSP) reduces quality of life, is challenging to treat, and has significant socio-economic impact. RECENT FINDINGS From an epidemiological perspective, factors that predispose patients to the development of CPSP may be considered in relation to the patient, the procedure or, the care environment. Prevention or management of transition from acute to chronic pain often need a multidisciplinary approach beginning early in the preoperative period and continuing beyond surgical admission. The current concepts regarding the role of central and peripheral nervous systems in chronification of pain may provide targets for future therapies but, the current evidence seems to suggest that a multimodal analgesic approach of preventive analgesia along with a continued follow-up and treatment after hospital discharge may hold the key to identify and manage the transitioning of acute to chronic pain. SUMMARY A comprehensive multidisciplinary approach with prior identification of risk factors, minimizing the surgical insult and a culture of utilizing multimodal analgesia and continued surveillance beyond the period of hospitalization is an important step towards reducing the development of chronic pain. A transitional pain service model may accomplish many of these goals.
Collapse
Affiliation(s)
- Adeeb Oweidat
- Department of Anesthesia, University of Iowa Healthcare, Iowa City, Iowa
| | - Hari Kalagara
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | | |
Collapse
|
4
|
Nasirzadeh S, Hamidi GA, Banafshe HR, Tehrani MN, Shabani M, Abed A. The mutual effect of progesterone and vitamin D in an animal model of peripheral nerve injury. Res Pharm Sci 2024; 19:415-424. [PMID: 39399728 PMCID: PMC11468167 DOI: 10.4103/rps.rps_18_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/17/2023] [Accepted: 12/16/2023] [Indexed: 10/15/2024] Open
Abstract
Background and purpose Experimental and clinical studies have shown the potential role of progesterone in relieving neural injury. In addition, emerging data on vitamin D, a steroid hormone, have shown its neuroprotective properties. This study was designed to evaluate the mutual effect of vitamin D and progesterone on neuropathic pain (NP) in male rats. Experimental approach Chronic constriction injury (CCI) was induced by inserting four ligatures around the sciatic nerve. Hyperalgesia and allodynia (cold and mechanical) were considered positive behavioral scores of NP. After surgery, Sprague Dawley male rats (weighing 200-250 g) were assigned into 7 groups. Vitamin D (250 and 500 units/kg/day, i.p.) and progesterone (4 and 6 mg/kg/day, i.p.) were injected from the 1st day after CCI which continued for 21 days. Moreover, one group received the co-administration of vitamin D (500 units/kg/day, i.p.) and progesterone (6 mg/kg/day, i.p.) from the 1st day until the 21st post-CCI day. Behavioral tests were performed on the 7th, 14th, and 21st days. Findings/Results Daily supplementation with vitamin D (250 and 500 units/kg) did not alter nociception. Progesterone (4 and 6 mg/kg/day) was ineffective on thermal hyperalgesia. In the allodynia test, progesterone significantly decreased pain-related behaviors. The co-administration of vitamin D (500 units/kg/day) with progesterone (6 mg/kg/day) significantly relieved thermal hyperalgesia. Finally, the combination significantly decreased cold and mechanical allodynia. Conclusion and implications This study showed the mutual effect of progesterone and vitamin D on NP for the first time. Hyperalgesia and allodynia were significantly relieved following co-administration of vitamin D and progesterone.
Collapse
Affiliation(s)
- Sedighe Nasirzadeh
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Gholam Ali Hamidi
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Hamid Reza Banafshe
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Monireh Naderi Tehrani
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Mohammad Shabani
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Alireza Abed
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
5
|
Yakhnitsa V, Thompson J, Ponomareva O, Ji G, Kiritoshi T, Mahimainathan L, Molehin D, Pruitt K, Neugebauer V. Dysfunction of Small-Conductance Ca 2+-Activated Potassium (SK) Channels Drives Amygdala Hyperexcitability and Neuropathic Pain Behaviors: Involvement of Epigenetic Mechanisms. Cells 2024; 13:1055. [PMID: 38920682 PMCID: PMC11201618 DOI: 10.3390/cells13121055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Neuroplasticity in the amygdala and its central nucleus (CeA) is linked to pain modulation and pain behaviors, but cellular mechanisms are not well understood. Here, we addressed the role of small-conductance Ca2+-activated potassium (SK) channels in pain-related amygdala plasticity. The facilitatory effects of the intra-CeA application of an SK channel blocker (apamin) on the pain behaviors of control rats were lost in a neuropathic pain model, whereas an SK channel activator (NS309) inhibited pain behaviors in neuropathic rats but not in sham controls, suggesting the loss of the inhibitory behavioral effects of amygdala SK channels. Brain slice electrophysiology found hyperexcitability of CeA neurons in the neuropathic pain condition due to the loss of SK channel-mediated medium afterhyperpolarization (mAHP), which was accompanied by decreased SK2 channel protein and mRNA expression, consistent with a pretranscriptional mechanisms. The underlying mechanisms involved the epigenetic silencing of the SK2 gene due to the increased DNA methylation of the CpG island of the SK2 promoter region and the change in methylated CpG sites in the CeA in neuropathic pain. This study identified the epigenetic dysregulation of SK channels in the amygdala (CeA) as a novel mechanism of neuropathic pain-related plasticity and behavior that could be targeted to control abnormally enhanced amygdala activity and chronic neuropathic pain.
Collapse
Affiliation(s)
- Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jeremy Thompson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Olga Ponomareva
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Lenin Mahimainathan
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Deborah Molehin
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Kevin Pruitt
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
6
|
Pearl-Dowler L, Posa L, Lopez-Canul M, Teggin A, Gobbi G. Anti-allodynic and medullary modulatory effects of a single dose of delta-9-tetrahydrocannabinol (THC) in neuropathic rats tolerant to morphine. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110805. [PMID: 37257771 DOI: 10.1016/j.pnpbp.2023.110805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Neuropathic pain (NP) is often treated with opioids, the prolonged use of which causes tolerance to their analgesic effect and can potentially cause death by overdose. The phytocannabinoid delta-9-tetrahydrocannabinol (THC) may be an effective alternative analgesic to treat NP in morphine-tolerant subjects. Male Wistar rats developed NP after spared nerve injury, and were then treated with increasing doses of THC (1, 1.5, 2, 2.5, and 5 mg/kg, intraperitoneally), which reduced mechanical allodynia at the dose of 2.5 and 5 mg/kg. Another group of NP rats were treated with morphine (5 mg/kg, twice daily for 7 days, subcutaneously), until tolerance developed, and on day 8 received a single dose of THC (2.5 mg/kg), which significantly reduced mechanical allodynia. To evaluate the modulation of THC in the descending pain pathway, in vivo electrophysiological recordings of pronociceptive ON cells and antinociceptive OFF cells in the rostroventral medulla (RVM) were recorded after intra-PAG microinjection of THC (10 μg/μl). NP rats with morphine tolerance, compared to the control one, showed a tonic reduction of the spontaneous firing rate of ON cells by 44%, but the THC was able to further decrease it (a hallmark of many analgesic drugs acting at supraspinal level). On the other hand, the firing rate, of the antinociceptive OFF cells was increased after morphine tolerance by 133%, but the THC failed to further activate it. Altogether, these findings indicate that a single dose of THC produces antiallodynic effect in individuals with NP who are tolerant to morphine, acting mostly on the ON cells of the descending pain pathways, but not on OFF cells.
Collapse
Affiliation(s)
- Leora Pearl-Dowler
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Luca Posa
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Martha Lopez-Canul
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Alexandra Teggin
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada.
| |
Collapse
|
7
|
Clements MA, Kwilasz AJ, Litwiler ST, Sents Z, Woodall BJ, Hayashida K, Watkins LR. Intrathecal non-viral interleukin-10 gene therapy ameliorates neuropathic pain as measured by both classical static allodynia and a novel supra-spinally mediated pain assay, the Two-Arm Rodent Somatosensory (TARS) task. Brain Behav Immun 2023; 111:177-185. [PMID: 37037361 PMCID: PMC10330316 DOI: 10.1016/j.bbi.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
Intrathecal delivery of interleukin-10 (IL-10) gene therapy has been reported to be effective in suppressing pain enhancement in a variety of rodent models. However, all publications that have tested this treatment have relied upon measures of static allodynia (von Frey test) and thermal hyperalgesia (Hargreaves test). As this plasmid DNA IL-10 (pDNA-IL10) therapeutic approach is now in human clinical trials for multiple pain indications, including intrathecal delivery for human neuropathic pain, it is important to consider the recent concerns raised in the pain field that such tests reflect spinal rather than supraspinal processing of, and responsivity to, noxious stimuli. Consequently, this raises the question of whether intrathecal pDNA-IL10 can reverse established neuropathic pain when assessed by a test requiring supraspinal, rather than solely spinal, mediation of the behavioral response. The present study utilizes the rat sciatic chronic constriction injury (CCI) model of neuropathic pain to compare the expression of static allodynia with that of cognitively controlled choice behavior in a two-arm maze, adapted from Hayashida et al. (2019). This modification, termed the Two-Arm Rodent Somatosensory (TARS) task, provides rats free choice to reach a desired goal box via a short "arm" of the maze with tactile probes as flooring versus a longer "arm" of the maze with a smooth surface. Here we demonstrate that static allodynia and avoidance of the nociceptive flooring in TARS develop in parallel over time, and that both behaviors also resolve in parallel following intrathecal pDNA-IL10 gene therapy. Details for the construction and use of this new maze design are also provided. Together, this study documents both: (a) the important finding that intrathecal IL-10 gene therapy does indeed resolve neuropathic pain as measured by a supraspinally-mediated behavioral task, and (b) a new, supraspinally-mediated task that allows behavioral assessments across weeks and allows the analysis of both development and resolution of neuropathic pain by therapeutic interventions. As such, the TARS operant behavior task is an improvement over other approaches such as the mechanical conflict-avoidance system which have difficulties demonstrating development and reversal of pain behavior in a within-subject design.
Collapse
Affiliation(s)
- M A Clements
- Department of Psychology and Neuroscience, University of Colorado - Boulder, Boulder, CO, USA
| | - A J Kwilasz
- Department of Psychology and Neuroscience, University of Colorado - Boulder, Boulder, CO, USA
| | - S T Litwiler
- Department of Psychology and Neuroscience, University of Colorado - Boulder, Boulder, CO, USA
| | - Z Sents
- Department of Engineering, University of Colorado - Boulder, Boulder, CO, USA
| | - B J Woodall
- Department of Psychology and Neuroscience, University of Colorado - Boulder, Boulder, CO, USA
| | - K Hayashida
- Pharmacology Department, Shin Nippon Biomedical Laboratories, Ld., Kagoshima, Japan
| | - L R Watkins
- Department of Psychology and Neuroscience, University of Colorado - Boulder, Boulder, CO, USA.
| |
Collapse
|
8
|
Pereira-Silva R, Serrão P, Lourença Neto F, Martins I. Diffuse noxious inhibitory controls in chronic joint inflammatory Pain: Study of the descending serotonergic modulation mediated through 5HT3 receptors. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100123. [PMID: 36915290 PMCID: PMC10006856 DOI: 10.1016/j.ynpai.2023.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
The loss of diffuse noxious inhibitory controls (DNIC) is recognized as a predictor of chronic pain. Mechanistically, DNIC produces analgesia by a heterotopically applied conditioning-noxious stimulus (CS) and yet underexplored descending modulatory inputs. Here, we aimed at studying DNIC in monoarthritis (MA) by exploring the spinal component of the descending serotonergic system, specifically 5-hydroxytryptamine 3 receptors (5-HT3R). MA was induced in male Wistar rats by tibiotarsal injection of complete Freund's adjuvant. Mechanical hyperalgesia and DNIC were assessed weekly by the Randall-Selitto test. Immunohistochemistry was used to quantify spinal 5-HT3R, and tryptophan hydroxylase (TPH) colocalization with phosphorylated extracellular signal-regulated protein kinases 1/2 at the rostroventromedial medulla (RVM). Spinal serotonin (5-HT) was quantified by HPLC. The effects of intrathecal ondansetron, a 5-HT3R antagonist, were assessed on mechanical hyperalgesia and DNIC. MA resulted in a prolonged steady-state mechanical hyperalgesia. In contrast, DNIC peaked after 28 days, decreasing afterwards until extinction at 42 days. At this later timepoint, MA rats showed increased: (i) spinal 5-HT3R and 5-HT levels, (ii) neuronal serotonergic activation and TPH expression at the RVM. Ondansetron reversed mechanical hyperalgesia and restored DNIC, regardless of being administered before or after CS. However, data variability was higher upon administration before CS in MA-animals. Prolonged MA upregulates the descending serotonergic modulation, which simultaneously results in increased nociception and DNIC extinction, through 5-HT3R. Our data suggest a role for spinal 5-HT3R in the top-down modulation of DNIC. Additionally, these receptors may also be involved in the bottom-up circuitry implicated in the trigger of DNIC.
Collapse
Affiliation(s)
- Raquel Pereira-Silva
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (I3S). Rua Alfredo Allen 208, 4200 393 Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto. Rua Alfredo Allen 208, 4200-393 Porto, Portugal.,Departamento de Biomedicina - Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto. Alameda Prof. Hernâni Monteiro 4200-319 Porto, Portugal
| | - Paula Serrão
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto. Alameda Prof. Hernâni Monteiro 4200-319 Porto, Portugal.,MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto. Alameda Prof. Hernâni Monteiro 4200-319 Porto, Portugal
| | - Fani Lourença Neto
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (I3S). Rua Alfredo Allen 208, 4200 393 Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto. Rua Alfredo Allen 208, 4200-393 Porto, Portugal.,Departamento de Biomedicina - Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto. Alameda Prof. Hernâni Monteiro 4200-319 Porto, Portugal
| | - Isabel Martins
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (I3S). Rua Alfredo Allen 208, 4200 393 Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto. Rua Alfredo Allen 208, 4200-393 Porto, Portugal.,Departamento de Biomedicina - Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto. Alameda Prof. Hernâni Monteiro 4200-319 Porto, Portugal
| |
Collapse
|
9
|
Othman R, Swain N, Tumilty S, Jayakaran P, Mani R. Sensitivity to movement-evoked pain, central sensitivity symptoms, and pro-nociceptive profiles in people with chronic shoulder pain: A parallel-group cross-sectional investigation. Pain Pract 2023; 23:41-62. [PMID: 36617189 DOI: 10.1111/papr.13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/25/2022] [Accepted: 07/25/2022] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To investigate whether sensitivity to movement-evoked pain (SMEP), central sensitivity symptom burden, and quantitative sensory testing (QST) outcomes differ between healthy controls and people with chronic shoulder pain. METHODS People with chronic shoulder pain (n = 39) and healthy controls (n = 26) completed validated questionnaires measuring demographic, pain characteristics, psychological factors, social support, sleep quality, central sensitivity inventory (CSI), and physical activity levels. A blinded assessor administered QST measuring pressure pain threshold, temporal summation, conditioned pain modulation, and cold hyperalgesia. All participants performed repeated lifting of weighted canisters and reported severity of pain over successive lifts of the weighted canisters. Between-group differences in the QST, SMEP and CSI scores were investigated. Demographic and psychosocial variables were adjusted in the analyses. RESULTS Dynamic mechanical allodynia, mechanical temporal summation, movement-evoked pain scores, SMEP index, and CSI scores were significantly (p ≤ 0.05) higher in the chronic shoulder pain group than in healthy controls. A significant proportion of people with chronic shoulder pain presented with pro-nociceptive profiles and experienced higher pain severity, interference, and disability. CONCLUSIONS People with chronic shoulder pain displayed symptoms and signs of central sensitization. Future research should investigate the predictive role of central sensitization on clinical outcomes in shoulder pain.
Collapse
Affiliation(s)
- Rani Othman
- Centre for Health, Activity and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
| | - Nicola Swain
- Psychological Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Steve Tumilty
- Centre for Health, Activity and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
| | - Prasath Jayakaran
- Centre for Health, Activity and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
| | - Ramakrishnan Mani
- Centre for Health, Activity and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Antinociceptive effect of N-acetyl glucosamine in a rat model of neuropathic pain. Acta Neuropsychiatr 2022; 34:260-268. [PMID: 35109948 DOI: 10.1017/neu.2022.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE This study was aimed at evaluating the efficacy of glucosamine and potential mechanisms of actions in a neuropathic pain model in rats. METHODS Glucosamine (500, 1000 and 2000 mg/kg) was administered via gavage route, 1 day before the chronic constriction injury (CCI) of sciatic nerve and daily for 14 days (prophylactic regimen), or from days 5 to 14 post-injury (therapeutic regimen), as the indicators of neuropathic pain, mechanical allodynia, cold allodynia and thermal hyperalgesia were assessed on days 0, 3, 5, 7, 10 and 14 after ligation. Inducible nitric oxide synthase (iNOS) and tumour necrosis factor alpha (TNF-α) gene expressions were measured by real-time polymerase chain reaction. TNF-α protein content was measured using the enzyme-linked immunosorbent assay method. RESULTS Three days after nerve injury, the threshold of pain was declined among animals subjected to neuropathic pain. Mechanical and cold allodynia, as well as thermal hyperalgesia were attenuated by glucosamine (500, 1000, 2000 mg/kg) in the prophylactic regimen. However, existing pain was not decreased by this drug. Increased mRNA expression of iNOS and TNF-α was significantly reduced in the spinal cord of CCI animals by glucosamine (500, 1000, 2000 mg/kg) in the prophylactic regimen. The overall expression of spinal TNF-α was increased by CCI, but this increase was reduced in animals receiving glucosamine prophylactic treatment. CONCLUSION Findings suggest that glucosamine as a safe supplement may be a useful candidate in preventing neuropathic pain following nerve injury. Antioxidant and anti-inflammatory effects may be at least in part responsible for the antinociceptive effects of this drug.
Collapse
|
11
|
Xiang T, Li JH, Su HY, Bai KH, Wang S, Traub RJ, Cao DY. Spinal CCK1 Receptors Contribute to Somatic Pain Hypersensitivity Induced by Malocclusion via a Reciprocal Neuron-Glial Signaling Cascade. THE JOURNAL OF PAIN 2022; 23:1629-1645. [PMID: 35691467 PMCID: PMC9560966 DOI: 10.1016/j.jpain.2022.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Recent studies have shown that the incidence of chronic primary pain including temporomandibular disorders (TMD) and fibromyalgia syndrome (FMS) often exhibit comorbidities. We recently reported that central sensitization and descending facilitation system contributed to the development of somatic pain hypersensitivity induced by orofacial inflammation combined with stress. The purpose of this study was to explore whether TMD caused by unilateral anterior crossbite (UAC) can induce somatic pain hypersensitivity, and whether the cholecystokinin (CCK) receptor-mediated descending facilitation system promotes hypersensitivity through neuron-glia cell signaling cascade. UAC evoked thermal and mechanical pain hypersensitivity of the hind paws from day 5 to 70 that peaked at week 4 post UAC. The expression levels of CCK1 receptors, interleukin-18 (IL-18) and IL-18 receptors (IL-18R) were significantly up-regulated in the L4 to L5 spinal dorsal horn at 4 weeks post UAC. Intrathecal injection of CCK1 and IL-18 receptor antagonists blocked somatic pain hypersensitivity. IL-18 mainly co-localized with microglia, while IL-18R mainly co-localized with astrocytes and to a lesser extent with neurons. These findings indicate that the signaling transduction between neurons and glia at the spinal cord level contributes to the descending pain facilitation through CCK1 receptors during the development of the comorbidity of TMD and FMS. PERSPECTIVE: CCK1 receptor-dependent descending facilitation may mediate central mechanisms underlying the development of widespread somatic pain via a reciprocal neuron-glial signaling cascade, providing novel therapeutic targets for the clinical treatment of TMD and FMS comorbidities.
Collapse
Affiliation(s)
- Ting Xiang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China; Department of Orthodontics, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China
| | - Jia-Heng Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China
| | - Han-Yu Su
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China
| | - Kun-Hong Bai
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China
| | - Shuang Wang
- Department of Orthodontics, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China
| | - Richard J Traub
- Department of Neural and Pain Sciences, School of Dentistry; Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, Maryland.
| | - Dong-Yuan Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China.
| |
Collapse
|
12
|
Wie C, Ghanavatian S, Pew S, Kim A, Strand N, Freeman J, Maita M, Covington S, Maloney J. Interventional Treatment Modalities for Chronic Abdominal and Pelvic Visceral Pain. Curr Pain Headache Rep 2022; 26:683-691. [PMID: 35788892 DOI: 10.1007/s11916-022-01072-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW Chronic abdominal and pelvic visceral pain is an oftentimes difficult to treat pain condition that requires a multidisciplinary approach. This article specifically reviews the interventional treatment options for pain resulting from visceral abdominal and pelvic pain. RECENT FINDINGS Sympathetic nerve blocks are the main interventional option for the treatment of chronic abdominal and pelvic visceral pain. Initially, nerve blocks are performed, and subsequently, neurolytic injections (alcohol or phenol) are longer term options. This review describes different techniques for sympathetic blockade. Neuromodulation is a potential option via dorsal column stimulation or dorsal root ganglion stimulation. Finally, intrathecal drug delivery is sometimes appropriate for refractory cases. This paper will review interventional options for the treatment of chronic abdominal and pelvic visceral pain.
Collapse
Affiliation(s)
- Christopher Wie
- Division of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, 5777 E Mayo Boulevard, Phoenix, AZ, 85054, USA.
| | - Shirin Ghanavatian
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC, USA
| | - Scott Pew
- Division of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, 5777 E Mayo Boulevard, Phoenix, AZ, 85054, USA
| | - Alexander Kim
- Department of Anesthesiology Brigham and Women's Hospital, Boston, MA, USA
| | - Natalie Strand
- Division of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, 5777 E Mayo Boulevard, Phoenix, AZ, 85054, USA
| | - John Freeman
- Division of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, 5777 E Mayo Boulevard, Phoenix, AZ, 85054, USA
| | - Mostafa Maita
- Division of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, 5777 E Mayo Boulevard, Phoenix, AZ, 85054, USA
| | - Stephen Covington
- Division of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, 5777 E Mayo Boulevard, Phoenix, AZ, 85054, USA
| | - Jillian Maloney
- Division of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, 5777 E Mayo Boulevard, Phoenix, AZ, 85054, USA
| |
Collapse
|
13
|
Blanton H, Armin S, Muenster S, Abood M, Benamar K. Contribution of G Protein-Coupled Receptor 55 to Periaqueductal Gray-Mediated Antinociception in the Inflammatory Pain. Cannabis Cannabinoid Res 2022; 7:274-278. [PMID: 35612493 DOI: 10.1089/can.2022.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The brain mechanism of inflammatory pain is an understudied area of research, particularly concerning the descending pain modulatory system. The G protein-coupled receptor 55 (GPR55) is a lysophosphatidylinositol-sensitive receptor that has also been involved in cannabinoid signaling. It is widely expressed throughout the central nervous system, including the periaqueductal gray (PAG), a brainstem area and key element of the descending pain modulatory system. In this study, we used behavioral, stereotaxic injections, pharmacological tools, and two inflammatory pain models (formalin and carrageenan) to determine if GPR55 in the PAG plays a role in the pain associated with inflammation in rats. It was found that the blockade of GPR55 action in PAG can drive the descending pain modulatory system to mitigate inflammatory pain. These data show that GPR55 plays a role in the descending pain modulatory system in inflammatory pain.
Collapse
Affiliation(s)
- Henry Blanton
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, Texas, USA
| | - Sabiha Armin
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, Texas, USA
| | - Steven Muenster
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, Texas, USA
| | - Mary Abood
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Khalid Benamar
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, Texas, USA
| |
Collapse
|
14
|
Yuan J, Fei Y. Lidocaine ameliorates chronic constriction injury-induced neuropathic pain through regulating M1/M2 microglia polarization. Open Med (Wars) 2022; 17:897-906. [PMID: 35647302 PMCID: PMC9106111 DOI: 10.1515/med-2022-0480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/07/2022] [Accepted: 03/25/2022] [Indexed: 11/15/2022] Open
Abstract
This study is intended to explore the mechanism that lidocaine ameliorates chronic constriction injury (CCI)-induced neuropathic pain (NP) related to the polarization of M1 and M2 microglia. CCI rats were established by surgery to induce NP. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) of rats were determined. Microglial line HAPI cells were polarized into M1 or M2 cells using lipopolysaccharide (LPS) or interleukin (IL)-4, respectively. Immunofluorescence staining was performed to determine the Iba1/CD86- and Iba1/CD206-positive cells. Markers of M1 and M2 microglia were assessed using flow cytometry. Real-time polymerase chain reaction and enzyme-linked immunosorbent assay were performed to detect the level of mRNA and inflammatory factors. Lidocaine ameliorates CCI-induced NP, evidenced by the markedly increased values of MWT and TWL in NP rats. Lidocaine inhibited M1 microglia polarization but promoted M2 microglia polarization in a rat model of CCI-induced NP. Besides, in the in vitro experiment, lidocaine regulated M1/M2 polarization in LPS- or IL-4-treated HAPI microglia. Lidocaine ameliorates CCI-induced NP by regulating M1/M2 microglia polarization. This study investigated the biological role of lidocaine in regulating NP in rats, which may be helpful for revealing the pathogenic mechanisms of NP and provide a potential therapeutic factor.
Collapse
Affiliation(s)
- Jiaqi Yuan
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, China
| | - Yue Fei
- Department of Anesthesiology, Sir Run Run Shaw Hospital, 3 East Qingchun Road, Jianggan District, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Louwies T, Meerveld BGV. Abdominal Pain. COMPREHENSIVE PHARMACOLOGY 2022:132-163. [DOI: 10.1016/b978-0-12-820472-6.00037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Payne E, Harrington K, Richard P, Brackin R, Davis R, Couture S, Liff J, Asmus F, Mutina E, Fisher A, Giuvelis D, Sannajust S, Rostama B, King T, Mattei LM, Lee JJ, Friedman ES, Bittinger K, May M, Stevenson GW. Effects of Vancomycin on Persistent Pain-Stimulated and Pain-Depressed Behaviors in Female Fischer Rats With or Without Voluntary Access to Running Wheels. THE JOURNAL OF PAIN 2021; 22:1530-1544. [PMID: 34029686 PMCID: PMC8578155 DOI: 10.1016/j.jpain.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/02/2021] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
The present experiments determined the effects of the narrow-spectrum antibiotic vancomycin on inflammatory pain-stimulated and pain-depressed behaviors in rats. Persistent inflammatory pain was modeled using dilute formalin (0.5%). Two weeks of oral vancomycin administered in drinking water attenuated Phase II formalin pain-stimulated behavior, and prevented formalin pain-depressed wheel running. Fecal microbiota transplantation produced a non-significant trend toward reversal of the vancomycin effect on pain-stimulated behavior. Vancomycin depleted Firmicutes and Bacteroidetes populations in the gut while having a partial sparing effect on Lactobacillus species and Clostridiales. The vancomycin treatment effect was associated with an altered profile in amino acid concentrations in the gut with increases in arginine, glycine, alanine, proline, valine, leucine, and decreases in tyrosine and methionine. These results indicate that vancomycin may have therapeutic effects against persistent inflammatory pain conditions that are distal to the gut. PERSPECTIVE: The narrow-spectrum antibiotic vancomycin reduces pain-related behaviors in the formalin model of inflammatory pain. These data suggest that manipulation of the gut microbiome may be one method to attenuate inflammatory pain amplitude.
Collapse
Affiliation(s)
- Emily Payne
- Department of Psychology, University of New England, Biddeford, ME, 04005
| | - Kylee Harrington
- Department of Psychology, University of New England, Biddeford, ME, 04005
| | - Philomena Richard
- Department of Psychology, University of New England, Biddeford, ME, 04005
| | - Rebecca Brackin
- Department of Psychology, University of New England, Biddeford, ME, 04005
| | - Ravin Davis
- Department of Psychology, University of New England, Biddeford, ME, 04005
| | - Sarah Couture
- Department of Psychology, University of New England, Biddeford, ME, 04005
| | - Jacob Liff
- Department of Psychology, University of New England, Biddeford, ME, 04005
| | - Francesca Asmus
- Department of Psychology, University of New England, Biddeford, ME, 04005
| | - Elizabeth Mutina
- Department of Psychology, University of New England, Biddeford, ME, 04005
| | - Anyssa Fisher
- Department of Psychology, University of New England, Biddeford, ME, 04005
| | - Denise Giuvelis
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, Biddeford, ME, 04005
| | - Sebastien Sannajust
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, Biddeford, ME, 04005
| | - Bahman Rostama
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, Biddeford, ME, 04005; Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04005
| | - Tamara King
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, Biddeford, ME, 04005; Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04005
| | - Lisa M Mattei
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Jung-Jin Lee
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Elliot S Friedman
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Meghan May
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, Biddeford, ME, 04005; Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04005
| | - Glenn W Stevenson
- Department of Psychology, University of New England, Biddeford, ME, 04005; Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04005.
| |
Collapse
|
17
|
Tavares I, Costa-Pereira JT, Martins I. Monoaminergic and Opioidergic Modulation of Brainstem Circuits: New Insights Into the Clinical Challenges of Pain Treatment? FRONTIERS IN PAIN RESEARCH 2021; 2:696515. [PMID: 35295506 PMCID: PMC8915776 DOI: 10.3389/fpain.2021.696515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
The treatment of neuropathic pain remains a clinical challenge. Analgesic drugs and antidepressants are frequently ineffective, and opioids may induce side effects, including hyperalgesia. Recent results on brainstem pain modulatory circuits may explain those clinical challenges. The dual action of noradrenergic (NA) modulation was demonstrated in animal models of neuropathic pain. Besides the well-established antinociception due to spinal effects, the NA system may induce pronociception by directly acting on brainstem pain modulatory circuits, namely, at the locus coeruleus (LC) and medullary dorsal reticular nucleus (DRt). The serotoninergic system also has a dual action depending on the targeted spinal receptor, with an exacerbated activity of the excitatory 5-hydroxytryptamine 3 (5-HT3) receptors in neuropathic pain models. Opioids are involved in the modulation of descending modulatory circuits. During neuropathic pain, the opioidergic modulation of brainstem pain control areas is altered, with the release of enhanced local opioids along with reduced expression and desensitization of μ-opioid receptors (MOR). In the DRt, the installation of neuropathic pain increases the levels of enkephalins (ENKs) and induces desensitization of MOR, which may enhance descending facilitation (DF) from the DRt and impact the efficacy of exogenous opioids. On the whole, the data discussed in this review indicate the high plasticity of brainstem pain control circuits involving monoaminergic and opioidergic control. The data from studies of these neurochemical systems in neuropathic models indicate the importance of designing drugs that target multiple neurochemical systems, namely, maximizing the antinociceptive effects of antidepressants that inhibit the reuptake of serotonin and noradrenaline and preventing desensitization and tolerance of MOR at the brainstem.
Collapse
Affiliation(s)
- Isaura Tavares
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal
- *Correspondence: Isaura Tavares
| | - José Tiago Costa-Pereira
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Science, University of Porto, Porto, Portugal
| | - Isabel Martins
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal
| |
Collapse
|
18
|
Armin S, Muenster S, Abood M, Benamar K. GPR55 in the brain and chronic neuropathic pain. Behav Brain Res 2021; 406:113248. [PMID: 33745983 DOI: 10.1016/j.bbr.2021.113248] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 02/26/2021] [Accepted: 03/12/2021] [Indexed: 10/21/2022]
Abstract
There is a clear need for novel and improved therapeutic strategies for alleviating chronic neuropathic pain, as well as a need for better understanding of brain mechanisms of neuropathic pain, which are less understood than spinal and peripheral mechanisms. The G protein-coupled receptor 55 (GPR55), is a lysophosphatidylinositol (LPI)-sensitive receptor that has also been involved in cannabinoid signaling. It is expressed throughout the central nervous system, including the periaqueductal gray (PAG), a brainstem area and key element of the descending pain control system. Behaviors, pharmacology, biochemistry tools, and stereotaxic microinjections were used to determine if GPR55 plays a role in pain control in a chronic constriction injury (CCI) neuropathic pain model in rats. It was found that the blockade of GPR55 action in the PAG can restore and drive a descending control system to mitigate neuropathic pain. Our data demonstrate that GPR55 play a role in the descending pain control system, and identify GPR55 at supraspinal level as a neuropathic pain brain mechanism.
Collapse
Affiliation(s)
- Sabiha Armin
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine Lubbock, TX, 79430, United States
| | - Steven Muenster
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine Lubbock, TX, 79430, United States
| | - Mary Abood
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, United States
| | - Khalid Benamar
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine Lubbock, TX, 79430, United States.
| |
Collapse
|
19
|
Cai YQ, Hou YY, Pan ZZ. GluA1 in central amygdala increases pain but inhibits opioid withdrawal-induced aversion. Mol Pain 2021; 16:1744806920911543. [PMID: 32162577 PMCID: PMC7068745 DOI: 10.1177/1744806920911543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The amygdala is important in regulation of emotion-associated behavioral
responses both to positive reinforcing stimuli such as addicting
opioids and to negative aversive stimuli such as fear and pain.
Glutamatergic neurotransmission in amygdala plays a predominant role
in amygdala neuronal circuits involved in these emotional responses.
However, how specific glutamate receptors act to mediate these
amygdala functions remains poorly understood. In this study, we
investigated the role of GluA1 subunits of glutamate
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors
in central amygdala in modulating behavioral response to aversive
stimuli by pain and by opioid withdrawal. We found that the protein
level of GluA1 in the central nucleus of amygdala (CeA) was
significantly increased in rats under persistent pain and viral
upregulation of CeA GluA1 increased pain responses of both
hyperalgesia and allodynia in rats. In contrast, the viral
upregulation of CeA GluA1 inhibited, while knockdown of CeA GluA1
enhanced, place aversion induced by naloxone-precipitated morphine
withdrawal. These results reveal a differential action of CeA GluA1 on
the aversive event of sensory pain and opioid withdrawal, likely
reflecting two distinct synaptic circuits of GluA1-predominant AMPA
receptors within CeA for regulation of pain sensitivity and emotional
response to opioid withdrawal.
Collapse
Affiliation(s)
- You-Qing Cai
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuan-Yuan Hou
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhizhong Z Pan
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
20
|
WeiWei Y, WenDi F, Mengru C, Tuo Y, Chen G. The cellular mechanism by which the rostral ventromedial medulla acts on the spinal cord during chronic pain. Rev Neurosci 2021; 32:545-558. [PMID: 33565739 DOI: 10.1515/revneuro-2020-0121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/18/2020] [Indexed: 11/15/2022]
Abstract
Clinical therapies for chronic pain are limited. While targeted drugs are promising therapies for chronic pain, they exhibit insufficient efficacy and poor targeting. The occurrence of chronic pain partly results from central changes caused by alterations in neurons in the rostral ventromedial medulla (RVM) in the brainstem regulatory pathway. The RVM, which plays a key role in the descending pain control pathway, greatly contributes to the development and maintenance of pain. However, the exact roles of the RVM in chronic pain remain unclear, making it difficult to develop new drugs targeting the RVM and related pathways. Here, we first discuss the roles of the RVM and related circuits in chronic pain. Then, we analyze synaptic transmission between RVM neurons and spinal cord neurons, specifically focusing on the release of neurotransmitters, to explore the cellular mechanisms by which the RVM regulates chronic pain. Finally, we propose some ideas for the development of drugs targeting the RVM.
Collapse
Affiliation(s)
- Yu WeiWei
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong226001, China
| | - Fei WenDi
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong226001, China
| | - Cui Mengru
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong226001, China
| | - Yang Tuo
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun130033, China
| | - Gang Chen
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong226001, China.,Department of Tissue and Embryology, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong University, Nantong226001, China
| |
Collapse
|
21
|
Terayama R, Uchibe K. Reorganization of synaptic inputs to spinal dorsal horn neurons in neuropathic pain. Int J Neurosci 2021; 132:1210-1216. [PMID: 33428497 DOI: 10.1080/00207454.2021.1873980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Peripheral nerve injuries produce a variety of negative structural and functional changes in the central terminal sites of damaged axons, as well as the injured primary afferents. Such changes have been shown to be involved in the development of neuropathic pain, which includes abnormal pain sensations such as allodynia and hyperalgesia. Since the spinal dorsal horn is the first central site where signals from peripheral sensory nerves are transmitted and shows a variety of changes after peripheral nerve injury or chronic inflammation of peripheral tissues, it is one of the most important sites contributing to the mechanisms underlying the development of neuropathic pain. The functional disruption of inhibitory interneurons and glial activation in the spinal dorsal horn after peripheral nerve injury cause reorganization of neuronal circuits and changes in the excitability of second-order neurons. These events are involved in the development or maintenance of neuropathic pain. Here, we describe the interactions of primary afferents, interneurons, and glial cells that may cause reorganization of synaptic inputs to spinal dorsal horn neurons after peripheral nerve injury.
Collapse
Affiliation(s)
- Ryuji Terayama
- Department of Maxillofacial Anatomy and Neuroscience, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kenta Uchibe
- Department of Maxillofacial Anatomy and Neuroscience, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
22
|
Narasimhan M, Mahimainathan L, Reddy PH, Benamar K. GPR18-NAGly system in periaqueductal gray and chronic neuropathic pain. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165974. [PMID: 32949767 DOI: 10.1016/j.bbadis.2020.165974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/06/2020] [Accepted: 09/14/2020] [Indexed: 11/17/2022]
Affiliation(s)
- Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine Lubbock, TX 79430, USA
| | - Lenin Mahimainathan
- Department of Pathology and Clinical Laboratory Services, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - P Hemachandra Reddy
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine Lubbock, TX 79430, USA; Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - Khalid Benamar
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine Lubbock, TX 79430, USA.
| |
Collapse
|
23
|
Females have greater susceptibility to develop ongoing pain and central sensitization in a rat model of temporomandibular joint pain. Pain 2020; 160:2036-2049. [PMID: 31430262 DOI: 10.1097/j.pain.0000000000001598] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a prevalent source of temporomandibular joint disorder (TMD). Women are more commonly diagnosed with TMD and are more likely to seek care at tertiary orofacial pain clinics. Limited knowledge regarding mechanisms underlying temporomandibular joint (TMJ) pain impairs development of improved pain management strategies. In a rat model of unilateral TMJOA, monosodium iodoacetate (MIA) produces joint pathology in a concentration-dependent manner. Unilateral MIA produces alterations in meal patterns in males and females without altering overnight time spent eating or weight across 2 weeks. Monosodium iodoacetate (80 mg/mL)-treated males develop ongoing pain within 2 weeks after MIA injection. Females develop ongoing pain at a 5-fold lower MIA concentration (16.6 mg/m). Monosodium iodoacetate (80 mg/mL)-treated males show spread of tactile hypersensitivity across the face during the first week after injection and then to the fore paws and hind paws during the second week after injection, indicating development of central sensitization. At the lower dose, female rats demonstrate a similar spread of tactile hypersensitivity, whereas male rats do not develop ongoing pain or spread of tactile hypersensitivity outside the area of the ipsilateral temporomandibular joint. These observations indicate that females have a higher susceptibility to development of ongoing pain and central sensitization compared with male rats that is not due to differences in MIA-induced joint pathology. This model of TMJOA pain can be used to explore sex differences in pain processes implicated in development of neuropathic pain, ongoing pain, and central sensitization, allowing for development of individualized strategies for prevention and treatment of TMD joint pain.
Collapse
|
24
|
Sakloth F, Manouras L, Avrampou K, Mitsi V, Serafini RA, Pryce KD, Cogliani V, Berton O, Jarpe M, Zachariou V. HDAC6-selective inhibitors decrease nerve-injury and inflammation-associated mechanical hypersensitivity in mice. Psychopharmacology (Berl) 2020; 237:2139-2149. [PMID: 32388618 PMCID: PMC7470631 DOI: 10.1007/s00213-020-05525-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/13/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND HDAC6 is a class IIB histone deacetylase expressed at many levels of the nociceptive pathway. This study tested the ability of novel and selective HDAC6 inhibitors to alleviate sensory hypersensitivity behaviors in mouse models of peripheral nerve injury and peripheral inflammation. METHODS We utilized the murine spared nerve injury (SNI) model for peripheral nerve injury and the Complete Freund's Adjuvant (CFA) model of peripheral inflammation. We applied the Von Frey assay to monitor mechanical allodynia. RESULTS Using the SNI model, we demonstrate that daily administration of the brain-penetrant HDAC6 inhibitor, ACY-738, abolishes mechanical allodynia in male and in female mice. Importantly, there is no tolerance to the antiallodynic actions of these compounds as they produce a consistent increase in Von Frey thresholds for several weeks. We observed a similar antiallodynic effect when utilizing the HDAC6 inhibitor, ACY-257, which shows limited brain expression when administered systemically. We also demonstrate that ACY-738 and ACY-257 attenuate mechanical allodynia in the CFA model of peripheral inflammation. CONCLUSIONS Overall, our findings suggest that inhibition of HDAC6 provides a promising therapeutic avenue for the alleviation of mechanical allodynia associated with peripheral nerve injury and peripheral inflammation.
Collapse
Affiliation(s)
- Farhana Sakloth
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Lefteris Manouras
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Kleopatra Avrampou
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Vasiliki Mitsi
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Randal A Serafini
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Kerri D Pryce
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Valeria Cogliani
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Olivier Berton
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
- Division of Neuroscience & Behavior, National institute on Drug Abuse (NIDA), 6001 Executive Blvd, Rm 4289, Rockville, MD, 20852, USA
| | - Matthew Jarpe
- Regenacy Pharmaceuticals, 303 Wyman St, Suite 300, Waltham, MA, USA
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, 10029, USA.
| |
Collapse
|
25
|
Duron DI, Lei W, Barker NK, Stine C, Mishra S, Blagg BSJ, Langlais PR, Streicher JM. Inhibition of Hsp90 in the spinal cord enhances the antinociceptive effects of morphine by activating an ERK-RSK pathway. Sci Signal 2020; 13:13/630/eaaz1854. [PMID: 32371496 DOI: 10.1126/scisignal.aaz1854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Morphine and other opioids are commonly used to treat pain despite their numerous adverse side effects. Modulating μ-opioid receptor (MOR) signaling is one way to potentially improve opioid therapy. In mice, the chaperone protein Hsp90 mediates MOR signaling within the brain. Here, we found that inhibiting Hsp90 specifically in the spinal cord enhanced the antinociceptive effects of morphine in mice. Intrathecal, but not systemic, administration of the Hsp90 inhibitors 17-AAG or KU-32 amplified the effects of morphine in suppressing sensitivity to both thermal and mechanical stimuli in mice. Hsp90 inhibition enabled opioid-induced phosphorylation of the kinase ERK and increased abundance of the kinase RSK in the dorsal horns of the spinal cord, which are heavily populated with primary afferent sensory neurons. The additive effects of Hsp90 inhibition were abolished upon intrathecal inhibition of ERK, RSK, or protein synthesis. This mechanism downstream of MOR, localized to the spinal cord and repressed by Hsp90, may potentially be used to enhance the efficacy and presumably decrease the side effects of opioid therapy.
Collapse
Affiliation(s)
- David I Duron
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Wei Lei
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Natalie K Barker
- Division of Endocrinology, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Carrie Stine
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Sanket Mishra
- Department of Chemistry and Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Paul R Langlais
- Division of Endocrinology, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - John M Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
26
|
Nasirinezhad F, Hosseini M, Karami Z, Janzadeh A, Yousefifard M. Comparative Efficacy of GABAA and GABAB Receptor Agonists in Pain Alleviation in a Spinal Cord Injury Model of Neuropathic Pain. NEUROPHYSIOLOGY+ 2020. [DOI: 10.1007/s11062-020-09826-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Zhang C, Xia C, Zhang X, Li W, Miao X, Zhou Q. Wrist-ankle acupuncture attenuates cancer-induced bone pain by regulating descending pain-modulating system in a rat model. Chin Med 2020; 15:13. [PMID: 32042305 PMCID: PMC7001307 DOI: 10.1186/s13020-020-0289-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/09/2020] [Indexed: 01/26/2023] Open
Abstract
Background Cancer-induced bone pain (CIBP) presents a multiple-mechanism of chronic pain involving both inflammatory and neuropathic pain, and its pathogenesis is closely related to endogenous descending system of pain control. However, the action mechanism underlying the effects of wrist–ankle acupuncture (WAA) versus electroacupuncture (EA) on CIBP remains unknown. Methods Thirty-two Wistar rats were divided into sham, CIBP, EA-treated and WAA-treated groups. CIBP was induced in rats of the latter three groups. Time courses of weight and mechanical hyperalgesia threshold (MHT) were evaluated. After 6 days of EA or WAA treatment, the expressions of 5-hydroxytryotamine type 3A receptor (5-HT3AR) and μ-opioid receptor (MOR) in rostral ventromedial medulla (RVM) and/or spinal cord, as well as the levels of 5-HT, β-endorphin, endomorphin-1 and endomorphin-2 in RVM and spinal cord, were detected. Results Injection of cancer cells caused decreased MHT, which was attenuated by EA or WAA (P < 0.05). WAA had a quicker analgesic effect than EA (P < 0.05). No significant difference of MOR in RVM was found among the four groups. EA or WAA counteracted the cancer-driven upregulation of 5-HT3AR and downregulation of MOR in spinal cord (P < 0.05), and upregulation of 5-HT and downregulation of endomorphin-1 in both RVM and spinal cord (P < 0.05). β-endorphin and endomorphin-2 in RVM and spinal cord decreased in CIBP group compared with sham group (P < 0.05), but EA or WAA showed no significant effect on them, although a tendency of increasing effect was observed. Conclusion WAA, similar to EA, alleviated mechanical hyperalgesia in CIBP rats by suppressing the expressions of 5-HT and 5-HT3AR, and increasing the expressions of MOR and endomorphin-1 in RVM-spinal cord pathway of the descending pain-modulating system. However, WAA produced a quicker analgesic effect than EA, the mechanisms of which need further investigation.
Collapse
Affiliation(s)
- Chunpeng Zhang
- School of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433 People's Republic of China
| | - Chen Xia
- School of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433 People's Republic of China
| | - Xiaowen Zhang
- School of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433 People's Republic of China
| | - Weimin Li
- 2Laboratory of Neuronal Network and Systems Biology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Xuerong Miao
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road, Shanghai, 200433 People's Republic of China
| | - Qinghui Zhou
- School of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433 People's Republic of China
| |
Collapse
|
28
|
RGS4 Maintains Chronic Pain Symptoms in Rodent Models. J Neurosci 2019; 39:8291-8304. [PMID: 31308097 DOI: 10.1523/jneurosci.3154-18.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 05/02/2019] [Accepted: 06/27/2019] [Indexed: 12/26/2022] Open
Abstract
Regulator of G-protein signaling 4 (RGS4) is a potent modulator of G-protein-coupled receptor signal transduction that is expressed throughout the pain matrix. Here, we use genetic mouse models to demonstrate a role of RGS4 in the maintenance of chronic pain states in male and female mice. Using paradigms of peripheral inflammation and nerve injury, we show that the prevention of RGS4 action leads to recovery from mechanical and cold allodynia and increases the motivation for wheel running. Similarly, RGS4KO eliminates the duration of nocifensive behavior in the second phase of the formalin assay. Using the Complete Freud's Adjuvant (CFA) model of hindpaw inflammation we also demonstrate that downregulation of RGS4 in the adult ventral posterolateral thalamic nuclei promotes recovery from mechanical and cold allodynia. RNA sequencing analysis of thalamus (THL) from RGS4WT and RGS4KO mice points to many signal transduction modulators and transcription factors that are uniquely regulated in CFA-treated RGS4WT cohorts. Ingenuity pathway analysis suggests that several components of glutamatergic signaling are differentially affected by CFA treatment between RGS4WT and RGS4KO groups. Notably, Western blot analysis shows increased expression of metabotropic glutamate receptor 2 in THL synaptosomes of RGS4KO mice at time points at which they recover from mechanical allodynia. Overall, our study provides information on a novel intracellular pathway that contributes to the maintenance of chronic pain states and points to RGS4 as a potential therapeutic target.SIGNIFICANCE STATEMENT There is an imminent need for safe and efficient chronic pain medications. Regulator of G-protein signaling 4 (RGS4) is a multifunctional signal transduction protein, widely expressed in the pain matrix. Here, we demonstrate that RGS4 plays a prominent role in the maintenance of chronic pain symptoms in male and female mice. Using genetically modified mice, we show a dynamic role of RGS4 in recovery from symptoms of sensory hypersensitivity deriving from hindpaw inflammation or hindlimb nerve injury. We also demonstrate an important role of RGS4 actions in gene expression patterns induced by chronic pain states in the mouse thalamus. Our findings provide novel insight into mechanisms associated with the maintenance of chronic pain states and demonstrate that interventions in RGS4 activity promote recovery from sensory hypersensitivity symptoms.
Collapse
|
29
|
Acquisition of analgesic properties by the cholecystokinin (CCK)/CCK2 receptor system within the amygdala in a persistent inflammatory pain condition. Pain 2019; 160:345-357. [PMID: 30281531 DOI: 10.1097/j.pain.0000000000001408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pain is associated with negative emotions such as anxiety, but the underlying neurocircuitry and modulators of the association of pain and anxiety remain unclear. The neuropeptide cholecystokinin (CCK) has both pronociceptive and anxiogenic properties, so we explored the role of CCK in anxiety and nociception in the central amygdala (CeA), a key area in control of emotions and descending pain pathways. Local infusion of CCK into the CeA of control rats increased anxiety, as measured in the light-dark box test, but had no effect on mechanical sensitivity. By contrast, intra-CeA CCK infusion 4 days after Complete Freund's Adjuvant (CFA) injection into the hindpaw resulted in analgesia, but also in loss of its anxiogenic capacity. Inflammatory conditions induced changes in the CeA CCK signaling system with an increase of CCK immunoreactivity and a decrease in CCK1, but not CCK2, receptor mRNA. In CFA rats, patch-clamp experiments revealed that CCK infusion increased CeA neuron excitability. It also partially blocked the discharge of wide dynamic range neurons in the dorsal spinal cord. These effects of CCK on CeA and spinal neurons in CFA rats were mimicked by the specific CCK2 receptor agonist, gastrin. This analgesic effect was likely mediated by identified CeA neurons projecting to the periaqueductal gray matter that express CCK receptors. Together, our data demonstrate that intra-CeA CCK infusion activated a descending CCK2 receptor-dependent pathway that inhibited spinal neuron discharge. Thus, persistent pain induces a functional switch to a newly identified analgesic capacity of CCK in the amygdala, indicating central emotion-related circuit controls pain transmission in spinal cord.
Collapse
|
30
|
Knopp KL, Simmons RMA, Guo W, Adams BL, Gardinier KM, Gernert DL, Ornstein PL, Porter W, Reel J, Ding C, Wang H, Qian Y, Burris KD, Need A, Barth V, Swanson S, Catlow J, Witkin JM, Zwart R, Sher E, Choong KC, Wall TM, Schober D, Felder CC, Kato AS, Bredt DS, Nisenbaum ES. Modulation of TARP γ8-Containing AMPA Receptors as a Novel Therapeutic Approach for Chronic Pain. J Pharmacol Exp Ther 2019; 369:345-363. [PMID: 30910921 DOI: 10.1124/jpet.118.250126] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 03/06/2019] [Indexed: 03/08/2025] Open
Abstract
Nonselective glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists are efficacious in chronic pain but have significant tolerability issues, likely arising from the ubiquitous expression of AMPA receptors in the central nervous system (CNS). Recently, LY3130481 has been shown to selectively block AMPA receptors coassembled with the auxiliary protein, transmembrane AMPA receptor regulatory protein (TARP) γ8, which is highly expressed in the hippocampus but also in pain pathways, including anterior cingulate (ACC) and somatosensory cortices and the spinal cord, suggesting that selective blockade of γ8/AMPA receptors may suppress nociceptive signaling with fewer CNS side effects. The potency of LY3130481 on recombinant γ8-containing AMPA receptors was modulated by coexpression with other TARPs; γ2 subunits affected activity more than γ3 subunits. Consistent with these findings, LY3130481 had decreasing potency on receptors from rat hippocampal, cortical, spinal cord, and cerebellar neurons that was replicated in tissue from human brain. LY3130481 partially suppressed, whereas the nonselective AMPA antagonist GYKI53784 completely blocked, AMPA receptor-dependent excitatory postsynaptic potentials in ACC and spinal neurons in vitro. Similarly, LY3130481 attenuated short-term synaptic plasticity in spinal sensory neurons in vivo in response to stimulation of peripheral afferents. LY3130481 also significantly reduced nocifensive behaviors after intraplantar formalin that was correlated with occupancy of CNS γ8-containing AMPA receptors. In addition, LY3130481 dose-dependently attenuated established gait impairment after joint damage and tactile allodynia after spinal nerve ligation, all in the absence of motor side effects. Collectively, these data demonstrate that LY3130481 can suppress excitatory synaptic transmission and plasticity in pain pathways containing γ8/AMPA receptors and significantly reduce nocifensive behaviors, suggesting a novel, effective, and safer therapy for chronic pain conditions.
Collapse
Affiliation(s)
- Kelly L Knopp
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (K.L.K., R.M.A.S., W.G., B.L.A., K.M.G., D.L.G., P.L.O., W.P., J.R., C.D., H.W., Y.Q., K.D.B., A.N., V.B., S.S., J.C., J.M.W., K.-C.C., T.M.W., D.S., C.C.F., A.S.K., D.S.B., E.S.N.) and Lilly Research Centre, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey, United Kingdom (R.Z., E.S.)
| | - Rosa Maria A Simmons
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (K.L.K., R.M.A.S., W.G., B.L.A., K.M.G., D.L.G., P.L.O., W.P., J.R., C.D., H.W., Y.Q., K.D.B., A.N., V.B., S.S., J.C., J.M.W., K.-C.C., T.M.W., D.S., C.C.F., A.S.K., D.S.B., E.S.N.) and Lilly Research Centre, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey, United Kingdom (R.Z., E.S.)
| | - Wenhong Guo
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (K.L.K., R.M.A.S., W.G., B.L.A., K.M.G., D.L.G., P.L.O., W.P., J.R., C.D., H.W., Y.Q., K.D.B., A.N., V.B., S.S., J.C., J.M.W., K.-C.C., T.M.W., D.S., C.C.F., A.S.K., D.S.B., E.S.N.) and Lilly Research Centre, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey, United Kingdom (R.Z., E.S.)
| | - Benjamin L Adams
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (K.L.K., R.M.A.S., W.G., B.L.A., K.M.G., D.L.G., P.L.O., W.P., J.R., C.D., H.W., Y.Q., K.D.B., A.N., V.B., S.S., J.C., J.M.W., K.-C.C., T.M.W., D.S., C.C.F., A.S.K., D.S.B., E.S.N.) and Lilly Research Centre, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey, United Kingdom (R.Z., E.S.)
| | - Kevin M Gardinier
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (K.L.K., R.M.A.S., W.G., B.L.A., K.M.G., D.L.G., P.L.O., W.P., J.R., C.D., H.W., Y.Q., K.D.B., A.N., V.B., S.S., J.C., J.M.W., K.-C.C., T.M.W., D.S., C.C.F., A.S.K., D.S.B., E.S.N.) and Lilly Research Centre, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey, United Kingdom (R.Z., E.S.)
| | - Douglas L Gernert
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (K.L.K., R.M.A.S., W.G., B.L.A., K.M.G., D.L.G., P.L.O., W.P., J.R., C.D., H.W., Y.Q., K.D.B., A.N., V.B., S.S., J.C., J.M.W., K.-C.C., T.M.W., D.S., C.C.F., A.S.K., D.S.B., E.S.N.) and Lilly Research Centre, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey, United Kingdom (R.Z., E.S.)
| | - Paul L Ornstein
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (K.L.K., R.M.A.S., W.G., B.L.A., K.M.G., D.L.G., P.L.O., W.P., J.R., C.D., H.W., Y.Q., K.D.B., A.N., V.B., S.S., J.C., J.M.W., K.-C.C., T.M.W., D.S., C.C.F., A.S.K., D.S.B., E.S.N.) and Lilly Research Centre, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey, United Kingdom (R.Z., E.S.)
| | - Warren Porter
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (K.L.K., R.M.A.S., W.G., B.L.A., K.M.G., D.L.G., P.L.O., W.P., J.R., C.D., H.W., Y.Q., K.D.B., A.N., V.B., S.S., J.C., J.M.W., K.-C.C., T.M.W., D.S., C.C.F., A.S.K., D.S.B., E.S.N.) and Lilly Research Centre, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey, United Kingdom (R.Z., E.S.)
| | - Jon Reel
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (K.L.K., R.M.A.S., W.G., B.L.A., K.M.G., D.L.G., P.L.O., W.P., J.R., C.D., H.W., Y.Q., K.D.B., A.N., V.B., S.S., J.C., J.M.W., K.-C.C., T.M.W., D.S., C.C.F., A.S.K., D.S.B., E.S.N.) and Lilly Research Centre, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey, United Kingdom (R.Z., E.S.)
| | - Chunjin Ding
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (K.L.K., R.M.A.S., W.G., B.L.A., K.M.G., D.L.G., P.L.O., W.P., J.R., C.D., H.W., Y.Q., K.D.B., A.N., V.B., S.S., J.C., J.M.W., K.-C.C., T.M.W., D.S., C.C.F., A.S.K., D.S.B., E.S.N.) and Lilly Research Centre, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey, United Kingdom (R.Z., E.S.)
| | - He Wang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (K.L.K., R.M.A.S., W.G., B.L.A., K.M.G., D.L.G., P.L.O., W.P., J.R., C.D., H.W., Y.Q., K.D.B., A.N., V.B., S.S., J.C., J.M.W., K.-C.C., T.M.W., D.S., C.C.F., A.S.K., D.S.B., E.S.N.) and Lilly Research Centre, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey, United Kingdom (R.Z., E.S.)
| | - Yuewei Qian
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (K.L.K., R.M.A.S., W.G., B.L.A., K.M.G., D.L.G., P.L.O., W.P., J.R., C.D., H.W., Y.Q., K.D.B., A.N., V.B., S.S., J.C., J.M.W., K.-C.C., T.M.W., D.S., C.C.F., A.S.K., D.S.B., E.S.N.) and Lilly Research Centre, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey, United Kingdom (R.Z., E.S.)
| | - Kevin D Burris
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (K.L.K., R.M.A.S., W.G., B.L.A., K.M.G., D.L.G., P.L.O., W.P., J.R., C.D., H.W., Y.Q., K.D.B., A.N., V.B., S.S., J.C., J.M.W., K.-C.C., T.M.W., D.S., C.C.F., A.S.K., D.S.B., E.S.N.) and Lilly Research Centre, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey, United Kingdom (R.Z., E.S.)
| | - Anne Need
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (K.L.K., R.M.A.S., W.G., B.L.A., K.M.G., D.L.G., P.L.O., W.P., J.R., C.D., H.W., Y.Q., K.D.B., A.N., V.B., S.S., J.C., J.M.W., K.-C.C., T.M.W., D.S., C.C.F., A.S.K., D.S.B., E.S.N.) and Lilly Research Centre, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey, United Kingdom (R.Z., E.S.)
| | - Vanessa Barth
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (K.L.K., R.M.A.S., W.G., B.L.A., K.M.G., D.L.G., P.L.O., W.P., J.R., C.D., H.W., Y.Q., K.D.B., A.N., V.B., S.S., J.C., J.M.W., K.-C.C., T.M.W., D.S., C.C.F., A.S.K., D.S.B., E.S.N.) and Lilly Research Centre, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey, United Kingdom (R.Z., E.S.)
| | - Steven Swanson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (K.L.K., R.M.A.S., W.G., B.L.A., K.M.G., D.L.G., P.L.O., W.P., J.R., C.D., H.W., Y.Q., K.D.B., A.N., V.B., S.S., J.C., J.M.W., K.-C.C., T.M.W., D.S., C.C.F., A.S.K., D.S.B., E.S.N.) and Lilly Research Centre, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey, United Kingdom (R.Z., E.S.)
| | - John Catlow
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (K.L.K., R.M.A.S., W.G., B.L.A., K.M.G., D.L.G., P.L.O., W.P., J.R., C.D., H.W., Y.Q., K.D.B., A.N., V.B., S.S., J.C., J.M.W., K.-C.C., T.M.W., D.S., C.C.F., A.S.K., D.S.B., E.S.N.) and Lilly Research Centre, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey, United Kingdom (R.Z., E.S.)
| | - Jeffrey M Witkin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (K.L.K., R.M.A.S., W.G., B.L.A., K.M.G., D.L.G., P.L.O., W.P., J.R., C.D., H.W., Y.Q., K.D.B., A.N., V.B., S.S., J.C., J.M.W., K.-C.C., T.M.W., D.S., C.C.F., A.S.K., D.S.B., E.S.N.) and Lilly Research Centre, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey, United Kingdom (R.Z., E.S.)
| | - Ruud Zwart
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (K.L.K., R.M.A.S., W.G., B.L.A., K.M.G., D.L.G., P.L.O., W.P., J.R., C.D., H.W., Y.Q., K.D.B., A.N., V.B., S.S., J.C., J.M.W., K.-C.C., T.M.W., D.S., C.C.F., A.S.K., D.S.B., E.S.N.) and Lilly Research Centre, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey, United Kingdom (R.Z., E.S.)
| | - Emanuele Sher
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (K.L.K., R.M.A.S., W.G., B.L.A., K.M.G., D.L.G., P.L.O., W.P., J.R., C.D., H.W., Y.Q., K.D.B., A.N., V.B., S.S., J.C., J.M.W., K.-C.C., T.M.W., D.S., C.C.F., A.S.K., D.S.B., E.S.N.) and Lilly Research Centre, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey, United Kingdom (R.Z., E.S.)
| | - Kar-Chan Choong
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (K.L.K., R.M.A.S., W.G., B.L.A., K.M.G., D.L.G., P.L.O., W.P., J.R., C.D., H.W., Y.Q., K.D.B., A.N., V.B., S.S., J.C., J.M.W., K.-C.C., T.M.W., D.S., C.C.F., A.S.K., D.S.B., E.S.N.) and Lilly Research Centre, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey, United Kingdom (R.Z., E.S.)
| | - Theron M Wall
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (K.L.K., R.M.A.S., W.G., B.L.A., K.M.G., D.L.G., P.L.O., W.P., J.R., C.D., H.W., Y.Q., K.D.B., A.N., V.B., S.S., J.C., J.M.W., K.-C.C., T.M.W., D.S., C.C.F., A.S.K., D.S.B., E.S.N.) and Lilly Research Centre, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey, United Kingdom (R.Z., E.S.)
| | - Douglas Schober
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (K.L.K., R.M.A.S., W.G., B.L.A., K.M.G., D.L.G., P.L.O., W.P., J.R., C.D., H.W., Y.Q., K.D.B., A.N., V.B., S.S., J.C., J.M.W., K.-C.C., T.M.W., D.S., C.C.F., A.S.K., D.S.B., E.S.N.) and Lilly Research Centre, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey, United Kingdom (R.Z., E.S.)
| | - Christian C Felder
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (K.L.K., R.M.A.S., W.G., B.L.A., K.M.G., D.L.G., P.L.O., W.P., J.R., C.D., H.W., Y.Q., K.D.B., A.N., V.B., S.S., J.C., J.M.W., K.-C.C., T.M.W., D.S., C.C.F., A.S.K., D.S.B., E.S.N.) and Lilly Research Centre, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey, United Kingdom (R.Z., E.S.)
| | - Akihiko S Kato
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (K.L.K., R.M.A.S., W.G., B.L.A., K.M.G., D.L.G., P.L.O., W.P., J.R., C.D., H.W., Y.Q., K.D.B., A.N., V.B., S.S., J.C., J.M.W., K.-C.C., T.M.W., D.S., C.C.F., A.S.K., D.S.B., E.S.N.) and Lilly Research Centre, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey, United Kingdom (R.Z., E.S.)
| | - David S Bredt
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (K.L.K., R.M.A.S., W.G., B.L.A., K.M.G., D.L.G., P.L.O., W.P., J.R., C.D., H.W., Y.Q., K.D.B., A.N., V.B., S.S., J.C., J.M.W., K.-C.C., T.M.W., D.S., C.C.F., A.S.K., D.S.B., E.S.N.) and Lilly Research Centre, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey, United Kingdom (R.Z., E.S.)
| | - Eric S Nisenbaum
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (K.L.K., R.M.A.S., W.G., B.L.A., K.M.G., D.L.G., P.L.O., W.P., J.R., C.D., H.W., Y.Q., K.D.B., A.N., V.B., S.S., J.C., J.M.W., K.-C.C., T.M.W., D.S., C.C.F., A.S.K., D.S.B., E.S.N.) and Lilly Research Centre, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey, United Kingdom (R.Z., E.S.)
| |
Collapse
|
31
|
Khanna R, Patwardhan A, Yang X, Li W, Cai S, Ji Y, Chew LA, Dorame A, Bellampalli SS, Schmoll RW, Gordon J, Moutal A, Vanderah TW, Porreca F, Ibrahim MM. Development and Characterization of An Injury-free Model of Functional Pain in Rats by Exposure to Red Light. THE JOURNAL OF PAIN 2019; 20:1293-1306. [PMID: 31054915 DOI: 10.1016/j.jpain.2019.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/23/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022]
Abstract
We report the development and characterization of a novel, injury-free rat model in which nociceptive sensitization after red light is observed in multiple body areas reminiscent of widespread pain in functional pain syndromes. Rats were exposed to red light-emitting diodes (RLED) (LEDs, 660 nm) at an intensity of 50 Lux for 8 hours daily for 5 days resulting in time- and dose-dependent thermal hyperalgesia and mechanical allodynia in both male and female rats. Females showed an earlier onset of mechanical allodynia than males. The pronociceptive effects of RLED were mediated through the visual system. RLED-induced thermal hyperalgesia and mechanical allodynia were reversed with medications commonly used for widespread pain, including gabapentin, tricyclic antidepressants, serotonin/norepinephrine reuptake inhibitors, and nonsteroidal anti-inflammatory drugs. Acetaminophen failed to reverse the RLED induced hypersensitivity. The hyperalgesic effects of RLED were blocked when bicuculline, a gamma-aminobutyric acid-A receptor antagonist, was administered into the rostral ventromedial medulla, suggesting a role for increased descending facilitation in the pain pathway. Key experiments were subjected to a replication study with randomization, investigator blinding, inclusion of all data, and high levels of statistical rigor. RLED-induced thermal hyperalgesia and mechanical allodynia without injury offers a novel injury-free rodent model useful for the study of functional pain syndromes with widespread pain. RLED exposure also emphasizes the different biological effects of different colors of light exposure. PERSPECTIVE: This study demonstrates the effect of light exposure on nociceptive thresholds. These biological effects of red LED add evidence to the emerging understanding of the biological effects of light of different colors in animals and humans. Understanding the underlying biology of red light-induced widespread pain may offer insights into functional pain states.
Collapse
Affiliation(s)
- Rajesh Khanna
- Department of Anesthesiology, University of Arizona, Tucson, Arizona; Department of Pharmacology, University of Arizona, Tucson, Arizona; Department of Graduate Interdisciplinary Program in Neuroscience College of Medicine, University of Arizona, Tucson, Arizona
| | - Amol Patwardhan
- Department of Anesthesiology, University of Arizona, Tucson, Arizona; Department of Pharmacology, University of Arizona, Tucson, Arizona
| | - Xiaofang Yang
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| | - Wennan Li
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| | - Song Cai
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| | - Yingshi Ji
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| | - Lindsey A Chew
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| | - Angie Dorame
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| | | | - Ryan W Schmoll
- Department of Anesthesiology, University of Arizona, Tucson, Arizona
| | - Janalee Gordon
- Department of Anesthesiology, University of Arizona, Tucson, Arizona
| | - Aubin Moutal
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| | - Todd W Vanderah
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| | - Frank Porreca
- Department of Anesthesiology, University of Arizona, Tucson, Arizona; Department of Pharmacology, University of Arizona, Tucson, Arizona
| | - Mohab M Ibrahim
- Department of Anesthesiology, University of Arizona, Tucson, Arizona; Department of Pharmacology, University of Arizona, Tucson, Arizona.
| |
Collapse
|
32
|
Decoding neuropathic pain severity using distinct patterns of corticolimbic metabotropic glutamate receptor 5. Neuroimage 2019; 190:303-312. [DOI: 10.1016/j.neuroimage.2018.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/08/2018] [Accepted: 07/06/2018] [Indexed: 12/27/2022] Open
|
33
|
Huang H, Wang M, Hong Y. Intrathecal administration of adrenomedullin induces mechanical allodynia and neurochemical changes in spinal cord and DRG. Neurosci Lett 2019; 690:196-201. [DOI: 10.1016/j.neulet.2018.10.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 12/30/2022]
|
34
|
Demartini C, Greco R, Zanaboni AM, Francesconi O, Nativi C, Tassorelli C, Deseure K. Antagonism of Transient Receptor Potential Ankyrin Type-1 Channels as a Potential Target for the Treatment of Trigeminal Neuropathic Pain: Study in an Animal Model. Int J Mol Sci 2018; 19:ijms19113320. [PMID: 30366396 PMCID: PMC6274796 DOI: 10.3390/ijms19113320] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/17/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
Transient receptor potential ankyrin type-1 (TRPA1) channels are known to actively participate in different pain conditions, including trigeminal neuropathic pain, whose clinical treatment is still unsatisfactory. The aim of this study was to evaluate the involvement of TRPA1 channels by means of the antagonist ADM_12 in trigeminal neuropathic pain, in order to identify possible therapeutic targets. A single treatment of ADM_12 in rats 4 weeks after the chronic constriction injury of the infraorbital nerve (IoN-CCI) significantly reduced the mechanical allodynia induced in the IoN-CCI rats. Additionally, ADM_12 was able to abolish the increased levels of TRPA1, calcitonin gene-related peptide (CGRP), substance P (SP), and cytokines gene expression in trigeminal ganglia, cervical spinal cord, and medulla induced in the IoN-CCI rats. By contrast, no significant differences between groups were seen as regards CGRP and SP protein expression in the pars caudalis of the spinal nucleus of the trigeminal nerve. ADM_12 also reduced TRP vanilloid type-1 (TRPV1) gene expression in the same areas after IoN-CCI. Our findings show the involvement of both TRPA1 and TRPV1 channels in trigeminal neuropathic pain, and in particular, in trigeminal mechanical allodynia. Furthermore, they provide grounds for the use of ADM_12 in the treatment of trigeminal neuropathic pain.
Collapse
Affiliation(s)
- Chiara Demartini
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy.
| | - Rosaria Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy.
| | - Anna Maria Zanaboni
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy.
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy.
| | - Oscar Francesconi
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy.
| | - Cristina Nativi
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy.
| | - Cristina Tassorelli
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy.
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy.
| | - Kristof Deseure
- Department of Medicine, Laboratory for Pain Research, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
35
|
Rojewska E, Wawrzczak-Bargiela A, Szucs E, Benyhe S, Starnowska J, Mika J, Przewlocki R, Przewlocka B. Alterations in the Activity of Spinal and Thalamic Opioid Systems in a Mice Neuropathic Pain Model. Neuroscience 2018; 390:293-302. [DOI: 10.1016/j.neuroscience.2018.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 01/29/2023]
|
36
|
Palma J, Narasimhan M, Guindon J, Benamar K. Supraspinal interaction between HIV-1-gp120 and cannabinoid analgesic effectiveness. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2018; 391:1157-1161. [PMID: 30008083 PMCID: PMC6333524 DOI: 10.1007/s00210-018-1533-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/05/2018] [Indexed: 01/08/2023]
Abstract
The growing therapeutic use (self-medication) of cannabinoids by HIV-1 infected people and the recent interest in the possible medicinal use of cannabinoids, particularly in pain management, create an urgent need to identify their potential interactions with HIV-1. The goal here is to determine any interaction between proteins of HIV-1 and the analgesic effectiveness of cannabinoid at supraspinal level. Young adult male rats (Sprague-Dawley) were stereotaxically pretreated with HIV-1 envelope glycoprotein 120 (gp120) into the periaqueductal gray (PAG) area, the primary control center of pain modulation. Then, we examined its effect on cannabinoid receptor agonist WIN55,212-2-induced analgesia. Our results demonstrated that gp120 in PAG diminished the analgesic effectiveness of this cannabinoid agonist. These results suggest that gp120 may interact with the cannabinoid system through the descending modulatory pain pathways centered in the PAG to impair the analgesic effectiveness of cannabinoids.
Collapse
Affiliation(s)
- Jonathan Palma
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Khalid Benamar
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
37
|
Kononenko O, Mityakina I, Galatenko V, Watanabe H, Bazov I, Gerashchenko A, Sarkisyan D, Iatsyshyna A, Yakovleva T, Tonevitsky A, Marklund N, Ossipov MH, Bakalkin G. Differential effects of left and right neuropathy on opioid gene expression in lumbar spinal cord. Brain Res 2018; 1695:78-83. [DOI: 10.1016/j.brainres.2018.05.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/23/2018] [Accepted: 05/27/2018] [Indexed: 12/17/2022]
|
38
|
Davis MP, Pasternak G, Behm B. Treating Chronic Pain: An Overview of Clinical Studies Centered on the Buprenorphine Option. Drugs 2018; 78:1211-1228. [PMID: 30051169 PMCID: PMC6822392 DOI: 10.1007/s40265-018-0953-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The buprenorphine receptor binding profile is unique in that it binds to all three major opioid receptors (mu, kappa, delta), and also binds to the orphan-like receptor, the receptor for orphanin FQ/nociceptin, with lower affinity. Within the mu receptor group, buprenorphine analgesia in rodents is dependent on the recently discovered arylepoxamide receptor target in brain, which involves a truncated 6-transmembrane mu receptor gene protein, distinguishing itself from morphine and most other mu opioids. Although originally designed as an analgesic, buprenorphine has mainly been used for opioid maintenance therapy and only now is increasingly recognized as an effective analgesic with an improved therapeutic index relative to certain potent opioids. Albeit a second-, third-, or fourth-line analgesic, buprenorphine is a reasonable choice in certain clinical situations. Transdermal patches and buccal film formulations are now commercially available as analgesics. This review discusses buprenorphine pharmacodynamics and pharmacokinetics, use in certain populations, and provides a synopsis of systematic reviews and randomized analgesic trials. We briefly discuss postoperative management in patients receiving buprenorphine maintenance therapy, opioid equivalence to buprenorphine, rotations to buprenorphine from other opioids, and clinical relevance of buprenorphine-related QTc interval changes.
Collapse
Affiliation(s)
- Mellar P Davis
- Department of Palliative Care, Geisinger Medical Center, Danville, PA, USA.
| | - Gavril Pasternak
- Anne Burnett Tandy Chair in Neurology, Laboratory Head, Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bertrand Behm
- Department of Palliative Care, Geisinger Medical Center, Danville, PA, USA
| |
Collapse
|
39
|
Llorca-Torralba M, Mico JA, Berrocoso E. Behavioral effects of combined morphine and MK-801 administration to the locus coeruleus of a rat neuropathic pain model. Prog Neuropsychopharmacol Biol Psychiatry 2018. [PMID: 29524514 DOI: 10.1016/j.pnpbp.2018.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The persistent activation of N-methyl-d-aspartate acid receptors (NMDARs) seems to be responsible for a series of changes in neurons associated with neuropathic pain, including the failure of opioids that act through mu-opioid receptors (MORs) to provide efficacious pain relief. As the noradrenergic locus coeruleus (LC) forms part of the endogenous analgesic system, we explored how intra-LC administration of morphine, a MORs agonist, alone or in combination with MK-801, a NMDARs antagonist, affects the sensorial and affective dimension of pain in a rat model of neuropathic pain; chronic constriction injury (CCI). Intra-LC microinjection of morphine induced analgesia in CCI rats, as evident in the von Frey and cold plate test 7 and 30 days after surgery, although it was not able to reverse pain-related aversion when evaluated using the place escape/avoidance test. However, the thermal anti-nociception produced by morphine was enhanced when it was administered to the LC of CCI animals in combination with MK-801, without altering its effects on the mechanical thresholds. Furthermore, pain-related aversion was reduced by co-administration of these agents, yet only in the short-term CCI (7 day) rats. Overall the data indicate that administration of morphine to the LC produces analgesia in nerve injured animals and that this effect is potentiated in specific pain modalities by the co-administration of MK-801. While a combination of morphine and MK-801 could reduce pain-related aversion in short-term neuropathic animals, it was ineffective in the long-term, suggesting that its sensorial effects and its influence on the affective component of pain are regulated by different mechanisms.
Collapse
Affiliation(s)
- Meritxell Llorca-Torralba
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain; Neuropsychopharmacology and Psychobiology Research Group, University of Cádiz, Cádiz, Spain
| | - Juan A Mico
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain; Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain
| | - Esther Berrocoso
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain; Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Puerto Real, Cádiz, Spain.
| |
Collapse
|
40
|
Delta/mu opioid receptor interactions in operant conditioning assays of pain-depressed responding and drug-induced rate suppression: assessment of therapeutic index in male Sprague Dawley rats. Psychopharmacology (Berl) 2018; 235:1609-1618. [PMID: 29572653 PMCID: PMC5924452 DOI: 10.1007/s00213-018-4876-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/06/2018] [Indexed: 12/23/2022]
Abstract
RATIONALE AND OBJECTIVES Although delta/mu receptor interactions vary as a function of behavioral endpoint, there have been no assessments of these interactions using assays of pain-depressed responding. This is the first report of delta/mu interactions using an assay of pain-depressed behavior. METHODS A mult-cycle FR10 operant schedule was utilized in the presence of (nociception) and in the absence of (rate suppression) a lactic acid inflammatory pain-like manipulation. SNC80 and methadone were used as selective/high efficacy delta and mu agonists, respectively. Both SNC80 and methadone alone produced a dose-dependent restoration of pain-depressed responding and dose-dependent response rate suppression. Three fixed ratio mixtures, based on the relative potencies of the drugs in the nociception assay, also produced dose-dependent antinociception and sedation. Isobolographic analysis indicated that all three mixtures produced supra-additive antinociceptive effects and simply additive sedation effects. CONCLUSIONS The therapeutic index (TI) inversely varied as a function of amount of SNC80 in the mixture, such that lower amounts of SNC80 produced a higher TI, and larger amounts produced a lower TI. Compared to literature using standard pain-elicited assays, the orderly relationship between SNC80 and TI reported here may be a unique function of assessing pain-depressed behavior.
Collapse
|
41
|
Samur DN, Arslan R, Aydın S, Bektas N. Valnoctamide: The effect on relieving of neuropathic pain and possible mechanisms. Eur J Pharmacol 2018. [PMID: 29522726 DOI: 10.1016/j.ejphar.2018.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The purpose of this study is to assess the possible anti-allodynic and antihyperalgesic effect of valnoctamide, an amide derivative of valproic acid, at the doses of 40, 70 and 100 mg/kg (i.p.) in neuropathic pain model induced by chronic constriction injury in rats, by using dynamic plantar test and plantar test (Hargreaves method), and to evaluate that the possible role of certain serotonin, noradrenergic, opioid and GABAergic receptors by pre-treatment with 1 mg/kg (i.p.) ketanserin, yohimbine, naloxone and 0.5 mg/kg (i.p.) bicuculline, respectively. 70 and 100 mg/kg valnoctamide significantly increased the mechanical and thermal thresholds decreasing with the development of neuropathy and demonstrated anti-allodynic and antihyperalgesic activity. Limited contribution of serotonin 5-HT2A/2C receptors and α2-adrenoceptors, and significant contribution of GABAA and opioid receptors to the anti-allodynic activity have been identified whereas remarkable contribution of opioid receptors and significant contribution of serotonin 5-HT2A/2C receptors, α2-adrenoceptors, GABAA receptors to the antihyperalgesic activity have been identified. Based upon these findings and considering that valnoctamide has safer side-effect profile, it is possible to say that valnoctamide is a potential agent that might be used alone or in combination with the other effective therapies in the alleviating of neuropathic pain.
Collapse
Affiliation(s)
- Dilara Nemutlu Samur
- Anadolu University, Institute of Health Sciences, Department of Pharmacology, 26470 Eskisehir, Turkey; Alanya Alaaddin Keykubat University, Faculty of Medicine, Department of Pharmacology, 07450 Antalya, Turkey.
| | - Rana Arslan
- Anadolu University, Faculty of Pharmacy, Department of Pharmacology, 26470 Eskisehir, Turkey.
| | - Sule Aydın
- Eskisehir Osmangazi University, Faculty of Medicine, Department of Pharmacology, 26040 Eskisehir, Turkey.
| | - Nurcan Bektas
- Anadolu University, Faculty of Pharmacy, Department of Pharmacology, 26470 Eskisehir, Turkey.
| |
Collapse
|
42
|
|
43
|
Greenwood-Van Meerveld B, Johnson AC. Stress-Induced Chronic Visceral Pain of Gastrointestinal Origin. Front Syst Neurosci 2017; 11:86. [PMID: 29213232 PMCID: PMC5702626 DOI: 10.3389/fnsys.2017.00086] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
Visceral pain is generally poorly localized and characterized by hypersensitivity to a stimulus such as organ distension. In concert with chronic visceral pain, there is a high comorbidity with stress-related psychiatric disorders including anxiety and depression. The mechanisms linking visceral pain with these overlapping comorbidities remain to be elucidated. Evidence suggests that long term stress facilitates pain perception and sensitizes pain pathways, leading to a feed-forward cycle promoting chronic visceral pain disorders such as irritable bowel syndrome (IBS). Early life stress (ELS) is a risk-factor for the development of IBS, however the mechanisms responsible for the persistent effects of ELS on visceral perception in adulthood remain incompletely understood. In rodent models, stress in adult animals induced by restraint and water avoidance has been employed to investigate the mechanisms of stress-induce pain. ELS models such as maternal separation, limited nesting, or odor-shock conditioning, which attempt to model early childhood experiences such as neglect, poverty, or an abusive caregiver, can produce chronic, sexually dimorphic increases in visceral sensitivity in adulthood. Chronic visceral pain is a classic example of gene × environment interaction which results from maladaptive changes in neuronal circuitry leading to neuroplasticity and aberrant neuronal activity-induced signaling. One potential mechanism underlying the persistent effects of stress on visceral sensitivity could be epigenetic modulation of gene expression. While there are relatively few studies examining epigenetically mediated mechanisms involved in visceral nociception, stress-induced visceral pain has been linked to alterations in DNA methylation and histone acetylation patterns within the brain, leading to increased expression of pro-nociceptive neurotransmitters. This review will discuss the potential neuronal pathways and mechanisms responsible for stress-induced exacerbation of chronic visceral pain. Additionally, we will review the importance of specific experimental models of adult stress and ELS in enhancing our understanding of the basic molecular mechanisms of pain processing.
Collapse
Affiliation(s)
- Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- VA Medical Center, Oklahoma City, OK, United States
| | | |
Collapse
|
44
|
Hu TT, Wang RR, Tang YY, Wu YX, Yu J, Hou WW, Lou GD, Zhou YD, Zhang SH, Chen Z. TLR4 deficiency abrogated widespread tactile allodynia, but not widespread thermal hyperalgesia and trigeminal neuropathic pain after partial infraorbital nerve transection. Pain 2017; 159:273-283. [DOI: 10.1097/j.pain.0000000000001100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
45
|
Zhou J, Fan Y, Chen H. Analyses of long non-coding RNA and mRNA profiles in the spinal cord of rats using RNA sequencing during the progression of neuropathic pain in an SNI model. RNA Biol 2017; 14:1810-1826. [PMID: 28854101 DOI: 10.1080/15476286.2017.1371400] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The pathogenesis of neuropathic pain (NP) is characterized by an increased responsiveness of nociceptive neurons in the nervous system. However, the molecular mechanisms underpinning the NP still remain elusive. Recent data suggest that long non-coding RNAs (lncRNAs) regulate expression of NP-associated genes. Herein, we analyzed lncRNAs and mRNA profiles in the spinal cord of rats by RNA sequencing during the progression of NP in a spared nerve injury (SNI) model. Sprague-Dawley (SD) rats were employed for the establishment of the SNI models, and nociceptive responses to mechanical and thermal stimuli were measured 3 hours prior to surgery and on postoperative days 1, 3, 7 and 14, with L4-5 spinal cords extracted from three SD rats under deep anesthesia at each time point after behavioral test. SNI rats exhibited higher sensitivity to mechanical stimuli from days 1 to 14. Mechanical hyperalgesia reached a steady peak at day14 after surgery, whereas thermal allodynia did not develop. The results of second-generation sequencing suggested that the expression profiles of lncRNAs and mRNAs were significantly altered in spinal cords of SNI rats versus the control rats at different stages during NP. Differentially expressed (DE) lncRNAs and mRNAs were demonstrated at each stage during the NP course using Volcano Plot, Venn and Hcluster heatmap analyses. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway analyses were performed to predict the functionalities of differentially expressed lncRNAs and target genes. Protein interaction networks were constructed based on the correlation analyses of DE lncRNA target proteins at 7 and 14 days after SNI, respectively. Taken together, our results revealed the profiles of lncRNAs and mRNAs in the rat spinal cord under an NP condition. These lncRNAs and mRNAs may represent new therapeutic targets for the treatment of NP.
Collapse
Affiliation(s)
- Jun Zhou
- a Department of Anesthesiology, The First People's Hospital of Foshan , Foshan , Guangdong Province , China
| | - Youling Fan
- b Department of Anesthesiology, Guangzhou Panyu Central Hospital of Panyu District , Guangzhou , Guangdong Province , China
| | - Hongtao Chen
- c Department of Anesthesiology, The Eighth People's Hospital of Guangzhou , Guangzhou , Guangdong Province , China
| |
Collapse
|
46
|
Microstructural mechanisms of analgesia in percutaneous cervical cordotomy revealed by diffusion tensor imaging. J Clin Neurosci 2017; 45:311-314. [PMID: 28887076 DOI: 10.1016/j.jocn.2017.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/10/2017] [Indexed: 11/23/2022]
Abstract
The purpose of this study is to demonstrate the potential of diffusion tensor imaging (DTI) to reveal structural mechanisms underlying spinal ablative procedures, including percutaneous radiofrequency cordotomy (PRFC). PRFC is a surgical procedure that produces analgesia through focal ablation of the lateral spinothalamic tract (STT), thereby interrupting the flow of pain information from the periphery to the brain. To date, studies regarding mechanisms of analgesia after PRFC have been limited to postmortem cadaveric dissection and histology. However, with recent advances in DTI, the opportunity has arisen to study the STT non-invasively in vivo. In this technical note, an individual with successful pain relief following unilateral STT PRFC was examined using DTI, with the contralateral STT serving as an internal control. PRFC substantially reduced rostrocaudal directional DTI signal in the STT from the lesion in the cervical spinal cord through the pons and mesencephalon. Our findings confirm that focal ablation and anterograde degeneration accompany the analgesic effects of PRFC. In vivo imaging of the STT with DTI may contribute to surgical targeting for PRFC procedures, better understanding of the therapeutic and untoward effects of PRFC, and a deeper understanding of spinothalamic contributions to nociception.
Collapse
|
47
|
Ye Y, Bernabé DG, Salvo E, Viet CT, Ono K, Dolan JC, Janal M, Aouizerat BE, Miaskowski C, Schmidt BL. Alterations in opioid inhibition cause widespread nociception but do not affect anxiety-like behavior in oral cancer mice. Neuroscience 2017; 363:50-61. [PMID: 28673713 DOI: 10.1016/j.neuroscience.2017.06.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 06/12/2017] [Accepted: 06/21/2017] [Indexed: 01/06/2023]
Abstract
Widespread pain and anxiety are commonly reported in cancer patients. We hypothesize that cancer is accompanied by attenuation of endogenous opioid-mediated inhibition, which subsequently causes widespread pain and anxiety. To test this hypothesis we used a mouse model of oral squamous cell carcinoma (SCC) in the tongue. We found that mice with tongue SCC exhibited widespread nociceptive behaviors in addition to behaviors associated with local nociception that we reported previously. Tongue SCC mice exhibited a pattern of reduced opioid receptor expression in the spinal cord; intrathecal administration of respective mu (MOR), delta (DOR), and kappa (KOR) opioid receptor agonists reduced widespread nociception in mice, except for the fail flick assay following administration of the MOR agonist. We infer from these findings that opioid receptors contribute to widespread nociception in oral cancer mice. Despite significant nociception, mice with tongue SCC did not differ from sham mice in anxiety-like behaviors as measured by the open field assay and elevated maze. No significant differences in c-Fos staining were found in anxiety-associated brain regions in cancer relative to control mice. No correlation was found between nociceptive and anxiety-like behaviors. Moreover, opioid receptor agonists did not yield a statistically significant effect on behaviors measured in the open field and elevated maze in cancer mice. Lastly, we used an acute cancer pain model (injection of cancer supernatant into the mouse tongue) to test whether adaptation to chronic pain is responsible for the absence of greater anxiety-like behavior in cancer mice. No changes in anxiety-like behavior were observed in mice with acute cancer pain.
Collapse
Affiliation(s)
- Yi Ye
- Bluestone Center for Clinical Research, College of Dentistry, New York University, United States
| | - Daniel G Bernabé
- Bluestone Center for Clinical Research, College of Dentistry, New York University, United States
| | - Elizabeth Salvo
- Bluestone Center for Clinical Research, College of Dentistry, New York University, United States
| | - Chi T Viet
- Bluestone Center for Clinical Research, College of Dentistry, New York University, United States; Department of Oral Maxillofacial Surgery, College of Dentistry, New York University, United States
| | - Kentaro Ono
- Bluestone Center for Clinical Research, College of Dentistry, New York University, United States
| | - John C Dolan
- Bluestone Center for Clinical Research, College of Dentistry, New York University, United States; Department of Oral Maxillofacial Surgery, College of Dentistry, New York University, United States
| | - Malvin Janal
- Epidemiology and Health Promotion, College of Dentistry, New York University, United States
| | - Brad E Aouizerat
- Bluestone Center for Clinical Research, College of Dentistry, New York University, United States; Department of Oral Maxillofacial Surgery, College of Dentistry, New York University, United States
| | - Christine Miaskowski
- Department of Physiological Nursing, School of Nursing, University of California at San Francisco, San Francisco, CA, United States
| | - Brian L Schmidt
- Bluestone Center for Clinical Research, College of Dentistry, New York University, United States; Department of Oral Maxillofacial Surgery, College of Dentistry, New York University, United States.
| |
Collapse
|
48
|
Dopamine D1-like Receptors Regulate Constitutive, μ-Opioid Receptor-Mediated Repression of Use-Dependent Synaptic Plasticity in Dorsal Horn Neurons: More Harm than Good? J Neurosci 2017; 36:5661-73. [PMID: 27194343 DOI: 10.1523/jneurosci.2469-15.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 04/11/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED The current study reports on a synaptic mechanism through which D1-like receptors (D1LRs) modulate spinal nociception and plasticity by regulating activation of the μ-opioid receptor (MOR).D1LR stimulation with agonist SKF 38393 concentration-dependently depressed C-fiber-evoked potentials in rats receiving spinal nerve ligation (SNL), but not in uninjured rats. Depression was prevented by MOR- but not GABA-receptor blockade. Neurons expressing the D1 subtype were immunopositive for met-enkephalin and vesicular glutamate transporter VGLUT2, but not for GABAergic marker vGAT.Nerve ligation was followed by increased immunoreactivity for D1 in synaptic compartment (P3) in dorsal horn homogenates and presynaptic met-enkephalin-containing boutons. SNL led to increased immunoreactivity for met-enkephalin in dorsal horn homogenates, which was dose-dependently attenuated by selective D1LR antagonist SCH 23390. During blockade of either D1R or MOR, low-frequency (0.2 or 3 Hz) stimulation (LFS) to the sciatic nerve induced long-term potentiation (LTP) of C-fiber-evoked potentials, revealing a constituent role of both receptors in repressing afferent-induced synaptic plasticity. LFS consistently induced NMDA receptor-dependent LTP in nerve-injured rats. The ability of MOR both to prevent LTP and to modulate mechanical and thermal pain thresholds in behavioral tests was preserved in nerve-ligated rats that were postoperatively treated with SCH 23390. D1LR priming for 30 min sufficed to disrupt MOR function in otherwise naive rats via a mechanism involving receptor overuse.The current data support that, whereas D1LR-modulated MOR activation is instrumental in antinociception and endogenous repression of synaptic plasticity, this mechanism deteriorates rapidly by sustained use, generating increased vulnerability to afferent input. SIGNIFICANCE STATEMENT The current study shows that dopamine D1-like receptors (D1LRs) and μ-opioid receptors (MOR) in the spinal dorsal horn constitutively repress the expression of synaptic long-term potentiation (LTP) of C-fiber-evoked potentials. Anatomical data are provided supporting that the D1 subtype regulates MOR function by modulating met-enkephalin release. Sustained neuropathic pain induced by spinal nerve ligation is accompanied by D1R and met-enkephalin upregulation, acquired D1LR-mediated antinociception, and a loss of endogenous repression of further synaptic plasticity. We show that the ability of MOR to oppose LTP is rapidly impaired by sustained D1LR activation via a mechanism involving sustained MOR activation.
Collapse
|
49
|
Lei W, Mullen N, McCarthy S, Brann C, Richard P, Cormier J, Edwards K, Bilsky EJ, Streicher JM. Heat-shock protein 90 (Hsp90) promotes opioid-induced anti-nociception by an ERK mitogen-activated protein kinase (MAPK) mechanism in mouse brain. J Biol Chem 2017; 292:10414-10428. [PMID: 28450396 DOI: 10.1074/jbc.m116.769489] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/13/2017] [Indexed: 12/26/2022] Open
Abstract
Recent advances in developing opioid treatments for pain with reduced side effects have focused on the signaling cascades of the μ-opioid receptor (MOR). However, few such signaling targets have been identified for exploitation. To address this need, we explored the role of heat-shock protein 90 (Hsp90) in opioid-induced MOR signaling and pain, which has only been studied in four previous articles. First, in four cell models of MOR signaling, we found that Hsp90 inhibition for 24 h with the inhibitor 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) had different effects on protein expression and opioid signaling in each line, suggesting that cell models may not be reliable for predicting pharmacology with this protein. We thus developed an in vivo model using CD-1 mice with an intracerebroventricular injection of 17-AAG for 24 h. We found that Hsp90 inhibition strongly blocked morphine-induced anti-nociception in models of post-surgical and HIV neuropathic pain but only slightly blocked anti-nociception in a naive tail-flick model, while enhancing morphine-induced precipitated withdrawal. Seeking a mechanism for these changes, we found that Hsp90 inhibition blocks ERK MAPK activation in the periaqueductal gray and caudal brain stem. We tested these signaling changes by inhibiting ERK in the above-mentioned pain models and found that ERK inhibition could account for all of the changes in anti-nociception induced by Hsp90 inhibition. Taken together, these findings suggest that Hsp90 promotes opioid-induced anti-nociception by an ERK mechanism in mouse brain and that Hsp90 could be a future target for improving the therapeutic index of opioid drugs.
Collapse
Affiliation(s)
- Wei Lei
- From the Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724
| | - Nathan Mullen
- the Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005, and
| | - Sarah McCarthy
- the Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005, and
| | - Courtney Brann
- the Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005, and
| | - Philomena Richard
- the Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005, and
| | - James Cormier
- the Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005, and
| | - Katie Edwards
- the Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005, and
| | - Edward J Bilsky
- the Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005, and.,the Department of Biomedical Sciences, College of Osteopathic Medicine, Pacific Northwest University, Yakima, Washington 98901
| | - John M Streicher
- From the Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724,
| |
Collapse
|
50
|
The medullary dorsal reticular nucleus as a relay for descending pronociception induced by the mGluR5 in the rat infralimbic cortex. Neuroscience 2017; 349:341-354. [PMID: 28300633 DOI: 10.1016/j.neuroscience.2017.02.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 02/13/2017] [Accepted: 02/21/2017] [Indexed: 11/22/2022]
Abstract
Metabotropic glutamate receptor 5 (mGluR5) activation in the infralimbic cortex (IL) induces pronociceptive behavior in healthy and monoarthritic rats. Here we studied whether the medullary dorsal reticular nucleus (DRt) and the spinal TRPV1 are mediating the IL/mGluR5-induced spinal pronociception and whether the facilitation of pain behavior is correlated with changes in spinal dorsal horn neuron activity. For drug administrations, all animals had a cannula in the IL as well as a cannula in the DRt or an intrathecal catheter. Heat-evoked paw withdrawal was used to assess pain behavior in awake animals. Spontaneous and heat-evoked discharge rates of single DRt neurons or spinal dorsal horn wide-dynamic range (WDR) and nociceptive-specific (NS) neurons were evaluated in lightly anesthetized animals. Activation of the IL/mGluR5 facilitated nociceptive behavior in both healthy and monoarthritic animals, and this effect was blocked by lidocaine or GABA receptor agonists in the DRt. IL/mGluR5 activation increased spontaneous and heat-evoked DRt discharge rates in healthy but not monoarthritic rats. In the spinal dorsal horn, IL/mGluR5 activation increased spontaneous activity of WDR neurons in healthy animals only, whereas heat-evoked responses of WDR and NS neurons were increased in both experimental groups. Intrathecally administered TRPV1 antagonist prevented the IL/mGluR5-induced pronociception in both healthy and monoarthritic rats. The results suggest that the DRt is involved in relaying the IL/mGluR5-induced spinal pronociception in healthy control but not monoarthritic animals. Spinally, the IL/mGluR5-induced behavioral heat hyperalgesia is mediated by TRPV1 and associated with facilitated heat-evoked responses of WDR and NS neurons.
Collapse
|