1
|
Sensenig R, Sapir Y, MacDonald C, Cohen S, Polyak B. Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration in vivo. Nanomedicine (Lond) 2013; 7:1425-42. [PMID: 22994959 DOI: 10.2217/nnm.12.109] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Magnetic-based systems utilizing superparamagnetic nanoparticles and a magnetic field gradient to exert a force on these particles have been used in a wide range of biomedical applications. This review is focused on drug targeting applications that require penetration of a cellular barrier as well as strategies to improve the efficacy of targeting in these biomedical applications. Another focus of this review is regenerative applications utilizing tissue engineered scaffolds prepared with the aid of magnetic particles, the use of remote actuation for release of bioactive molecules and magneto-mechanical cell stimulation, cell seeding and cell patterning.
Collapse
Affiliation(s)
- Richard Sensenig
- Department of Surgery, Drexel University College of Medicine, PA 19102, USA
| | | | | | | | | |
Collapse
|
2
|
Ruvinov E, Sapir Y, Cohen S. Cardiac Tissue Engineering: Principles, Materials, and Applications. ACTA ACUST UNITED AC 2012. [DOI: 10.2200/s00437ed1v01y201207tis009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
3
|
The promotion of in vitro vessel-like organization of endothelial cells in magnetically responsive alginate scaffolds. Biomaterials 2012; 33:4100-9. [PMID: 22417620 DOI: 10.1016/j.biomaterials.2012.02.037] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 02/22/2012] [Indexed: 11/22/2022]
Abstract
One of the major challenges in engineering thick, complex tissues such as cardiac muscle, is the need to pre-vascularize the engineered tissue in vitro to enable its efficient integration with host tissue upon implantation. Herein, we explored new magnetic alginate composite scaffolds to provide means of physical stimulation to cells. Magnetite-impregnated alginate scaffolds seeded with aortic endothelial cells stimulated during the first 7 days out of a total 14 day experimental course showed significantly elevated metabolic activity during the stimulation period. Expression of proliferating cell nuclear antigen (PCNA) indicated that magnetically stimulated cells had a lower proliferation index as compared to the non-stimulated cells. This suggests that the elevated metabolic activity could instead be related to cell migration and re-organization. Immunostaining and confocal microscopy analyses supported this observation showing that on day 14 in magnetically stimulated scaffolds without supplementation of any growth factors, cellular vessel-like (loop) structures, known as indicators of vasculogenesis and angiogenesis were formed as compared to cell sheets or aggregates observed in the non-stimulated (control) scaffolds. This work is the first step in our understanding of how to accurately control cellular organization to form tissue engineered constructs, which together with additional molecular signals could lead to a creation of an efficient pre-vascularized tissue construct with potential applicability for transplantation.
Collapse
|
4
|
Abstract
Development of artificial scaffold for musculo-skeletal applications, especially in load-bearing situations, requires the consideration of biomechanical aspects for its integrity and its function. However, the biomechanical loading could also be used to favour tissue formation through mechano-transduction phenomena. Design of scaffold could take advantages of this intrinsic mechanical loading.
Collapse
Affiliation(s)
- D P Pioletti
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, EPFL, Lausanne, Switzerland.
| |
Collapse
|
5
|
Abstract
Biomechanics may be considered as central in the development of bone tissue engineering. The initial mechanical aspects are essential to the outcome of a functional tissue engineering approach; so are aspects of interface micromotion, bone ingrowths inside the scaffold and finally, the mechanical integrity of the scaffold during its degradation. A proposed view is presented herein on how biomechanical aspects can be synthesised and where future developments are needed. In particular, a distinction is made between the mechanical and the mechanotransductional aspects of bone tissue engineering: the former could be related to osteoconduction, while the latter may be correlated to the osteoinductive properties of the scaffold. This distinction allows biomechanicians to follow a strategy in the development of a scaffold having not only mechanical targets but also incorporating some mechanotransduction principles.
Collapse
|
6
|
Kanczler JM, Sura HS, Magnay J, Green D, Oreffo ROC, Dobson JP, El Haj AJ. Controlled differentiation of human bone marrow stromal cells using magnetic nanoparticle technology. Tissue Eng Part A 2011; 16:3241-50. [PMID: 20504072 DOI: 10.1089/ten.tea.2009.0638] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Targeting and differentiating stem cells at sites of injury and repair is an exciting and promising area for disease treatment and reparative medicine. We have investigated remote magnetic field activation of magnetic nanoparticle-tagged mechanosensitive receptors on the cell membrane of human bone marrow stromal cells (HBMSCs) for use in osteoprogenitor cell delivery systems and activation of differentiation in vitro and in vivo toward an osteochondral lineage. HBMSC-labeled with magnetic beads coated with antibodies or peptides to the transmembrane ion channel stretch activated potassium channel (TREK-1) or arginine–glycine–aspartic acid were cultured in monolayer or encapsulated into polysaccharide alginate/chitosan microcapsules. Upregulation in gene expression was measured in magnetic particle-labeled HBMSCs in response to TREK-1 activation over a short period (7 days) with an increase in mRNA levels of Sox9, core binding factor alpha1 (Cbfa1), and osteopontin. Magnetic particle-labeled HBMSCs encapsulated into alginate chitosan capsules were exposed to magnetic forces both in vitro and in vivo intermittently for 21 days. After 21 days the encapsulated, magnetic particle-labeled HBMSCs in vivo were viable as evidenced by extensive cell tracker green fluorescence. The mechanical stimulation of HBMSCs labeled with TREK-1 magnetic nanoparticle receptors enhanced expression of type-1 collagen in vitro with increases in proteoglycan matrix, core binding factor alpha1 (Cbfa1) and collagen synthesis, and extracellular matrix production and elevated the expression of type-1 and type-2 collagen in vivo. Additionally, the magnetically remote stimulation of HBMSCs labeled with magnetic nanoparticle arginine–glycine–aspartic acid considerably enhanced proteoglycan and collagen synthesis and extracellular matrix production and elevated the expression of type-1 and type-2 collagen in vivo and in vitro. Osteogenic mechanosensitive receptor manipulation by magnetic nanotechnology can induce the differentiation of osteoprogenitor cell populations toward an osteogenic lineage. These cell manipulation strategies offer tremendous therapeutic opportunities in soft and hard tissue repair.
Collapse
Affiliation(s)
- Janos M Kanczler
- Bone and Joint Research Group, Centre for Human Development, Stem Cells, and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
7
|
Wang Q, Ashley DW, Dechow PC. Regional, ontogenetic, and sex-related variations in elastic properties of cortical bone in baboon mandibles. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2010; 141:526-49. [PMID: 19927280 DOI: 10.1002/ajpa.21170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Understanding the mechanical features of cortical bone and their changes with growth and adaptation to function plays an important role in our ability to interpret the morphology and evolution of craniofacial skeletons. We assessed the elastic properties of cortical bone of juvenile and adult baboon mandibles using ultrasonic techniques. Results showed that, overall, cortical bone from baboon mandibles could be modeled as an orthotropic elastic solid. There were significant differences in the directions of maximum stiffness, thickness, density, and elastic stiffness among different functional areas, indicating regional adaptations. After maturity, the cortical bone becomes thicker, denser, and stiffer, but less anisotropic. There were differences in elastic properties of the corpus and ramus between male and female mandibles which are not observed in human mandibles. There were correlations between cortical thicknesses and densities, between bone elastic properties and microstructural configuration, and between the directions of maximum stiffness and bone anatomical axes in some areas. The relationships between bone extrinsic and intrinsic properties bring us insights into the integration of form and function in craniofacial skeletons and suggest that we need to consider both macroscopic form, microstructural variation, and the material properties of bone matrix when studying the functional properties and adaptive nature of the craniofacial skeleton in primates. The differences between baboon and human mandibles is at variance to the pattern of differences in crania, suggesting differences in bone adaption to varying skeletal geometries and loading regimes at both phylogenetic and ontogenetic levels.
Collapse
Affiliation(s)
- Qian Wang
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA.
| | | | | |
Collapse
|
8
|
Baroli B. From natural bone grafts to tissue engineering therapeutics: Brainstorming on pharmaceutical formulative requirements and challenges. J Pharm Sci 2009; 98:1317-75. [PMID: 18729202 DOI: 10.1002/jps.21528] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tissue engineering is an emerging multidisciplinary field of investigation focused on the regeneration of diseased or injured tissues through the delivery of appropriate molecular and mechanical signals. Therefore, bone tissue engineering covers all the attempts to reestablish a normal physiology or to speed up healing of bone in all musculoskeletal disorders and injuries that are lashing modern societies. This article attempts to give a pharmaceutical perspective on the production of engineered man-made bone grafts that are described as implantable tissue engineering therapeutics, and to highlight the importance of understanding bone composition and structure, as well as osteogenesis and bone healing processes, to improve the design and development of such implants. In addition, special emphasis is given to pharmaceutical aspects that are frequently minimized, but that, instead, may be useful for formulation developments and in vitro/in vivo correlations.
Collapse
Affiliation(s)
- Biancamaria Baroli
- Dip. Farmaco Chimico Tecnologico, Università di Cagliari, Via Ospedale, 72, 09124 Cagliari, Italy
| |
Collapse
|
9
|
Neurite Outgrowth on a DNA Crosslinked Hydrogel with Tunable Stiffnesses. Ann Biomed Eng 2008; 36:1565-79. [DOI: 10.1007/s10439-008-9530-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 06/19/2008] [Indexed: 01/25/2023]
|
10
|
Klapperich C, Kaufman J, Wong J. Controlling and Assessing Cell–Biomaterial Interactions at the Micro- and Nanoscale. Biomaterials 2007. [DOI: 10.1201/9780849378898.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Dobson J, Cartmell SH, Keramane A, El Haj AJ. Principles and Design of a Novel Magnetic Force Mechanical Conditioning Bioreactor for Tissue Engineering, Stem Cell Conditioning, and Dynamic In Vitro Screening. IEEE Trans Nanobioscience 2006; 5:173-7. [PMID: 16999242 DOI: 10.1109/tnb.2006.880823] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mechanical conditioning of cells and tissue constructs in bioreactors is an important factor in determining the properties of tissue being produced. Mechanical conditioning within a bioreactor environment, however, has proven difficult. This paper presents the theoretical basis, design, and initial results of a mechanical conditioning system for cell and tissue culture which is based on biocompatible magnetic micro- and nanoparticles acting as a remote stress mechanism without invasion of the sterile bioreactor environment.
Collapse
Affiliation(s)
- Jon Dobson
- Institute of Science and Technology in Medicine, Keele University, Stoke-on-Trent ST4 7QB, UK.
| | | | | | | |
Collapse
|
12
|
Meyer U, Büchter A, Nazer N, Wiesmann HP. Design and performance of a bioreactor system for mechanically promoted three-dimensional tissue engineering. Br J Oral Maxillofac Surg 2005; 44:134-40. [PMID: 15964109 DOI: 10.1016/j.bjoms.2005.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 05/01/2005] [Indexed: 11/30/2022]
Abstract
There is currently considerable interest in increasing the response of mesenchymal cells to physical forces, and numerous loading devices have been used to increase the formation of skeletal tissue in vivo and in vitro. We have developed a bioreactor system to apply cyclic strains on three-dimensional specimens over a range of 0-20,000 mustrain. The piezoelectric-driven mechanism allows the precise adjustment and control over load-related deformations of tissue, as shown by finite-element calculations of deformation of a collagen gel under load. We present the design of the bioreactor and its performance in specimens of tissue containing activated osteoblasts and chondrocytes. Biaxial tissue straining at 2,000 mustrain led to a substantial increase in the number of both types of cell compared with unstimulated controls. The synthesis of cell-specific extracellular matrix proteins increased when physiological loads (2,000 mustrain) were applied in the bioreactor, whereas higher deformations (20,000 mustrain) resulted in a reduction in proliferation and differentiation of cells. The mechanisms whereby mechanical stimulation leads to a defined cell reaction are not known, but the application of physiological micromovements in extracorporeal tissue chambers is a promising approach to the formation of hard tissue.
Collapse
Affiliation(s)
- U Meyer
- Department of Cranio-Maxillofacial Surgery, University of Münster, Waldeyerstr. 30, D-48149 Münster, Germany.
| | | | | | | |
Collapse
|
13
|
Meyer U, Joos U, Wiesmann HP. Biological and biophysical principles in extracorporal bone tissue engineering. Part III. Int J Oral Maxillofac Surg 2004; 33:635-41. [PMID: 15337175 DOI: 10.1016/j.ijom.2004.04.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2004] [Indexed: 10/26/2022]
Abstract
Over the last decade extracorporal bone tissue engineering has moved from laboratory to clinical application. The restoration of maxillofacial bones from cell harvesting through product manufacture and end-use has benefited from innovations in the fields of biomechanical engineering, product marketing and transplant research. Cell/scaffold bone substitutes face a variety of unique clinical challenges which must be addressed. This overview summarises the recent state of the art and future anticipations in the transplantation of extracorporally fabricated bone tissues.
Collapse
Affiliation(s)
- U Meyer
- Department of Cranio-Maxillofacial Surgery, University of Münster, Munster, Germany.
| | | | | |
Collapse
|