1
|
Canová N, Kmonícková E, Lincová D, Vítek L, Farghali H. Evaluation of a Flat Membrane Hepatocyte Bioreactor for Pharmacotoxicological Applications: Evidence that Inhibition of Spontaneously Produced Nitric Oxide Improves Cell Functionality. Altern Lab Anim 2019; 32:25-35. [PMID: 15603551 DOI: 10.1177/026119290403200106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A laboratory-scale bioreactor was re-evaluated, with the aim of improving its use for the perfused culture of rat hepatocytes. In contrast to conventional culture systems, the flat membrane bioreactor (FMB) showed good functionality and biochemical competence during 2-3 days. Hepatocytes cultured in the FMB, specifically in a "sandwich" configuration, were functionally stable, as shown by a high rate of urea biosynthesis after challenge with NH4Cl, a low alanine-aminotransferase leakage and suppressed spontaneous nitric oxide (NO) production. Moreover, the time-course of the disappearance of cyclosporin A (CsA) from the perfusate demonstrated the high biotransformation capacity of cells in the FMB. The effect of CsA on the modulation of urea and spontaneous NO production demonstrated flexibility, in that minor changes could be observed at diverse time intervals and in a non-destructive way. The monitoring of nitrite levels during various steps of isolation and culture suggested that spontaneously produced NO has a negative impact on hepatocyte metabolic and functional integrity. In spite of the sophisticated techniques that are being used for the preparation of bioreactors, with hepatocytes surviving for longer periods, our data have shed light on some factors that could be important for the successful use of similar models for pharmacotoxicological and other biomedical applications.
Collapse
Affiliation(s)
- Nikolina Canová
- Institute of Pharmacology, 1st Faculty of Medicine, Charles University, Albertov 4, 12800 Prague 2, Czech Republic.
| | | | | | | | | |
Collapse
|
2
|
Oxygen transport in hollow fibre membrane bioreactors for hepatic 3D cell culture: A parametric study. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
3
|
Ebrahimkhani MR, Neiman JAS, Raredon MSB, Hughes DJ, Griffith LG. Bioreactor technologies to support liver function in vitro. Adv Drug Deliv Rev 2014; 69-70:132-57. [PMID: 24607703 PMCID: PMC4144187 DOI: 10.1016/j.addr.2014.02.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/18/2014] [Accepted: 02/24/2014] [Indexed: 02/08/2023]
Abstract
Liver is a central nexus integrating metabolic and immunologic homeostasis in the human body, and the direct or indirect target of most molecular therapeutics. A wide spectrum of therapeutic and technological needs drives efforts to capture liver physiology and pathophysiology in vitro, ranging from prediction of metabolism and toxicity of small molecule drugs, to understanding off-target effects of proteins, nucleic acid therapies, and targeted therapeutics, to serving as disease models for drug development. Here we provide perspective on the evolving landscape of bioreactor-based models to meet old and new challenges in drug discovery and development, emphasizing design challenges in maintaining long-term liver-specific function and how emerging technologies in biomaterials and microdevices are providing new experimental models.
Collapse
Affiliation(s)
- Mohammad R Ebrahimkhani
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jaclyn A Shepard Neiman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Micha Sam B Raredon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
4
|
Abstract
The treatment of end-stage liver disease and acute liver failure remains a clinically relevant issue. Although orthotopic liver transplantation is a well-established procedure, whole-organ transplantation is invasive and increasingly limited by the unavailability of suitable donor organs. Artificial and bioartificial liver support systems have been developed to provide an alternative to whole organ transplantation, but despite three decades of scientific efforts, the results are still not convincing with respect to clinical outcome. In this Review, conceptual limitations of clinically available liver support therapy systems are discussed. Furthermore, alternative concepts, such as hepatocyte transplantation, and cutting-edge developments in the field of liver support strategies, including the repopulation of decellularized organs and the biofabrication of entirely new organs by printing techniques or induced organogenesis are analysed with respect to clinical relevance. Whereas hepatocyte transplantation shows promising clinical results, at least for the temporary treatment of inborn metabolic diseases, so far data regarding implantation of engineered hepatic tissue have only emerged from preclinical experiments. However, the evolving techniques presented here raise hope for bioengineered liver support therapies in the future.
Collapse
|
5
|
Hepatocyte function within a stacked double sandwich culture plate cylindrical bioreactor for bioartificial liver system. Biomaterials 2012; 33:7925-32. [DOI: 10.1016/j.biomaterials.2012.06.078] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 06/26/2012] [Indexed: 11/23/2022]
|
6
|
Billecke N, Raschzok N, Rohn S, Morgul MH, Schwartlander R, Mogl M, Wollersheim S, Schmitt KR, Sauer IM. An operational concept for long-term cinemicrography of cells in mono- and co-culture under highly controlled conditions – The SlideObserver. J Biotechnol 2012; 159:83-9. [DOI: 10.1016/j.jbiotec.2012.01.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 01/10/2023]
|
7
|
Kim SJ, Ise H, Goto M, Akaike T. Interactions of vimentin- or desmin-expressing liver cells with N-acetylglucosamine-bearing polymers. Biomaterials 2011; 33:2154-64. [PMID: 22177839 DOI: 10.1016/j.biomaterials.2011.11.084] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/28/2011] [Indexed: 10/14/2022]
Abstract
It is necessary to develop highly functionalized liver cell culture systems for liver tissue engineering such as bioartificial livers and liver cell chips. To maintain a high level of hepatocyte function, well-organized patterning culture systems of hepatocytes and nonparenchymal cells would be advantageous. To design the patterning culture system using these cells, cell-recognizable polymers should be useful to regulate not only the hepatocytes, but also the nonparenchymal cells. Here, we report that N-acetylglucosamine (GlcNAc)-bearing polymers are useful as nonparenchymal cell-recognizable polymers. It has previously been reported that mesenchymal cells adhered to GlcNAc-bearing polymer-coated dishes through surface vimentin. It was also observed that nonparenchymal cells expressing vimentin or desmin specifically adhered to GlcNAc-bearing polymer-coated dishes. Especially, in hepatic stellate cells (HSCs) cultured on GlcNAc-bearing polymer-coated dishes, the expression of α-smooth muscle actin as an activated HSCs marker was suppressed in long-term. Therefore, HSCs were shown to maintain a quiescent state on PVGlcNAc-coated dishes during a long-term culture. These results demonstrated that GlcNAc-bearing polymers could be beneficial to culture nonparenchymal cells such as HSCs. Our findings suggest that galactose- and GlcNAc-bearing polymers can regulate the culture of all liver cells and may be useful tools for the establishment of liver tissue engineering.
Collapse
Affiliation(s)
- Sun-Jung Kim
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
8
|
Purpose-driven biomaterials research in liver-tissue engineering. Trends Biotechnol 2011; 29:110-8. [DOI: 10.1016/j.tibtech.2010.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 10/18/2010] [Accepted: 10/26/2010] [Indexed: 01/21/2023]
|
9
|
Abstract
In the last 15 years many different liver cell culture devices, consisting of functional liver cells and artificial materials, have been developed. They have been devised for numerous different applications, such as temporary organ replacement (a bridge to liver transplantation or native liver regeneration) and as in vitro screening systems in the early stages of the drug development process, like assessing hepatotoxicity, hepatic drug metabolism, and induction/inhibition studies. Relevant literature is summarized about artificial human liver cell culture systems by scrutinizing PubMed from 2003 to 2009. Existing devices are divided in 2D configurations (e.g., static monolayer, sandwich, perfused cells, and flat plate) and 3D configurations (e.g., liver slices, spheroids, and different types of bioreactors). The essential features of an ideal liver cell culture system are discussed: different types of scaffolds, oxygenation systems, extracellular matrixes (natural and artificial), cocultures with nonparenchymal cells, and the role of shear stress problems. Finally, miniaturization and high-throughput systems are discussed. All these factors contribute in their own way to the viability and functionality of liver cells in culture. Depending on the aim for which they are designed, several good systems are available for predicting hepatotoxicity and hepatic metabolism within the general population. To predict hepatotoxicity in individual cases genomic analysis might be essential as well.
Collapse
Affiliation(s)
- B Andria
- Center of Biotechnologies, Cardarelli Hospital, Naples, Italy; †Faculty of Pharmacy, 'Federico II" University, Naples, Italy
| | - A Bracco
- Center of Biotechnologies, Cardarelli Hospital , Naples , Italy
| | - G Cirino
- † Faculty of Pharmacy, 'Federico II" University , Naples , Italy
| | - R A F M Chamuleau
- ‡ Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
10
|
Zhang C, Chia SM, Ong SM, Zhang S, Toh YC, van Noort D, Yu H. The controlled presentation of TGF-β1 to hepatocytes in a 3D-microfluidic cell culture system. Biomaterials 2009; 30:3847-53. [DOI: 10.1016/j.biomaterials.2009.03.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Accepted: 03/29/2009] [Indexed: 12/18/2022]
|
11
|
Chu XH, Shi XL, Feng ZQ, Gu JY, Xu HY, Zhang Y, Gu ZZ, Ding YT. In vitro evaluation of a multi-layer radial-flow bioreactor based on galactosylated chitosan nanofiber scaffolds. Biomaterials 2009; 30:4533-8. [PMID: 19500837 DOI: 10.1016/j.biomaterials.2009.05.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 05/10/2009] [Indexed: 12/11/2022]
Abstract
Clinical use of bioartificial livers (BAL) strongly relies on the development of bioreactors. In this study, we developed a multi-layer radial-flow bioreactor based on galactosylated chitosan nanofiber scaffolds and evaluated its efficacy in vitro. The bioreactor contains 65 layers of stacked flat plates, on which the nanofiber scaffolds were electrospinned for hepatocyte immobilization and aggregation. Culture medium containing pig red blood cells (RBCs) was perfused from the center to periphery, so that exchange materials are sufficient to afford enough oxygen. We determined the parameters for hepatocyte-specific function and general metabolism and also measured the oxygen consumption rate (OCR). Microscope and scanned electron microscopy observation showed a tight adhesion between cells and scaffolds. Compared with the control (bioreactors without nanofiber scaffolds), the number of adhered cells in our bioreactor was 1.59-fold; the protein-synthesis capacity of hepatocytes was 1.73-fold and urea was 2.86-fold. Moreover, the OCR of bioreactors with RBCs was about 1.91-fold that of bioreactors without RBCs. The galactosylated chitosan nanofiber scaffolds introduced into our new bioreactor greatly enhanced cell adhesion and function, and the RBCs added into the culture medium were able to afford enough oxygen for hepatocytes. Importantly, our new bioreactor showed an exciting efficiency, and it may afford the short-term support of patients with hepatic failure.
Collapse
Affiliation(s)
- Xue-Hui Chu
- Department of Hepatobiliary Surgery, Drum Tower Affiliated Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
What clinical alternatives to whole liver transplantation? Current status of artificial devices and hepatocyte transplantation. Transplantation 2009; 87:457-66. [PMID: 19307780 DOI: 10.1097/tp.0b013e3181963ad3] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Shortage of organ donors limits the number of possible liver transplantations. Alternative therapies for treatment of liver failure are currently being developed: (i) extracorporeal artificial liver devices; (ii) bioartificial liver devices using hepatocytes; and (iii) hepatocyte transplantation. The objective of these strategies is to bridge patients with liver failure until a suitable liver allograft is obtained for transplantation or the patient's own liver regenerates sufficiently to resume normal function. In this review, we discuss these strategies and summarize the current status of clinical experience.
Collapse
|
13
|
Schwartlander R, Schmid J, Brandenburg B, Katenz E, Vondran FWR, Pless G, Cheng X, Pascher A, Neuhaus P, Sauer IM. Continuously Microscopically Observed and Process-Controlled Cell Culture Within the SlideReactor: Proof of a New Concept for Cell Characterization. ACTA ACUST UNITED AC 2007; 13:187-96. [PMID: 17518592 DOI: 10.1089/ten.2006.0071] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Certain cell types, especially primary human cells, favor a well-defined culture environment offering continuous supply of nutrients and oxygen and waste product removal. Several bioreactors based on special matrices or hollow fibers have been developed that provide such conditions. However, characterization of matrix re-organization or growth of tissue within these systems is possible only after culture termination. Evaluation of the influence of certain medium additives or culture conditions (e.g., temperature, oxygenation) on cell viability, expansion, and differentiation within these systems remains a challenging task. The SlideReactor, a miniaturized hollow fiber-based bioreactor, was developed to enable the observation of cells during culture. An operation concept offering predefined conditions for various cell types has been designed. For proof of concept, primary human cells (hepatocytes, fibroblasts, keratinocytes) and cell lines (HepG2, HuH7, C3A, WiDr, SkHep1) were cultured and observed. A series of experiments (n=40) showed the feasibility of the set-up; determination of process parameters and continuous observation is possible. The SlideReactor may serve as a simple and cost-efficient tool for cell characterization and optimization of cell-culture conditions.
Collapse
Affiliation(s)
- Ruth Schwartlander
- Department of General, Visceral, and Transplantation Surgery, Charité-Campus Virchow-Klinikum, Universitätsmedizin Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Shinoda M, Tilles AW, Kobayashi N, Wakabayashi G, Takayanagi A, Totsugawa T, Harada H, Obara H, Suganuma K, Berthiaume F, Shimazu M, Shimizu N, Tanaka N, Kitajima M, Tompkins RG, Toner M, Yarmush ML. A bioartificial liver device secreting interleukin-1 receptor antagonist for the treatment of hepatic failure in rats. J Surg Res 2006; 137:130-40. [PMID: 17081566 PMCID: PMC3201777 DOI: 10.1016/j.jss.2006.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/24/2006] [Accepted: 08/09/2006] [Indexed: 01/12/2023]
Abstract
BACKGROUND Liver transplantation is the treatment of choice for many patients with fulminant hepatic failure (FHF). A major limitation of this treatment is the lack of available donors. An optimally functioning bio-artificial liver (BAL) device has the potential to provide critical hepatic support to patients with FHF. In this study, we examined the efficacy of combining interleukin-1 (IL-1) receptor blockade with the synthetic function of hepatocytes in a BAL device for the treatment of FHF. MATERIALS AND METHODS We injected an adenoviral vector encoding human IL-1 receptor antagonist (AdIL-1Ra) into the liver of D-galactosamine (GalN) intoxicated rats via the portal vein. We also transfected primary rat hepatocytes and reversibly immortalized human hepatocytes (TTNT cells) with AdIL-1Ra, and incorporated these transfected hepatocytes into our flat-plate BAL device and evaluated their efficacy in our GalN-induced FHF rat model after 10 h of extracorporeal perfusion. RESULTS Rats injected with AdIL-1Ra showed significant reductions in the plasma levels of hepatic enzymes. Primary rat hepatocytes transfected with AdIL-1Ra secreted IL-1Ra without losing their original synthetic function. Incorporating these cells into the BAL device and testing in a GalN-induced FHF rat model resulted in significant reductions in plasma IL-6 levels and significantly improved animal survival. Incorporating the AdIL-1Ra transfected TTNT cells in the BAL device and testing in the GalN-induced FHF rat model resulted in significantly reduced plasma IL-6 levels, and a trend toward improved survival was seen. CONCLUSION Hepatocytes producing IL-1Ra are a promising cell source for BAL devices in the treatment of GalN-induced FHF.
Collapse
Affiliation(s)
- Masahiro Shinoda
- Center for Engineering in Medicine and Department of Surgery, Massachusetts General Hospital, Shriners Hospitals for Children, and Harvard Medical School, Boston, Massachusetts
| | - Arno W. Tilles
- Center for Engineering in Medicine and Department of Surgery, Massachusetts General Hospital, Shriners Hospitals for Children, and Harvard Medical School, Boston, Massachusetts
| | - Naoya Kobayashi
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Shikata-cho, Okayama, Japan
| | - Go Wakabayashi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | | | - Toshinori Totsugawa
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Shikata-cho, Okayama, Japan
| | - Hirohisa Harada
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideaki Obara
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kazuhiro Suganuma
- Center for Engineering in Medicine and Department of Surgery, Massachusetts General Hospital, Shriners Hospitals for Children, and Harvard Medical School, Boston, Massachusetts
| | - François Berthiaume
- Center for Engineering in Medicine and Department of Surgery, Massachusetts General Hospital, Shriners Hospitals for Children, and Harvard Medical School, Boston, Massachusetts
| | - Motohide Shimazu
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyoshi Shimizu
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Noriaki Tanaka
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Shikata-cho, Okayama, Japan
| | - Masaki Kitajima
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Ronald G. Tompkins
- Center for Engineering in Medicine and Department of Surgery, Massachusetts General Hospital, Shriners Hospitals for Children, and Harvard Medical School, Boston, Massachusetts
| | - Mehmet Toner
- Center for Engineering in Medicine and Department of Surgery, Massachusetts General Hospital, Shriners Hospitals for Children, and Harvard Medical School, Boston, Massachusetts
| | - Martin L. Yarmush
- Center for Engineering in Medicine and Department of Surgery, Massachusetts General Hospital, Shriners Hospitals for Children, and Harvard Medical School, Boston, Massachusetts
- To whom correspondence and reprint requests should be addressed at Shriners Hospitals for Children, 51 Blossom Street, Boston, MA 02114.
| |
Collapse
|
15
|
Diekmann S, Bader A, Schmitmeier S. Present and Future Developments in Hepatic Tissue Engineering for Liver Support Systems : State of the art and future developments of hepatic cell culture techniques for the use in liver support systems. Cytotechnology 2006; 50:163-79. [PMID: 19003077 PMCID: PMC3476010 DOI: 10.1007/s10616-006-6336-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 01/03/2006] [Indexed: 12/23/2022] Open
Abstract
The liver is the most important organ for the biotransformation of xenobiotics, and the failure to treat acute or acute-on-chronic liver failure causes high mortality rates in affected patients. Due to the lack of donor livers and the limited possibility of the clinical management there has been growing interest in the development of extracorporeal liver support systems as a bridge to liver transplantation or to support recovery during hepatic failure. Earlier attempts to provide liver support comprised non-biological therapies based on the use of conventional detoxification procedures, such as filtration and dialysis. These techniques, however, failed to meet the expected efficacy in terms of the overall survival rate due to the inadequate support of several essential liver-specific functions. For this reason, several bioartificial liver support systems using isolated viable hepatocytes have been constructed to improve the outcome of treatment for patients with fulminant liver failure by delivering essential hepatic functions. However, controlled trials (phase I/II) with these systems have shown no significant survival benefits despite the systems' contribution to improvements in clinical and biochemical parameters. For the development of improved liver support systems, critical issues, such as the cell source and culture conditions for the long-term maintenance of liver-specific functions in vitro, are reviewed in this article. We also discuss aspects concerning the performance, biotolerance and logistics of the selected bioartificial liver support systems that have been or are currently being preclinically and clinically evaluated.
Collapse
Affiliation(s)
- Sonja Diekmann
- Center for Biotechnology and Biomedicine, Cell Techniques and Applied Stem Cell Biotechnology, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Augustinus Bader
- Center for Biotechnology and Biomedicine, Cell Techniques and Applied Stem Cell Biotechnology, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Stephanie Schmitmeier
- Center for Biotechnology and Biomedicine, Cell Techniques and Applied Stem Cell Biotechnology, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| |
Collapse
|
16
|
Park JK, Lee DH. Bioartificial liver systems: current status and future perspective. J Biosci Bioeng 2005; 99:311-9. [PMID: 16233796 DOI: 10.1263/jbb.99.311] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 02/12/2005] [Indexed: 12/30/2022]
Abstract
Because the liver is a multifunctional and a vital organ for survival, the management of acute liver failure requires the support of a huge number of metabolic functions performed by the organ. Many early detoxification-based artificial liver techniques failed to treat the patients owing to the inadequate support of the many essential hepatic functions. For this reason, a bioartificial liver (BAL) comprising of viable hepatocytes on a mechanical support is believed to more likely provide these essential functions than a purely mechanical device. From 1990, nine clinical studies of various BAL systems have been reported, most of which utilize a hollow fiber technology, and a much larger number of various BAL systems have been suggested to show an enhanced performance. Safety issues such as immunological reactions, zoonosis and tumorgenicity have been successfully addressed for regulatory approval, but a recent report from a large-scale, randomized, and controlled phase III trial of a leading BAL system (HepatAssist) failed to meet our expectation of efficacy in terms of the overall survival rate. In this paper, we review the current BAL systems actively studied and discuss critical issues such as the hepatocyte bioreactor configuration and the hepatocyte source. On the basis of the insights gained from previously developed BAL systems and the rapid progress in stem cell technology, the short-term and long-term future perspectives of BAL systems are suggested.
Collapse
Affiliation(s)
- Jung-Keug Park
- Department of Chemical and Biochemical Engineering, Dongguk University, 3-26 Pil-dong, Choong-gu, Seoul 100-715, Korea.
| | | |
Collapse
|
17
|
Barshes NR, Gay AN, Williams B, Patel AJ, Awad SS. Support for the Acutely Failing Liver: A Comprehensive Review of Historic and Contemporary Strategies. J Am Coll Surg 2005; 201:458-76. [PMID: 16125082 DOI: 10.1016/j.jamcollsurg.2005.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 03/23/2005] [Accepted: 04/11/2005] [Indexed: 12/16/2022]
Affiliation(s)
- Neal R Barshes
- Michael E DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | |
Collapse
|
18
|
Sauer IM, Schwartlander R, Schmid J, Efimova E, Vondran FWR, Kehr D, Pless G, Spinelli A, Brandenburg B, Hildt E, Neuhaus P. The SlideReactor-A Simple Hollow Fiber Based Bioreactor Suitable for Light Microscopy. Artif Organs 2005; 29:264-7. [PMID: 15725230 DOI: 10.1111/j.1525-1594.2005.29049.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Most bioartificial liver support systems are based on hollow fiber capillaries within modified dialysis cartridges or more sophisticated bioreactor constructions. Due to their design microscopic follow-up of reorganization and growth of tissue between the hollow fibers is not possible. The SlideReactor is a simple hollow fiber based bioreactor construction suitable for light microscopy and time-lapse video observation. The SlideReactor offers a cell compartment separated from a medium inflow and outflow compartment. Cell compartment access ports enable easy filling of the cell compartment with cell suspension, as well as fixation of the tissue. For more complex procedures or full access to all the cells, the bioreactor can be opened easily by cutting the silicone seal with a scalpel. Due to its simple design and the utilization of standard materials, it could serve as a suitable, cost-efficient tool to evaluate the behavior of cells cultured between hollow fiber capillaries. The paper describes the production process: similar to open source projects in software engineering, we would like to propose the concept as an open platform to anyone interested in hollow fiber based cell culture.
Collapse
Affiliation(s)
- Igor M Sauer
- Visceral and Transplantation Surgery, Experimental Surgery and Regenerative Medicine Charité--Campus Virchow Universitätsmedizin Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Omasa T, Yamanaka M, Tanimura N, Katakura Y, Kishimoto M, Suga KI, Enosawa S. Expression and amplification of glutamine synthetase gene endows HepG2 cells with ammonia-metabolizing activity for bioartificial liver support system. Enzyme Microb Technol 2004. [DOI: 10.1016/j.enzmictec.2004.08.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
20
|
van de Kerkhove MP, Hoekstra R, Chamuleau RAFM, van Gulik TM. Clinical application of bioartificial liver support systems. Ann Surg 2004; 240:216-30. [PMID: 15273544 PMCID: PMC1356396 DOI: 10.1097/01.sla.0000132986.75257.19] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To review the present status of bioartificial liver (BAL) devices and their obtained clinical results. BACKGROUND Acute liver failure (ALF) is a disease with a high mortality. Standard therapy at present is liver transplantation. Liver transplantation is hampered by the increasing shortage of organ donors, resulting in high incidence of patients with ALF dying on the transplantation waiting list. Among a variety of liver assist therapies, BAL therapy is marked as the most promising solution to bridge ALF patients to liver transplantation or to liver regeneration, because several BAL systems showed significant survival improvement in animal ALF studies. Until today, clinical application of 11 different BAL systems has been reported. METHODS A literature review was performed using MEDLINE and additional library searches. Only BAL systems that have been used in a clinical trial were included in this review. RESULTS Eleven BAL systems found clinical application. Three systems were studied in a controlled trial, showing no significant survival benefits, in part due to the insufficient number of patients included. The other systems were studied in a phase I trial or during treatment of a single patient and all showed to be safe. Most BAL therapies resulted in improvement of clinical and biochemical parameters. CONCLUSIONS Bioartificial liver therapy for bridging patients with ALF to liver transplantation or liver regeneration is promising. Its clinical value awaits further improvement of BAL devices, replacement of hepatocytes of animal origin by human hepatocytes, and assessment in controlled clinical trials.
Collapse
Affiliation(s)
- Maarten Paul van de Kerkhove
- Department of Surgery (Surgical Laboratory), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
21
|
Omasa T, Kishimoto M, Kawase M, Yagi K. An attempt at decision making in tissue engineering: reactor evaluation using the analytic hierarchy process (AHP). Biochem Eng J 2004. [DOI: 10.1016/j.bej.2003.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Hussain SZ, Sneddon T, Tan X, Micsenyi A, Michalopoulos GK, Monga SPS. Wnt impacts growth and differentiation in ex vivo liver development. Exp Cell Res 2004; 292:157-69. [PMID: 14720515 DOI: 10.1016/j.yexcr.2003.08.020] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The Wnt-beta-catenin pathway plays a role in liver growth and development. Here, we investigate the direct effect of Wnt-3A on ex vivo liver development. Livers from mouse embryos at day 10 were cultured in serum-free Wnt-3A-conditioned media alone or with HGF and insulin for 72 h and analyzed for histology, proliferation, apoptosis and lineage. Control cultures grown in serum-free conditions or Wnt-3A and sFRP-1 combination display loss of architecture and proliferation and increased apoptosis. In the presence of Wnt-3A, embryonic liver cultures show CK-19-positive cells (biliary phenotype) displaying proliferation, minimal apoptosis and duct-like histological arrangement. HGF and Wnt combination exhibited normal histology as seen in the presence of 10% serum displaying stem cells, hepatocytes and primitive bile ducts. HGF, insulin and Wnt combination provided no additional benefits rather had an overall deleterious effect. Thus, Wnt supports biliary differentiation by enhancing stem cell specification, hepatocyte trans-differentiation and promoting biliary survival. HGF and Wnt combination supports stem cells, hepatocytes and bile ducts. The addition of insulin to the combination of HGF and Wnt provided no growth or differentiation advantage. Our results indicate usefulness of Wnt and HGF in hepatocyte cultures and suggest their balance during normal liver development.
Collapse
Affiliation(s)
- Sunny Z Hussain
- Department of Pediatric Gastroenterology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Oxygen consumption dynamics in a hollow fiber, hepatocyte-loaded bioartificial liver are investigated both theoretically and experimentally. The theoretical model is based upon the Krogh cylinder, which approximates the bioreactor as a collection of cylindrical elements comprised of an inner fiber lumen for media perfusion, the fiber wall through which oxygen can diffuse, and an annular region of hepatocytes surrounding the fiber. The primary non-dimensional parameters that describe the system are: (i) the Peclet number, Pe, which is the ratio of convective oxygen transport through the lumen to diffusive oxygen transport to the fiber walls; (ii) the hepatocyte saturation parameter, theta, which is the ratio of the inlet oxygen partial pressure to the Michaelis-Menten half-rate oxygen partial pressure; (iii) the Thiele modulus, phi2, which is the ratio of oxygen consumption rate to oxygen diffusion rate in the hepatocyte annulus; (iv) the hepatocyte permeability ratio, beta31, which is the ratio of oxygen permeability in the hepatocyte cell mass to oxygen permeability in the perfusing lumen medium; and (v) the hepatocyte annular thickness, rho3, which is the ratio of the exterior hepatocyte annular radius to the fiber lumen radius. Only Pe and theta are easily manipulated operating variables. phi2, beta31, and rho3 are engineering design parameters that are set when a bioreactor is fabricated. The model results are expressed as the effective hepatocyte utilization ratio, Vratio, which is the ratio of the observed oxygen consumption rate to the intrinsic hepatocyte oxygen consumption rate. Large regions of Vratio > 0.9, which is deemed an acceptable effective hepatocyte utilization are found for parameter values consistent with standard hollow fiber cartridges used in bioartificial liver fabrication. The extent of the Vratio > 0.9 region increases to a plateau with increasing Pe, increases with increasing theta, decreases with increasing phi2, increases with increasing beta31, and decreases with increasing rho3. The theoretical results indicate that Vratio > 0.9 is found whenever the experimentally observed fractional oxygen consumption from the perfusing medium, is less than 0.25. Combination of the theoretical and experimental results indicate that intrinsic, per cell oxygen consumption in the hollow fiber system may decrease as hepatocyte cell density increases and that this decrease may be due to lower intrinsic oxygen requirements in denser suspensions and not due to diffusion limitations in oxygen transport in the hollow fiber system as might be expected from two-dimensional, monolayer culture oxygen consumption measurements.
Collapse
Affiliation(s)
- John F Patzer
- Department of Surgery, Department of Chemical Engineering, Thomas E Starzl Transplantation Institute, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
24
|
Herrera gutiérrez M, Seller G, Muñoz A, Lebrón M, Aragón C. Soporte hepático extracorpóreo: situación actual y expectativas de futuro. Med Intensiva 2004. [DOI: 10.1016/s0210-5691(04)70048-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Affiliation(s)
- Leonidas G Koniaris
- Department of Surgery, University of Rochester School of Medicine, Rochester, NY, USA
| | | | | | | |
Collapse
|
26
|
Sauer IM, Zeilinger K, Pless G, Kardassis D, Theruvath T, Pascher A, Goetz M, Neuhaus P, Gerlach JC. Extracorporeal liver support based on primary human liver cells and albumin dialysis--treatment of a patient with primary graft non-function. J Hepatol 2003; 39:649-53. [PMID: 12971979 DOI: 10.1016/s0168-8278(03)00348-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
METHODS Following liver transplantation, a 26-year old female suffered from primary non-function of the transplant. The patient was subsequently treated with a modular extracorporeal liver support concept until a suitable organ became available. A bioreactor was charged with human liver cells, obtained from a discarded cadaveric graft (470 g, viability: 60%). The bioreactor was integrated into an extracorporeal circuit with continuous single pass albumin dialysis and continuous veno-venuous hemodiafiltration for detoxification and fluid reduction. RESULTS Over the total system application time of 79 h, a significant reduction of the plasma levels of total bilirubin (21.1 mg/dl at start, 10.1 mg/dl at end of therapy) and ammonia (100 versus 22.7 micromol/l) was achieved. During treatment the patient's neurological status significantly improved from coma stage IV to I permitting extubation. Recovery of kidney function with a urine output of 1325 ml/24 h compared to 45 ml/24 h prior to system application, was noted. Over the treatment period, an improvement of coagulation status was observed. Adverse events were absent. CONCLUSIONS This first successful clinical treatment of a patient with liver failure suggests that a modular approach combining both primary human liver cell bioreactor technology and detoxification methods is promising.
Collapse
Affiliation(s)
- Igor M Sauer
- Charité--Campus Virchow, Klinik für Allgemein-, Visceral- und Transplantationschirurgie, Medical Faculty of the Humboldt University, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Grad-Itach E, Fuchs AG, Lev H, Kotok T, Shemesh R, Shouval D, Ilan Y, Mitrani E. Liver micro-organs transcribe albumin and clotting factors and increase survival of 92% hepatectomized rats. J Hepatol 2003; 39:552-8. [PMID: 12971965 DOI: 10.1016/s0168-8278(03)00351-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Currently there is no effective non-surgical therapy for most patients with fulminant or end stage chronic liver disease. METHODS We have prepared rat liver micro-organs (LMOs), which preserve the liver micro-architecture and ensure that no cell is more than 150 microm away from a source of nutrients and gases. The function of LMOs has been evaluated in vitro and in a new extra-corporeal liver device termed aLIVE in which LMOs are exposed to liver-like hemodynamic conditions. RESULTS In vitro LMOs maintain normal physiological and biochemical functions including oxygen consumption, glucose metabolism, conversion of ammonia to urea, secretion of albumin and de novo transcription of genes coding for albumin and clotting factors. Inside the aLIVE bioreactor, LMOs also display sustained oxygen consumption, glucose metabolism and transcription of albumin and clotting factors IX and X, when connected both to normal and to 92% hepatectomized rats. Survival of 92% hepatectomized rats was 40% longer following a single 4-h treatment with aLIVE, compared to untreated animals. CONCLUSIONS An extra-corporeal liver device, aLIVE, which provides key liver functions, has been developed. When tested in 92% hepatectomized rats, aLIVE improved the clinical condition and significantly increased survival time of the treated rats.
Collapse
|
28
|
Qian Y, Lanjuan L, Jianrong H, Jun L, Hongcui C, Suzhen F, Xia Y, Shuhong Y. Study of severe hepatitis treated with a hybrid artificial liver support system. Int J Artif Organs 2003; 26:507-13. [PMID: 12866656 DOI: 10.1177/039139880302600609] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Artificial liver support system (ALSS) has been used to treat hepatic failure and has significantly decreased the mortality. TECA hybrid artificial liver support system (TECA-HALSS), which combines the hollow fiber bioreactor with a plasma exchange circuit, was used to assess the efficacy, safety and feasibility in treating severe hepatitis patients. The hybrid artificial liver support system (HALSS) consists of a bioreactor containing more than 5 x10(9) porcine hepatocytes and plasma exchange device. Fifteen patients with severe hepatitis were treated with this hybrid system. All patients experienced a reduction in symptoms such as fatigue, abdominal distention or ascites. After each treatment serum total bilirubin decreased markedly while prothrombin activity increased. There were ten patients whose progress of hepatocyte necrosis was stopped after HALSS treatment, and finally they recovered completely. One patient received liver transplantation after HALSS therapy and survived. No serious adverse events were noted in the fifteen patients.
Collapse
Affiliation(s)
- Y Qian
- Department of Infectious Disease,The First Affiliated Hospital, College of Medicine, Zhejiang University, Hang Zhou, China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Baccarani U, Sanna A, Cariani A, Sainz-Barriga M, Adani GL, Zambito AM, Piccolo G, Risaliti A, Nanni-Costa A, Ridolfi L, Scalamogna M, Bresadola F, Donini A. Isolation of human hepatocytes from livers rejected for liver transplantation on a national basis: results of a 2-year experience. Liver Transpl 2003; 9:506-12. [PMID: 12740795 DOI: 10.1053/jlts.2003.50087] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The offer of liver transplantation to many patients affected by liver failure is limited by organ shortage. Clinical application of human-based liver cell therapies, such as bioartificial liver and hepatocyte transplantation, might support liver transplantation, allowing more patients to be treated and decreasing mortality in the waiting list. The development of a standardized method of hepatocyte isolation is a mainstay for large-scale application of liver cell therapy. The aim of this study is to analyze retrospectively a 2-year experience of human hepatocyte isolation from livers rejected from transplantation at organ harvesting, performed on a national basis in Italy. All the livers judged unsuitable for transplantation were considered for hepatocyte isolation. Macrosteatosis greater than 60% was the most common reason of refusal, followed by nonviral cirrhosis. Fifty-four organs were used. Human hepatocyte isolation resulted in more that 7 million liver cells/g of tissue digested with 73% +/- 14% viability. Steatotic organs gave better results in terms of cell yield than cirrhotic livers. Isolated hepatocytes were able to perform specific liver functions, and evidence of factor IX and albumin messenger RNA (mRNA) production was reported when cells were plated in culture. Modifications of the traditional method of hepatocyte isolation, aimed at reducing ischemia-reperfusion damage and improving post-isolation cell conditions, showed improvements in post-isolation viability. In conclusion, we show that it is possible to use the vast majority of livers not suitable for transplantation on a national basis for human hepatocyte isolation, obtaining a large amount of viable functioning human hepatocytes that might be used for cell transplantation and therapy.
Collapse
Affiliation(s)
- Umberto Baccarani
- Bank of Human Hepatocyte, Department of Surgery, University of Ferrara, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Farghali H, Lincová D, Gaier N, Kmoníèková E, Kameníková L, Canová N, Vítek L. Urea synthesis and cyclosporin a biotransformation in a laboratory scale hepatocyte bioreactor model. Pharmacol Res 2002; 46:511-7. [PMID: 12457624 DOI: 10.1016/s1043661802002347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Inefficient oxygenation and build-up of waste products are inevitable in a conventional cell culture. The development of a perifusion method for isolated hepatocytes improves the process of oxygenation and helps in end-product removal. For the perifusion of cells, they must be immobilized to prepare a bioreactor model. The present work was directed to testing a hepatocyte bioreactor and maintaining tissue metabolizing activity for periods ranging from 24 to 72 h of continuous and intermittent perifusion and to test the ability of this system for cyclosporin A (CsA), biotransformation and urea synthesis as contrasted to hepatocyte in the culture. Hepatocytes were isolated, immobilized and perifused with William's E culture medium containing 1mM NH(4)Cl and CsA (20 microM). Hepatocytes in the culture were treated in the same way. CsA disappearance from the perifusion or culture media was determined by a HPLC method. Higher urea synthesis rate was achieved by cells in the continuously perifused bioreactor for 24 h compared to culture (0.5+/-0.05 mg h(-1) vs 0.33+/-0.03 mg h(-1), respectively). ALT leakage was lower in the bioreactor model (60 Ul(-1)) as compared to hepatocyte culture (125 Ul(-1)). The ability of hepatocytes in the bioreactor to metabolize CsA was very fast compared to hepatocytes in the culture during 24 h (95% vs 50%, respectively). The present data reveal the higher efficiency of hepatocytes in a bioreactor model as compared to hepatocyte culture. Further research is required in relation to better understanding and standardization of the culture conditions for immobilized and perifused hepatocytes. In addition, the cellular model described here inherits economic and ethical potentials.
Collapse
Affiliation(s)
- H Farghali
- Institute of Pharmacology, First Faculty of Medicine, Charles University, 128 00, Prague Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
31
|
Bechstein W. Invited Commentary to: 'The Artificial Liver - Liver Support Systems' (Eur. Surg. 2002;34:194 - 198). Eur Surg 2002. [DOI: 10.1046/j.1563-2563.2002.02054.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|