1
|
Minařík M, Modrell MS, Gillis JA, Campbell AS, Fuller I, Lyne R, Micklem G, Gela D, Pšenička M, Baker CVH. Identification of multiple transcription factor genes potentially involved in the development of electrosensory versus mechanosensory lateral line organs. Front Cell Dev Biol 2024; 12:1327924. [PMID: 38562141 PMCID: PMC10982350 DOI: 10.3389/fcell.2024.1327924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
In electroreceptive jawed vertebrates, embryonic lateral line placodes give rise to electrosensory ampullary organs as well as mechanosensory neuromasts. Previous reports of shared gene expression suggest that conserved mechanisms underlie electroreceptor and mechanosensory hair cell development and that electroreceptors evolved as a transcriptionally related "sister cell type" to hair cells. We previously identified only one transcription factor gene, Neurod4, as ampullary organ-restricted in the developing lateral line system of a chondrostean ray-finned fish, the Mississippi paddlefish (Polyodon spathula). The other 16 transcription factor genes we previously validated in paddlefish were expressed in both ampullary organs and neuromasts. Here, we used our published lateral line organ-enriched gene-set (arising from differential bulk RNA-seq in late-larval paddlefish), together with a candidate gene approach, to identify 25 transcription factor genes expressed in the developing lateral line system of a more experimentally tractable chondrostean, the sterlet (Acipenser ruthenus, a small sturgeon), and/or that of paddlefish. Thirteen are expressed in both ampullary organs and neuromasts, consistent with conservation of molecular mechanisms. Seven are electrosensory-restricted on the head (Irx5, Irx3, Insm1, Sp5, Satb2, Mafa and Rorc), and five are the first-reported mechanosensory-restricted transcription factor genes (Foxg1, Sox8, Isl1, Hmx2 and Rorb). However, as previously reported, Sox8 is expressed in ampullary organs as well as neuromasts in a catshark (Scyliorhinus canicula), suggesting the existence of lineage-specific differences between cartilaginous and ray-finned fishes. Overall, our results support the hypothesis that ampullary organs and neuromasts develop via largely conserved transcriptional mechanisms, and identify multiple transcription factors potentially involved in the formation of electrosensory versus mechanosensory lateral line organs.
Collapse
Affiliation(s)
- Martin Minařík
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Melinda S. Modrell
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - J. Andrew Gillis
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Alexander S. Campbell
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Isobel Fuller
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Rachel Lyne
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Gos Micklem
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - David Gela
- Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Martin Pšenička
- Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Clare V. H. Baker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Johnson CJ, Razy-Krajka F, Zeng F, Piekarz KM, Biliya S, Rothbächer U, Stolfi A. Specification of distinct cell types in a sensory-adhesive organ important for metamorphosis in tunicate larvae. PLoS Biol 2024; 22:e3002555. [PMID: 38478577 PMCID: PMC10962819 DOI: 10.1371/journal.pbio.3002555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 03/25/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
The papillae of tunicate larvae contribute sensory, adhesive, and metamorphosis-regulating functions that are crucial for the biphasic lifestyle of these marine, non-vertebrate chordates. We have identified additional molecular markers for at least 5 distinct cell types in the papillae of the model tunicate Ciona, allowing us to further study the development of these organs. Using tissue-specific CRISPR/Cas9-mediated mutagenesis and other molecular perturbations, we reveal the roles of key transcription factors and signaling pathways that are important for patterning the papilla territory into a highly organized array of different cell types and shapes. We further test the contributions of different transcription factors and cell types to the production of the adhesive glue that allows for larval attachment during settlement, and to the processes of tail retraction and body rotation during metamorphosis. With this study, we continue working towards connecting gene regulation to cellular functions that control the developmental transition between the motile larva and sessile adult of Ciona.
Collapse
Affiliation(s)
- Christopher J Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Florian Razy-Krajka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Fan Zeng
- Department of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Katarzyna M Piekarz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Shweta Biliya
- Molecular Evolution Core, Petit H. Parker Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Ute Rothbächer
- Department of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
3
|
Zeng CW, Sheu JC, Tsai HJ. Hypoxia-Responsive Subtype Cells Differentiate Into Neurons in the Brain of Zebrafish Embryos Exposed to Hypoxic Stress. Cell Transplant 2022; 31:9636897221077930. [PMID: 35225023 PMCID: PMC8894973 DOI: 10.1177/09636897221077930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Severe hypoxia results in complete loss of central nervous system (CNS) function in mammals, while several other vertebrates, such as zebrafish, can regenerate after hypoxia-induced injury of CNS. Since the cellular mechanism involved in this remarkable feature of other vertebrates is still unclear, we studied the cellular regeneration of zebrafish brain, employing zebrafish embryos from transgenic line huORFZ exposed to hypoxia and then oxygen recovery. GFP-expressing cells, identified in some cells of the CNS, including some brain cells, were termed as hypoxia-responsive recovering cells (HrRCs). After hypoxia, HrRCs did not undergo apoptosis, while most non-GFP-expressing cells, including neurons, did. Major cell types of HrRCs found in the brain of zebrafish embryos induced by hypoxic stress were neural stem/progenitor cells (NSPCs) and radial glia cells (RGs), that is, subtypes of NSPCs (NSPCs-HrRCs) and RGs (RGs-HrRCs) that were induced by and sensitively responded to hypoxic stress. Interestingly, among HrRCs, subtypes of NSPCs- or RGs-HrRCs could proliferate and differentiate into early neurons during oxygen recovery, suggesting that these subtype cells might play a critical role in brain regeneration of zebrafish embryos after hypoxic stress.
Collapse
Affiliation(s)
- Chih-Wei Zeng
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei.,Liver Disease Prevention and Treatment Research Foundation, Taipei
| | - Jin-Chuan Sheu
- Liver Disease Prevention and Treatment Research Foundation, Taipei
| | - Huai-Jen Tsai
- School of Medicine, Fu Jen Catholic University, New Taipei City.,Department of Life Science, Fu Jen Catholic University, New Taipei City
| |
Collapse
|
4
|
Zhang Y, Zhang S, Zhang Z, Dong Y, Ma X, Qiang R, Chen Y, Gao X, Zhao C, Chen F, He S, Chai R. Knockdown of Foxg1 in Sox9+ supporting cells increases the trans-differentiation of supporting cells into hair cells in the neonatal mouse utricle. Aging (Albany NY) 2020; 12:19834-19851. [PMID: 33099273 PMCID: PMC7655167 DOI: 10.18632/aging.104009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/15/2020] [Indexed: 05/30/2023]
Abstract
Foxg1 plays important roles in regeneration of hair cell (HC) in the cochlea of neonatal mouse. Here, we used Sox9-CreER to knock down Foxg1 in supporting cells (SCs) in the utricle in order to investigate the role of Foxg1 in HC regeneration in the utricle. We found Sox9 an ideal marker of utricle SCs and bred Sox9CreER/+Foxg1loxp/loxp mice to conditionally knock down Foxg1 in utricular SCs. Conditional knockdown (cKD) of Foxg1 in SCs at postnatal day one (P01) led to increased number of HCs at P08. These regenerated HCs had normal characteristics, and could survive to at least P30. Lineage tracing showed that a significant portion of newly regenerated HCs originated from SCs in Foxg1 cKD mice compared to the mice subjected to the same treatment, which suggested SCs trans-differentiate into HCs in the Foxg1 cKD mouse utricle. After neomycin treatment in vitro, more HCs were observed in Foxg1 cKD mice utricle compared to the control group. Together, these results suggest that Foxg1 cKD in utricular SCs may promote HC regeneration by inducing trans-differentiation of SCs. This research therefore provides theoretical basis for the effects of Foxg1 in trans-differentiation of SCs and regeneration of HCs in the mouse utricle.
Collapse
Affiliation(s)
- Yuan Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Shasha Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Zhonghong Zhang
- Department of Ophthalmology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Ying Dong
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Xiangyu Ma
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Ruiying Qiang
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Yin Chen
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Chunjie Zhao
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Shuangba He
- Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast University, China
| | - Renjie Chai
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Richard SA, Jia-Hao Z. Elucidating the pathogenic and biomarker potentials of FOXG1 in glioblastoma. Oncol Rev 2020; 14:444. [PMID: 32395201 PMCID: PMC7204822 DOI: 10.4081/oncol.2020.444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GB) is an extremely pugnacious brain cancer originating from neural stem (NS) cell-like cells. Forkhead box G1 (FOXG1; previously recognized as BF-1, qin, Chicken Brain Factor 1, or XBF-1 and renamed FOXG1 for mouse and human, and FoxG1 for other chordates) is an evolutionary preserved transcription factor driven from the forkhead box group of proteins FOXG1 modulates the speed of neurogenesis by maintaining progenitor cells in a proliferative mode as well as obstructing their differentiation into neurons during the initial periods of cortical formation. FOXG1 has been implicated in the formation of central nervous system (CNS) tumors and precisely GBs. Pathophysiologically, joint actions of FOXG1 and phosphatidylinositol- 3-kinases (PI3K) intermediate in intrinsic resistance of human GB cells to transforming growth factor-beta (TGF-β) stimulation of cyclin-dependent kinase inhibitor 1(p21Cip1) as well as growth inhibition. FOXG1 and NOTCH signaling pathways may functionally interrelate at different stages to facilitate gliomagenesis. Furthermore, FoxG1 actively contributed to the formation of transcription suppression complexes with corepressors of the Groucho/transducin-like Enhancer of split (Gro/TLEs). Also, FOXG1 was stimulated by Gro/TLE1 and abridged by Grg6. FOXG1 silencing in brain tumor-initiating cells (BTICs) also resulted in diminished secretion of markers characteristic undifferentiated natural neural stem/progenitor cells (NSPC) states, such as Oligodendrocyte transcription factor (OLIG2), (sex determining region Y)-box 2. (SOX2) and B lymphoma Mo-MLV insertion region 1 homolog (BMI1). This review therefore focuses on the pathogenic and biomarker potentials of FOXG1 in GB.
Collapse
Affiliation(s)
- Seidu A Richard
- Department of Neurosurgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, P.R. China.,Department of Medicine, Princefield University, Ho-Volta Region, Ghana, West Africa
| | - Zhou Jia-Hao
- Department of Neurosurgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, P.R. China
| |
Collapse
|
6
|
Zhang S, Zhang Y, Dong Y, Guo L, Zhang Z, Shao B, Qi J, Zhou H, Zhu W, Yan X, Hong G, Zhang L, Zhang X, Tang M, Zhao C, Gao X, Chai R. Knockdown of Foxg1 in supporting cells increases the trans-differentiation of supporting cells into hair cells in the neonatal mouse cochlea. Cell Mol Life Sci 2020; 77:1401-1419. [PMID: 31485717 PMCID: PMC7113235 DOI: 10.1007/s00018-019-03291-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 08/08/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022]
Abstract
Foxg1 is one of the forkhead box genes that are involved in morphogenesis, cell fate determination, and proliferation, and Foxg1 was previously reported to be required for morphogenesis of the mammalian inner ear. However, Foxg1 knock-out mice die at birth, and thus the role of Foxg1 in regulating hair cell (HC) regeneration after birth remains unclear. Here we used Sox2CreER/+ Foxg1loxp/loxp mice and Lgr5-EGFPCreER/+ Foxg1loxp/loxp mice to conditionally knock down Foxg1 specifically in Sox2+ SCs and Lgr5+ progenitors, respectively, in neonatal mice. We found that Foxg1 conditional knockdown (cKD) in Sox2+ SCs and Lgr5+ progenitors at postnatal day (P)1 both led to large numbers of extra HCs, especially extra inner HCs (IHCs) at P7, and these extra IHCs with normal hair bundles and synapses could survive at least to P30. The EdU assay failed to detect any EdU+ SCs, while the SC number was significantly decreased in Foxg1 cKD mice, and lineage tracing data showed that much more tdTomato+ HCs originated from Sox2+ SCs in Foxg1 cKD mice compared to the control mice. Moreover, the sphere-forming assay showed that Foxg1 cKD in Lgr5+ progenitors did not significantly change their sphere-forming ability. All these results suggest that Foxg1 cKD promotes HC regeneration and leads to large numbers of extra HCs probably by inducing direct trans-differentiation of SCs and progenitors to HCs. Real-time qPCR showed that cell cycle and Notch signaling pathways were significantly down-regulated in Foxg1 cKD mice cochlear SCs. Together, this study provides new evidence for the role of Foxg1 in regulating HC regeneration from SCs and progenitors in the neonatal mouse cochlea.
Collapse
Affiliation(s)
- Shasha Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Yuan Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Ying Dong
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Lingna Guo
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Zhong Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Buwei Shao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Jieyu Qi
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Han Zhou
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Weijie Zhu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Xiaoqian Yan
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Guodong Hong
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Liyan Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Xiaoli Zhang
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Chunjie Zhao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Xia Gao
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
- Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 211189, China.
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- Key Laboratory of Hearing Medicine of NHFPC, ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
7
|
Cho HJ, Shan Y, Whittington NC, Wray S. Nasal Placode Development, GnRH Neuronal Migration and Kallmann Syndrome. Front Cell Dev Biol 2019; 7:121. [PMID: 31355196 PMCID: PMC6637222 DOI: 10.3389/fcell.2019.00121] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022] Open
Abstract
The development of Gonadotropin releasing hormone-1 (GnRH) neurons is important for a functional reproduction system in vertebrates. Disruption of GnRH results in hypogonadism and if accompanied by anosmia is termed Kallmann Syndrome (KS). From their origin in the nasal placode, GnRH neurons migrate along the olfactory-derived vomeronasal axons to the nasal forebrain junction and then turn caudally into the developing forebrain. Although research on the origin of GnRH neurons, their migration and genes associated with KS has identified multiple factors that influence development of this system, several aspects still remain unclear. This review discusses development of the olfactory system, factors that regulate GnRH neuron formation and development of the olfactory system, migration of the GnRH neurons from the nose into the brain, and mutations in humans with KS that result from disruption of normal GnRH/olfactory systems development.
Collapse
Affiliation(s)
- Hyun-Ju Cho
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Yufei Shan
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Niteace C Whittington
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
He Z, Fang Q, Li H, Shao B, Zhang Y, Zhang Y, Han X, Guo R, Cheng C, Guo L, Shi L, Li A, Yu C, Kong W, Zhao C, Gao X, Chai R. The role of FOXG1 in the postnatal development and survival of mouse cochlear hair cells. Neuropharmacology 2018; 144:43-57. [PMID: 30336149 DOI: 10.1016/j.neuropharm.2018.10.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 09/30/2018] [Accepted: 10/14/2018] [Indexed: 12/17/2022]
Abstract
The development of therapeutic interventions for hearing loss requires a detailed understanding of the genes and proteins involved in hearing. The FOXG1 protein plays an important role in early neural development and in a variety of neurodevelopmental disorders. Previous studies have shown that there are severe deformities in the inner ear in Foxg1 knockout mice, but due to the postnatal lethality of Foxg1 knockout mice, the role of FOXG1 in hair cell (HC) development and survival during the postnatal period has not been investigated. In this study, we took advantage of transgenic mice that have a specific knockout of Foxg1 in HCs, thus allowing us to explore the role of FOXG1 in postnatal HC development and survival. In the Foxg1 conditional knockout (CKO) HCs, an extra row of HCs appeared in the apical turn of the cochlea and some parts of the middle turn at postnatal day (P)1 and P7; however, these HCs gradually underwent apoptosis, and the HC number was significantly decreased by P21. Auditory brainstem response tests showed that the Foxg1 CKO mice had lost their hearing by P30. The RNA-Seq results and the qPCR verification both showed that the Wnt, Notch, IGF, EGF, and Hippo signaling pathways were down-regulated in the HCs of Foxg1 CKO mice. The significant down-regulation of the Notch signaling pathway might be the reason for the increased numbers of HCs in the cochleae of Foxg1 CKO mice at P1 and P7, while the down-regulation of the Wnt, IGF, and EGF signaling pathways might lead to subsequent HC apoptosis. Together, these results indicate that knockout of Foxg1 induces an extra row of HCs via Notch signaling inhibition and induces subsequent apoptosis of these HCs by inhibiting the Wnt, IGF, and EGF signaling pathways. This study thus provides new evidence for the function and mechanism of FOXG1 in HC development and survival in mice.
Collapse
Affiliation(s)
- Zuhong He
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiaojun Fang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - He Li
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Buwei Shao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yuan Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yuhua Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xiao Han
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Rongrong Guo
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Cheng Cheng
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Lingna Guo
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Lusen Shi
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China
| | - Ao Li
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China
| | - Chenjie Yu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China; Center of Depression, Beijing Institute for Brain Disorders, China.
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China.
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 211189, China; Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
| |
Collapse
|
9
|
Wang L, Wang J, Jin T, Zhou Y, Chen Q. FoxG1 facilitates proliferation and inhibits differentiation by downregulating FoxO/Smad signaling in glioblastoma. Biochem Biophys Res Commun 2018; 504:46-53. [PMID: 30172378 DOI: 10.1016/j.bbrc.2018.08.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 08/18/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND To investigate the effects and underlying molecular mechanisms of FoxG1 expression on glioblastoma multiforme (GBM) models. METHODS Expression levels of FoxG1 and other cancer-related biomarkers were evaluated by qRT-PCR, immunoblotting and immunohistochemistry. Crystal violet staining and MTT assay and were applied in this study to verify cell proliferation ability and viability of GBM cell models with/without drug treatment. RESULTS Immunohistochemical and qRT-PCR assays showed that endogenous FoxG1 expression levels were positively correlated to the GBM disease progression. Overexpression of FoxG1 protein resulted in increased cell viability, G2/M cell cycle arrest, as well as the downregulation of p21 and cyclin B1. In addition, western blot assays reported that enforced expression of FoxG1 suppressed GAPF and facilitated the expression of Sox2 and Sox5. Meanwhile the downstream targets of FoxG1, such as FoxO1 and pSmad1/5/8 were activated. Overexpression of FoxG1 under TMZ treatment restored the cell viability as well as the expression levels of Sox2 and Sox5, yet downregulated expression levels of p21 and cyclin B1. The downstream FoxG1-induced FoxO/Smad signaling was re-inhibited under TMZ treatments. CONCLUSIONS Our findings suggest that FoxG1 functions as an onco-factor by promoting proliferation, as well as inhibiting differential responses in glioblastoma by downregulating FoxO/Smad signaling.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jingchao Wang
- Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Tong Jin
- Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Zhou
- Department of Neurosurgery, Renmin Hospital of Hubei University of Medicine, Hubei, 442000, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
10
|
Sokpor G, Abbas E, Rosenbusch J, Staiger JF, Tuoc T. Transcriptional and Epigenetic Control of Mammalian Olfactory Epithelium Development. Mol Neurobiol 2018. [PMID: 29532253 DOI: 10.1007/s12035-018-0987-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The postnatal mammalian olfactory epithelium (OE) represents a major aspect of the peripheral olfactory system. It is a pseudostratified tissue that originates from the olfactory placode and is composed of diverse cells, some of which are specialized receptor neurons capable of transducing odorant stimuli to afford the perception of smell (olfaction). The OE is known to offer a tractable miniature model for studying the systematic generation of neurons and glia that typify neural tissue development. During OE development, stem/progenitor cells that will become olfactory sensory neurons and/or non-neuronal cell types display fine spatiotemporal expression of neuronal and non-neuronal genes that ensures their proper proliferation, differentiation, survival, and regeneration. Many factors, including transcription and epigenetic factors, have been identified as key regulators of the expression of such requisite genes to permit normal OE morphogenesis. Typically, specific interactive regulatory networks established between transcription and epigenetic factors/cofactors orchestrate histogenesis in the embryonic and adult OE. Hence, investigation of these regulatory networks critical for OE development promises to disclose strategies that may be employed in manipulating the stepwise transition of olfactory precursor cells to become fully differentiated and functional neuronal and non-neuronal cell types. Such strategies potentially offer formidable means of replacing injured or degenerated neural cells as therapeutics for nervous system perturbations. This review recapitulates the developmental cellular diversity of the olfactory neuroepithelium and discusses findings on how the precise and cooperative molecular control by transcriptional and epigenetic machinery is indispensable for OE ontogeny.
Collapse
Affiliation(s)
- Godwin Sokpor
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany
| | - Eman Abbas
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany.,Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Joachim Rosenbusch
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany
| | - Jochen F Staiger
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany.,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075, Goettingen, Germany
| | - Tran Tuoc
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany. .,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075, Goettingen, Germany.
| |
Collapse
|
11
|
Lixing X, zhouye J, Liting G, Ruyi Z, Rong Q, Shiping M. Saikosaponin- d -mediated downregulation of neurogenesis results in cognitive dysfunction by inhibiting Akt/Foxg-1 pathway in mice. Toxicol Lett 2018; 284:79-85. [DOI: 10.1016/j.toxlet.2017.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/30/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022]
|
12
|
Pancrazi L, Di Benedetto G, Colombaioni L, Della Sala G, Testa G, Olimpico F, Reyes A, Zeviani M, Pozzan T, Costa M. Foxg1 localizes to mitochondria and coordinates cell differentiation and bioenergetics. Proc Natl Acad Sci U S A 2015; 112:13910-5. [PMID: 26508630 PMCID: PMC4653140 DOI: 10.1073/pnas.1515190112] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Forkhead box g1 (Foxg1) is a nuclear-cytosolic transcription factor essential for the forebrain development and involved in neurodevelopmental and cancer pathologies. Despite the importance of this protein, little is known about the modalities by which it exerts such a large number of cellular functions. Here we show that a fraction of Foxg1 is localized within the mitochondria in cell lines, primary neuronal or glial cell cultures, and in the mouse cortex. Import of Foxg1 in isolated mitochondria appears to be membrane potential-dependent. Amino acids (aa) 277-302 were identified as critical for mitochondrial localization. Overexpression of full-length Foxg1 enhanced mitochondrial membrane potential (ΔΨm) and promoted mitochondrial fission and mitosis. Conversely, overexpression of the C-term Foxg1 (aa 272-481), which is selectively localized in the mitochondrial matrix, enhanced organelle fusion and promoted the early phase of neuronal differentiation. These findings suggest that the different subcellular localizations of Foxg1 control the machinery that brings about cell differentiation, replication, and bioenergetics, possibly linking mitochondrial functions to embryonic development and pathological conditions.
Collapse
Affiliation(s)
| | - Giulietta Di Benedetto
- Institute of Neuroscience, Italian National Research Council, 35121 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - Laura Colombaioni
- Institute of Neuroscience, Italian National Research Council, 56124 Pisa, Italy
| | - Grazia Della Sala
- Institute of Neuroscience, Italian National Research Council, 56124 Pisa, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy
| | | | - Francesco Olimpico
- Institute of Neuroscience, Italian National Research Council, 56124 Pisa, Italy
| | - Aurelio Reyes
- Mitochondrial Biology Unit, Medical Research Council, Cambridge CB20XY, United Kingdom
| | - Massimo Zeviani
- Mitochondrial Biology Unit, Medical Research Council, Cambridge CB20XY, United Kingdom
| | - Tullio Pozzan
- Institute of Neuroscience, Italian National Research Council, 35121 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy; Department Biomedical Sciences, University of Padova, 35121 Padova, Italy
| | - Mario Costa
- Scuola Normale Superiore, 56126 Pisa, Italy; Institute of Neuroscience, Italian National Research Council, 56124 Pisa, Italy;
| |
Collapse
|
13
|
Adesina AM, Veo BL, Courteau G, Mehta V, Wu X, Pang K, Liu Z, Li XN, Peters L. FOXG1 expression shows correlation with neuronal differentiation in cerebellar development, aggressive phenotype in medulloblastomas, and survival in a xenograft model of medulloblastoma. Hum Pathol 2015; 46:1859-71. [PMID: 26433703 DOI: 10.1016/j.humpath.2015.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 08/09/2015] [Accepted: 08/13/2015] [Indexed: 12/21/2022]
Abstract
FOXG1 is a transcription factor that interacts with multiple signaling pathways and modulates neuronal differentiation in the telencephalon. Dysregulation of FOXG1 expression has been previously reported in medulloblastoma. In this study, we demonstrate a regional specific expression of FOXG1 and its colocalization with Nestin expression in the premigratory mitotically active (outer) layer of the external granular layer of the cerebellum. An inverse expression of the granular precursor cell markers, Math1 and Musashi1, in the inner nonmitotic migratory layer of the external granular layer and in the internal granular layer was observed. Furthermore, modulation of FOXG1 in the medulloblastoma cell line, DAOY, was associated with the induction of neuronal differentiation markers and significant changes in multiple signaling pathways regulating cell proliferation, differentiation, survival, and apoptosis. Additionally, we observed enhanced survival in intracerebellar mice xenografts injected with DAOY cells bearing shFOXG1 constructs versus shLuciferase construct. Overall, these findings suggest that down-modulation of FOXG1 is a prerequisite for the onset of neuronal differentiation during cerebellar development and that a decrease of FOXG1 in medulloblastoma cells offers a survival advantage in mice. We propose that the disruption of signaling pathways that promote mature neuronal differentiation by overexpressed FOXG1 is a contributing event in the neoplastic transformation of cerebellar stem cells.
Collapse
Affiliation(s)
- Adekunle M Adesina
- Department of Pathology and Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030; Department of Pediatrics-Hematology/Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030.
| | - Bethany L Veo
- Department of Pathology and Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030
| | - Girard Courteau
- Department of Pathology and Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030
| | - Vidya Mehta
- Department of Pathology and Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030
| | - Xuli Wu
- Department of Pathology and Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030
| | - Kaifang Pang
- Department of Pediatrics-Neurology, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030
| | - Zhandong Liu
- Department of Pediatrics-Neurology, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030
| | - Xiao-Nan Li
- Department of Pediatrics-Hematology/Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030
| | - Lori Peters
- Department of Pathology and Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
14
|
Garaffo G, Conte D, Provero P, Tomaiuolo D, Luo Z, Pinciroli P, Peano C, D'Atri I, Gitton Y, Etzion T, Gothilf Y, Gays D, Santoro MM, Merlo GR. The Dlx5 and Foxg1 transcription factors, linked via miRNA-9 and -200, are required for the development of the olfactory and GnRH system. Mol Cell Neurosci 2015; 68:103-19. [PMID: 25937343 PMCID: PMC4604252 DOI: 10.1016/j.mcn.2015.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 01/26/2023] Open
Abstract
During neuronal development and maturation, microRNAs (miRs) play diverse functions ranging from early patterning, proliferation and commitment to differentiation, survival, homeostasis, activity and plasticity of more mature and adult neurons. The role of miRs in the differentiation of olfactory receptor neurons (ORNs) is emerging from the conditional inactivation of Dicer in immature ORN, and the depletion of all mature miRs in this system. Here, we identify specific miRs involved in olfactory development, by focusing on mice null for Dlx5, a homeogene essential for both ORN differentiation and axon guidance and connectivity. Analysis of miR expression in Dlx5−/− olfactory epithelium pointed to reduced levels of miR-9, miR-376a and four miRs of the -200 class in the absence of Dlx5. To functionally examine the role of these miRs, we depleted miR-9 and miR-200 class in reporter zebrafish embryos and observed delayed ORN differentiation, altered axonal trajectory/targeting, and altered genesis and position of olfactory-associated GnRH neurons, i.e. a phenotype known as Kallmann syndrome in humans. miR-9 and miR-200-class negatively control Foxg1 mRNA, a fork-head transcription factor essential for development of the olfactory epithelium and of the forebrain, known to maintain progenitors in a stem state. Increased levels of z-foxg1 mRNA resulted in delayed ORN differentiation and altered axon trajectory, in zebrafish embryos. This work describes for the first time the role of specific miR (-9 and -200) in olfactory/GnRH development, and uncovers a Dlx5–Foxg1 regulation whose alteration affects receptor neuron differentiation, axonal targeting, GnRH neuron development, the hallmarks of the Kallmann syndrome. Dlx5 controls the expressions of miR9 and miR-200, which target the Foxg1 mRNA miR-9 and -200 are needed for olfactory neurons differentiation and axon extension miR-9 and -200 are required for the genesis and position of GnRH neurons. Altered expression of miR-9 and -200 might contribute to the Kallmann disease.
Collapse
Affiliation(s)
- Giulia Garaffo
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Daniele Conte
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Paolo Provero
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Daniela Tomaiuolo
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Zheng Luo
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Patrizia Pinciroli
- Doctorate School in Molecular Medicine, Dept. Medical Biotechnology Translational Medicine (BIOMETRA), University of Milano, Italy
| | - Clelia Peano
- Inst. of Biomedical Technology, National Research Council, ITB-CNR Segrate (MI) Italy
| | - Ilaria D'Atri
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Yorick Gitton
- UMR7221 CNRS/MNHN - Evolution des régulations endocriniennes - Paris, France
| | - Talya Etzion
- Dept. Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; VIB, Vesalius Research Center, KU Leuven, Belgium
| | - Yoav Gothilf
- Dept. Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; VIB, Vesalius Research Center, KU Leuven, Belgium
| | - Dafne Gays
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Massimo M Santoro
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy; Dept. Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; VIB, Vesalius Research Center, KU Leuven, Belgium
| | - Giorgio R Merlo
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy.
| |
Collapse
|
15
|
Translational potential of olfactory mucosa for the study of neuropsychiatric illness. Transl Psychiatry 2015; 5:e527. [PMID: 25781226 PMCID: PMC4354342 DOI: 10.1038/tp.2014.141] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/22/2014] [Accepted: 11/17/2014] [Indexed: 01/02/2023] Open
Abstract
The olfactory mucosa (OM) is a unique source of regenerative neural tissue that is readily obtainable from living human subjects and thus affords opportunities for the study of psychiatric illnesses. OM tissues can be used, either as ex vivo OM tissue or in vitro OM-derived neural cells, to explore parameters that have been difficult to assess in the brain of living individuals with psychiatric illness. As OM tissues are distinct from brain tissues, an understanding of the neurobiology of the OM is needed to relate findings in these tissues to those of the brain as well as to design and interpret ex vivo or in vitro OM studies. To that end, we discuss the molecular, cellular and functional characteristics of cell types within the olfactory mucosa, describe the organization of the OM and highlight its role in the olfactory neurocircuitry. In addition, we discuss various approaches to in vitro culture of OM-derived cells and their characterization, focusing on the extent to which they reflect the in vivo neurobiology of the OM. Finally, we review studies of ex vivo OM tissues and in vitro OM-derived cells from individuals with psychiatric, neurodegenerative and neurodevelopmental disorders. In particular, we discuss the concordance of this work with postmortem brain studies and highlight possible future approaches, which may offer distinct strengths in comparison to in vitro paradigms based on genomic reprogramming.
Collapse
|
16
|
Torres-Paz J, Whitlock KE. Olfactory sensory system develops from coordinated movements within the neural plate. Dev Dyn 2014; 243:1619-31. [PMID: 25255735 DOI: 10.1002/dvdy.24194] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 09/14/2014] [Accepted: 09/15/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The peripheral olfactory sensory system arises from morphologically identifiable structures called placodes. Placodes are relatively late developing structures, evident only well after the initiation of somitogenesis. Placodes are generally described as being induced from the ectoderm suggesting that their development is separate from the coordinated cell movements generating the central nervous system. RESULTS With the advent of modern techniques it is possible to follow the development of the neurectoderm giving rise to the anterior neural tube, including the olfactory placodes. The cell movements giving rise to the optic cup are coordinated with those generating the olfactory placodes and adjacent telencephalon. The formation of the basal lamina separating the placode from the neural tube is coincident with the anterior migration of cranial neural crest. CONCLUSIONS Olfactory placodes are transient morphological structures arising from a continuous sheet of neurectoderm that gives rise to the peripheral and central nervous system. This field of cells is specified at the end of gastrulation and not secondarily induced from ectoderm. The separation of olfactory placodes and telencephalon occurs through complex cell movements within the developing neural plate similar to that observed for the developing optic cup.
Collapse
Affiliation(s)
- Jorge Torres-Paz
- Centro Interdisciplinario de Neurociencia de Valparaiso, Instituto de Neurociencia, Universidad de Valparaiso, Valparaiso, Chile
| | | |
Collapse
|
17
|
Sensational placodes: neurogenesis in the otic and olfactory systems. Dev Biol 2014; 389:50-67. [PMID: 24508480 PMCID: PMC3988839 DOI: 10.1016/j.ydbio.2014.01.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 11/22/2022]
Abstract
For both the intricate morphogenetic layout of the sensory cells in the ear and the elegantly radial arrangement of the sensory neurons in the nose, numerous signaling molecules and genetic determinants are required in concert to generate these specialized neuronal populations that help connect us to our environment. In this review, we outline many of the proteins and pathways that play essential roles in the differentiation of otic and olfactory neurons and their integration into their non-neuronal support structures. In both cases, well-known signaling pathways together with region-specific factors transform thickened ectodermal placodes into complex sense organs containing numerous, diverse neuronal subtypes. Olfactory and otic placodes, in combination with migratory neural crest stem cells, generate highly specialized subtypes of neuronal cells that sense sound, position and movement in space, odors and pheromones throughout our lives.
Collapse
|
18
|
Abstract
The transcription factor FoxG1 regulates neurogenesis in the embryonic telencephalon as well as a number of other neurodevelopmental processes. While FoxG1 continues to be expressed in neurons postnatally and through adulthood, its role in fully differentiated neurons is not known. The current study demonstrates that FoxG1 promotes the survival of postmitotic neurons. In cerebellar granule neurons primed to undergo apoptosis, FoxG1 expression is reduced. Ectopic expression of FoxG1 blocks neuronal death, whereas suppression of its expression induces death in otherwise healthy neurons. The first 36 residues of FoxG1 are necessary for its survival-promoting effect, while the C-terminal half of the protein is dispensable. Mutation of Asp219, a residue necessary for DNA binding, abrogates survival promotion by FoxG1. Survival promotion is also eliminated by mutation of Thr271, a residue phosphorylated by Akt. Pharmacological inhibition of Akt blocks the survival effects of wild-type FoxG1 but not forms in which Thr271 is replaced with phosphomimetic residues. Treatment of neurons with IGF-1, a neurotrophic factor that promotes neuronal survival by activating Akt, prevents the apoptosis-associated downregulation of FoxG1 expression. Moreover, the overexpression of dominant-negative forms of FoxG1 blocks the ability of IGF-1 to maintain neuronal survival suggesting that FoxG1 is a downstream mediator of IGF-1/Akt signaling. Our study identifies a new and important function for FoxG1 in differentiated neurons.
Collapse
|
19
|
Brancaccio M, Pivetta C, Granzotto M, Filippis C, Mallamaci A. Emx2 and Foxg1 inhibit gliogenesis and promote neuronogenesis. Stem Cells 2010; 28:1206-18. [PMID: 20506244 DOI: 10.1002/stem.443] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neural stem cells (NSCs) give rise to all cell types forming the cortex: neurons, astrocytes, and oligodendrocytes. The transition from the former to the latter ones takes place via lineage-restricted progenitors in a highly regulated way. This process is mastered by large sets of genes, among which some implicated in central nervous system pattern formation. The aim of this study was to disentangle the kinetic and histogenetic roles exerted by two of these genes, Emx2 and Foxg1, in cortico-cerebral precursors. For this purpose, we set up a new integrated in vitro assay design. Embryonic cortical progenitors were transduced with lentiviral vectors driving overexpression of Emx2 and Foxg1 in NSCs and neuronal progenitors. Cells belonging to different neuronogenic and gliogenic compartments were labeled by spectrally distinguishable fluoroproteins driven by cell type-specific promoters and by cell type-specific antibodies and were scored via multiplex cytofluorometry and immunocytofluorescence. A detailed picture of Emx2 and Foxg1 activities in cortico-cerebral histogenesis resulted from this study. Unexpectedly, we found that both genes inhibit gliogenesis and promote neuronogenesis, through distinct mechanisms, and Foxg1 also dramatically stimulates neurite outgrowth. Remarkably, such activities, alone or combined, may be exploited to ameliorate the neuronal output obtainable from neural cultures, for purposes of cell-based brain repair.
Collapse
Affiliation(s)
- Marco Brancaccio
- SISSA, Neurobiology Sector, Laboratory of Cerebral Cortex Development, Trieste, Italy
| | | | | | | | | |
Collapse
|