1
|
González I, Lindner C, Schneider I, Diaz E, Morales MA, Rojas A. Emerging and multifaceted potential contributions of polyphenols in the management of type 2 diabetes mellitus. World J Diabetes 2024; 15:154-169. [PMID: 38464365 PMCID: PMC10921170 DOI: 10.4239/wjd.v15.i2.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/16/2023] [Accepted: 01/19/2024] [Indexed: 02/04/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is recognized as a serious public health concern with a considerable impact on human life, long-term health expenditures, and substantial health losses. In this context, the use of dietary polyphenols to prevent and manage T2DM is widely documented. These dietary compounds exert their beneficial effects through several actions, including the protection of pancreatic islet β-cell, the antioxidant capacities of these molecules, their effects on insulin secretion and actions, the regulation of intestinal microbiota, and their contribution to ameliorate diabetic complications, particularly those of vascular origin. In the present review, we intend to highlight these multifaceted actions and the molecular mechanisms by which these plant-derived secondary metabolites exert their beneficial effects on type 2 diabetes patients.
Collapse
Affiliation(s)
- Ileana González
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile
| | - Cristian Lindner
- Department of Radiology, Faculty of Medicine, University of Concepción, Concepción 4030000, Chile
| | - Ivan Schneider
- Centre of Primary Attention, South Metropolitan Health Service, Santiago 3830000, Chile
| | - Erik Diaz
- Faculty of Medicine, Catholic University of Maule, Talca 3460000, Chile
| | - Miguel Angel Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago 8320000, Chile
| | - Armando Rojas
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile
| |
Collapse
|
2
|
Działo M, Mierziak J, Korzun U, Preisner M, Szopa J, Kulma A. The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders. Int J Mol Sci 2016; 17:160. [PMID: 26901191 PMCID: PMC4783894 DOI: 10.3390/ijms17020160] [Citation(s) in RCA: 325] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/05/2016] [Accepted: 01/14/2016] [Indexed: 12/14/2022] Open
Abstract
Phenolic compounds constitute a group of secondary metabolites which have important functions in plants. Besides the beneficial effects on the plant host, phenolic metabolites (polyphenols) exhibit a series of biological properties that influence the human in a health-promoting manner. Evidence suggests that people can benefit from plant phenolics obtained either by the diet or through skin application, because they can alleviate symptoms and inhibit the development of various skin disorders. Due to their natural origin and low toxicity, phenolic compounds are a promising tool in eliminating the causes and effects of skin aging, skin diseases, and skin damage, including wounds and burns. Polyphenols also act protectively and help prevent or attenuate the progression of certain skin disorders, both embarrassing minor problems (e.g., wrinkles, acne) or serious, potentially life-threatening diseases such as cancer. This paper reviews the latest reports on the potential therapy of skin disorders through treatment with phenolic compounds, considering mostly a single specific compound or a combination of compounds in a plant extract.
Collapse
Affiliation(s)
- Magdalena Działo
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | - Justyna Mierziak
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | - Urszula Korzun
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | - Marta Preisner
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | - Jan Szopa
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
- Department of Genetics, Plant Breeding and Seed Production, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Plant Sciences, Plac Grunwaldzki 24A, 53-363 Wroclaw, Poland.
| | - Anna Kulma
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| |
Collapse
|
3
|
Leonard SS, Hogans VJ, Coppes-Petricorena Z, Peer CJ, Vining TA, Fleming DW, Harris GK. Analysis of Free-Radical Scavenging of Yerba Mate (Ilex paraguriensis) using Electron Spin Resonance and Radical-Induced DNA Damage. J Food Sci 2010; 75:C14-20. [DOI: 10.1111/j.1750-3841.2009.01394.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Li Y, Ambrosone CB, McCullough MJ, Ahn J, Stevens VL, Thun MJ, Hong CC. Oxidative stress-related genotypes, fruit and vegetable consumption and breast cancer risk. Carcinogenesis 2009; 30:777-84. [PMID: 19255063 DOI: 10.1093/carcin/bgp053] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dietary antioxidants may interact with endogenous sources of pro- and antioxidants to impact breast cancer risk. A nested case-control study of postmenopausal women (505 cases and 502 controls) from the Cancer Prevention Study-II Nutrition Cohort was conducted to examine the interaction between oxidative stress-related genes and level of vegetable and fruit intake on breast cancer risk. Genetic variations in catalase (CAT) (C-262T), myeloperoxidase (MPO) (G-463A), endothelial nitric oxide synthase (NOS3) (G894T) and heme oxygenase-1 (HO-1) [(GT)(n) dinucleotide length polymorphism] were not associated with breast cancer risk. Women carrying the low-risk CAT CC [odds ratio (OR) = 0.75, 95% confidence interval (CI) 0.50-1.11], NOS3 TT (OR = 0.54, 95% CI = 0.26-1.12, P-trend = 0.10) or HO-1 S allele and MM genotype (OR = 0.56, 95% CI = 0.37-0.55), however, were found to be at non-significantly reduced breast cancer risk among those with high vegetable and fruit intake (> or = median; P-interactions = 0.04 for CAT, P = 0.005 for NOS3 and P = 0.07 for HO-1). Furthermore, those with > or = 4 putative low-risk alleles in total had significantly reduced risk (OR = 0.53, 95% CI = 0.32-0.88, P-interaction = 0.006) compared with those with < or = 2 low-risk alleles. In contrast, among women with low vegetable and fruit intake (< median), the low-risk CAT CC (OR = 1.33, 95% CI = 0.89-1.99), NOS3 TT (OR = 2.93, 95% CI = 1.38-6.22) and MPO AA (OR = 2.09, 95% CI = 0.73-5.95) genotypes appeared to be associated with raised breast cancer risk, with significantly increased risks observed in those with > or = 4 low-risk alleles compared with participants with < or = 2 low-risk alleles (OR = 1.77, 95% CI = 1.05-2.99, P-interaction = 0.006). Our results support the hypothesis that there are joint effects of endogenous and exogenous antioxidants.
Collapse
Affiliation(s)
- Yulin Li
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Trujillo M, Ferrer-Sueta G, Radi R. Peroxynitrite detoxification and its biologic implications. Antioxid Redox Signal 2008; 10:1607-20. [PMID: 18500925 DOI: 10.1089/ars.2008.2060] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Peroxynitrite is a cytotoxic oxidant formed in vivo from the diffusional-controlled reaction between nitric oxide and superoxide radicals. Increased peroxynitrite formation has been related to the pathogenesis of multiple diseases, thus underlining the importance of understanding the mechanisms of its detoxification. In nature, different enzymatic routes for peroxynitrite decomposition have evolved. Among them, peroxiredoxins catalytically reduce peroxynitrite in vitro; modulation of their expression affects peroxynitrite-mediated cytotoxicity, and their content changes in pathologic conditions associated with increased peroxynitrite formation in vivo, thus indicating a physiologic role of these enzymes in peroxynitrite reduction. Selenium-containing glutathione peroxidase also catalyzes peroxynitrite reduction, but its role in vivo is still a matter of debate. In selected cellular systems, heme proteins also play a role in peroxynitrite detoxification, such as its isomerization by oxyhemoglobin in red blood cells. Moreover, different pharmacologic approaches have been used to decrease the toxicity related to peroxynitrite formation. Manganese or iron porphyrins catalyze peroxynitrite decomposition, and their protective role in vivo has been confirmed in biologic systems. Glutathione peroxidase mimetics also rapidly reduce peroxynitrite, but their biologic role is less well established. Flavonoids, nitroxides, and tyrosine-containing peptides decreased peroxynitrite-mediated toxicity under different conditions, but their mechanism of action is indirect.
Collapse
Affiliation(s)
- Madia Trujillo
- Departamento de Bioquímica, Universidad de la República, Montevideo, Uruguay
| | | | | |
Collapse
|
6
|
McCarty MF. Scavenging of peroxynitrite-derived radicals by flavonoids may support endothelial NO synthase activity, contributing to the vascular protection associated with high fruit and vegetable intakes. Med Hypotheses 2008; 70:170-81. [PMID: 17825500 DOI: 10.1016/j.mehy.2005.09.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 09/07/2005] [Indexed: 01/24/2023]
Abstract
Ample intakes of fruit and vegetables have been linked epidemiologically with reduced risk for coronary disease, stroke, hypertension, obesity, many types of cancer, chronic pulmonary disease, osteoporosis, and various ocular disorders. The favorable impact of diets rich in fruit and vegetables on coronary risk has been confirmed in meta-analyses, and is thought to be largely attributable to the folk acid and potassium supplied by these foods. Although high intakes of vitamin C appear to confer some cardiovascular protection, the amounts supplied by typical diets may be too low to be of much benefit in this regard. High flavonoid intakes emerge as protective in some epidemiological studies, albeit the dose-response pattern observed is often L-shaped - seemingly more consistent with low intakes being harmful, than with high intakes being protective. Nonetheless, flavonoids have shown anti-atherogenic activity in rodent models, and both clinical and rodent supplementation studies with foods and food extracts rich in flavonoids demonstrate improvements in endothelium-dependent vasodilation traceable to increased endothelial nitric oxide synthesis. However, flavonoids do not appear to increase the expression of endothelial NO synthase, nor do they modify endothelial superoxide production. A likely explanation is that, even in nanomolar concentrations achievable in vivo, flavonoids can act as efficient scavengers of peroxynitrite-derived radicals, thereby protecting the cofactor tetrahydrobiopterin, crucial for NO synthase activity. Studies with cultured endothelial cells should be useful for evaluating this possibility. It would also be appropriate to assess the effects of flavonoids on prostacylin synthetase activity, on endothelial catabolism of asymmetric dimethylarginine, and on signaling mechanisms that activate NO synthase. Since peroxynitrite can induce mutagenic damage to DNA, it is conceivable that scavenging of peroxynitrite-derived radicals contributes to the reduction in mutagenesis associated with high intakes of fruits and vegetables. Carotenoids also have the potential to prevent peroxynitrite-mediated damage, although, as contrasted with flavonoids, there is comparatively little evidence that these compounds are anti-atherogenic or beneficial for endothelial function; a recent meta-analysis of epidemiological studies suggests that high lutein intakes may modestly reduce coronary risk.
Collapse
Affiliation(s)
- Mark F McCarty
- Natural Alternatives International, 1185 Linda Vista Dr., San Marcos, CA 92078, United States.
| |
Collapse
|
7
|
Wallace CHR, Baczkó I, Jones L, Fercho M, Light PE. Inhibition of cardiac voltage-gated sodium channels by grape polyphenols. Br J Pharmacol 2006; 149:657-65. [PMID: 17016511 PMCID: PMC2014645 DOI: 10.1038/sj.bjp.0706897] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE The cardiovascular benefits of red wine consumption are often attributed to the antioxidant effects of its polyphenolic constituents, including quercetin, catechin and resveratrol. Inhibition of cardiac voltage-gated sodium channels (VGSCs) is antiarrhythmic and cardioprotective. As polyphenols may also modulate ion channels, and possess structural similarities to several antiarrhythmic VGSC inhibitors, we hypothesised that VGSC inhibition may contribute to cardioprotection by these polyphenols. EXPERIMENTAL APPROACH The whole-cell voltage-clamp technique was used to record peak and late VGSC currents (INa) from recombinant human heart NaV1.5 channels expressed in tsA201 cells. Right ventricular myocytes from rat heart were isolated and single myocytes were field-stimulated. Either calcium transients or contractility were measured using the calcium-sensitive dye Calcium-Green 1AM or video edge detection, respectively. KEY RESULTS The red grape polyphenols quercetin, catechin and resveratrol blocked peak INa with IC50s of 19.4 microM, 76.8 microM and 77.3 microM, respectively. In contrast to lidocaine, resveratrol did not exhibit any frequency-dependence of peak INa block. Late INa induced by the VGSC long QT mutant R1623Q was reduced by resveratrol and quercetin. Resveratrol and quercetin also blocked late INa induced by the toxin, ATX II, with IC50s of 26.1 microM and 24.9 microM, respectively. In field-stimulated myocytes, ATXII-induced increases in diastolic calcium were prevented and reversed by resveratrol. ATXII-induced contractile dysfunction was delayed and reduced by resveratrol. CONCLUSIONS AND IMPLICATIONS Our results indicate that several red grape polyphenols inhibit cardiac VGSCs and that this effect may contribute to the documented cardioprotective efficacy of red grape products.
Collapse
Affiliation(s)
- C H R Wallace
- Department of Pharmacology, University of Alberta, 9-58 Medical Sciences Building Edmonton, Alberta, Canada
| | - I Baczkó
- Department of Pharmacology, University of Alberta, 9-58 Medical Sciences Building Edmonton, Alberta, Canada
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical Center, University of Szeged Szeged, Hungary
| | - L Jones
- Department of Pharmacology, University of Alberta, 9-58 Medical Sciences Building Edmonton, Alberta, Canada
| | - M Fercho
- Department of Pharmacology, University of Alberta, 9-58 Medical Sciences Building Edmonton, Alberta, Canada
| | - P E Light
- Department of Pharmacology, University of Alberta, 9-58 Medical Sciences Building Edmonton, Alberta, Canada
- Author for correspondence:
| |
Collapse
|
8
|
Boveris A, Valdez L, Alvarez S. Inhibition by wine polyphenols of peroxynitrite-initiated chemiluminescence and NADH oxidation. Ann N Y Acad Sci 2002; 957:90-102. [PMID: 12074964 DOI: 10.1111/j.1749-6632.2002.tb02908.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Peroxynitrite (ONOO(-)) is a powerful oxidant produced by neutrophils, macrophages, and lymphocytes as a signaling and cytotoxic molecule from their primary production of nitric oxide (NO) and superoxide anion (O(2)(-)). In the vascular space, ONOO(-) will likely oxidize lipoproteins and promote atherogenesis. Pure wine flavonoids (catechin, epicatechin, myricetin), hydroxycinnamates (caffeic acid, ferulic acid, chlorogenic acid), and plain Argentine red wines were assayed as ONOO(-) scavengers in two assays: (a) ONOO(-)-initiated chemiluminescence and (b) ONOO(-)-dependent oxidation. The assayed polyphenols as well as the red wines were effective inhibitors of the ONOO(-)-driven oxidation reactions. Fifty percent of the pure substances were observed in the range of 30-300 microM and in the case of red wines with the equivalent of 80-120 microM of flavonoids. The amphipatic nature of wine polyphenols will lead to their accumulation at the lipoprotein surface, according to the Gibbs adsorption equation, where they are likely to prevent ONOO(-)-induced tyrosine nitration and LDL modification.
Collapse
Affiliation(s)
- Alberto Boveris
- Laboratory of Free Radical Biology, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.
| | | | | |
Collapse
|