1
|
Chen H, Li Z, Lin M, Lv X, Wang J, Wei Q, Zhang Z, Li L. MicroRNA-124-3p affects myogenic differentiation of adipose-derived stem cells by targeting Caveolin-1 during pelvic floor dysfunction in Sprague Dawley rats. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:161. [PMID: 33569463 PMCID: PMC7867888 DOI: 10.21037/atm-20-8212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background The aim of this study was to investigate using myogenic differentiation of adipose stem cells for the treatment of female pelvic floor dysfunction (PFD) and aimed to further study the influences of microRNA-124-3p (miR-124-3p) in the process of myogenic differentiation of adipose-derived stem cells (ADSCs) through targeting Caveolin-1 (Cav1) during PFD in Sprague Dawley (SD) rats. Methods The ADSCs were separated from 6–8-week-old female SD rats (n=25) and were cultivated. Then, we observed the cell status and conducted fat and osteogenic experiments. We then constructed an ADSC-green fluorescent protein (GFP) stable transfer strain. Flow cytometry was used to identify the positive rates of CD44, CD90, and CD45 in ADSCs and ADSC-GFP. Real-time quantitative polymerase chain reaction (qRT-PCR) and western blotting were used to mRNA and protein expression levels. Myogenic differentiation of ADSCs was measured with immunofluorescence methods. A dual-luciferase reporter assay was executed to affirm whether Cav1 was a target of miR-124-3p. Results The isolated ADSCs cells were in good condition under the microscope. The results of flow cytometry showed that the positive rate of CD44 and CD90 was high, and the positive rate of CD45 was low in ADSCs and ADSC-GFP. Under normal culture conditions, ADSCs-GFP cells can be massively adipated and osteogenic. After 5-Aza induced ADSC-GFP myogenic differentiation, the level of miR-124-3p was significantly increased. We found that MiR-124-3p mimics promoted the myogenic differentiation of ADSCs. Moreover, we discovered that Cav1 was a target gene of miR-124-3p and was negatively regulated by miR-124-3p. The results of leak point pressure (LPP), hematoxylin and eosin (HE), and Masson showed that the collagen fiber content of the PFD group was lower than that of the control group; the collagen fiber content of ADSC-GFP, 5-Aza, or miR-124-3p mimics were increased after intervention. Furthermore, the outcomes qRT-PCR, western blotting, and immunofluorescence suggested that miR-124-3p facilitated the survival ADSC-GFP fat transplantation by regulating many key factors in vivo. Conclusions These results proofed that miR-124-3p could accelerate myogenic differentiation of ADSCs by down-regulating Cav1 to improve PFD in SD rats, which will pave the way for therapeutic delivery of miRNA targeting PFD disease.
Collapse
Affiliation(s)
- Hao Chen
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zihao Li
- Hangzhou Medical College, Hangzhou, China
| | - Ming Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuling Lv
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingping Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing Wei
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zikai Zhang
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liqun Li
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Wang YH, Wang DR, Guo YC, Liu JY, Pan J. The application of bone marrow mesenchymal stem cells and biomaterials in skeletal muscle regeneration. Regen Ther 2020; 15:285-294. [PMID: 33426231 PMCID: PMC7770413 DOI: 10.1016/j.reth.2020.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 02/08/2023] Open
Abstract
Skeletal muscle injuries have bothered doctors and caused great burdens to the public medical insurance system for a long time. Once injured, skeletal muscles usually go through the processes of inflammation, repairing and remodeling. If repairing and remodeling stages are out of balance, scars will be formed to replace injured skeletal muscles. At present, clinicians usually use conventional methods to restore the injured skeletal muscles, such as flap transplantation. However, flap transplantation sometimes needs to sacrifice healthy autologous tissues and will bring extra harm to patients. In recent years, stem cells-based tissue engineering provides us new treatment ideas for skeletal muscle injuries. Stem cells are cells with multiple differentiation potential and have ability to differentiate into adult cells under special condition. Skeletal muscle tissues also have stem cells, called satellite cells, but they are in small amount and new muscle fibers that derived from them may not be enough to replace injured fibers. Bone marrow mesenchymal stem cells (BM-MSCs) could promote musculoskeletal tissue regeneration and activate the myogenic differentiation of satellite cells. Biomaterial is another important factor to promote tissue regeneration and greatly enhance physiological activities of stem cells in vivo. The combined use of stem cells and biomaterials will gradually become a mainstream to restore injured skeletal muscles in the future. This review article mainly focuses on the review of research about the application of BM-MSCs and several major biomaterials in skeletal muscle regeneration over the past decades.
Collapse
Key Words
- 3D-ECM, three dimensional extracellular matrix
- ASCs, adipose stem cells
- BDNF, brain derived neurotrophic factor
- BM-MSCs
- BM-MSCs, bone marrow mesenchymal stem cells
- Biomaterial
- CREB, cAMP- response element binding protein
- DPSCs, dental pulp stem cells
- Differentiation
- ECM, extracellular matrix
- ECs, endothelial cells
- EGF, epidermal growth factor
- FGF, fibroblast growth factor
- FGF-2, fibroblast growth factor-2
- GCSF, granulocyte colony-stimulating factor
- GDNF, glial derived neurotrophic factor
- GPT, gelatin-poly(ethylene glycol)- tyramine
- HGF, hepatocyte growth factor
- IGF-1, insulin-like growth factor-1
- IL, interleukin
- LIF, leukemia inhibitory factor
- MRF, myogenic muscle factor
- NSAIDs, non-steroidal drugs
- PDGF-BB, platelet derived growth factor-BB
- PGE2, prostaglandin E2
- PRP, platelet rich plasma
- S1P, sphingosine 1-phosphate
- SDF-1, stromal cell derived factor-1
- Skeletal muscle injury
- TGF-β, transforming growth factor-β
- Tissue regeneration
- TrkB, tyrosine kinaseB
- VEGF, vascular endothelial growth factor
- VML, volumetric muscle loss
Collapse
Affiliation(s)
- Yu-Hao Wang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, PR China
| | - Dian-Ri Wang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, PR China
| | - Yu-Chen Guo
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Ji-Yuan Liu
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Jian Pan
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, PR China
| |
Collapse
|
3
|
Barisic D, Erb M, Follo M, Al-Mudaris D, Rolauffs B, Hart ML. Lack of a skeletal muscle phenotype in adult human bone marrow stromal cells following xenogeneic-free expansion. Stem Cell Res Ther 2020; 11:79. [PMID: 32087752 PMCID: PMC7036219 DOI: 10.1186/s13287-020-1587-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/22/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
Background Many studies have elegantly shown that murine and rat bone marrow-derived mesenchymal stromal cells (bmMSCs) contribute to muscle regeneration and improve muscle function. Yet, the ability of transplanted human bmMSCs to manifest myogenic potential shows conflicting results. While human adipose- and umbilical cord-derived MSCs can be differentiated into a skeletal muscle phenotype using horse serum (HS), bmMSCs have only been shown to differentiate towards the skeletal muscle lineage using a complex mixture of cytokines followed by transfection with notch intracellular domain. Methods Since xenogeneic-free growth supplements are increasingly being used in the expansion of bmMSCs in clinical trials, we investigated the effects of human plasma and platelet lysate (P/PL) on the expression of neuromuscular markers and whether P/PL-expanded human bmMSCs could be differentiated towards a skeletal myogenic phenotype. Neuromuscular markers were measured using the highly sensitive droplet digital polymerase chain reaction for measuring the expression of Myf5, MyoD, MyoG, ACTA1, Desmin, GAP-43, and Coronin 1b transcripts, by performing immunofluorescence for the expression of Desmin, GAP-43, and MEF2, and flow cytometry for the expression of CD56/neural cell adhesion molecule (NCAM). Results Despite that bmMSCs expressed the myogenic regulatory factor (MRF) MEF2 after expansion in P/PL, bmMSCs cultured under such conditions did not express other essential MRFs including Myf5, MyoD, MyoG, or ACTA1 needed for myogenesis. Moreover, HS did not induce myogenesis of bmMSCs and hence did not induce the expression of any of these myogenic markers. P/PL, however, did lead to a significant increase in neurogenic GAP-43, as well as Desmin expression, and resulted in a high baseline expression of the neurogenic gene Coronin 1b which was sustained under further P/PL or HS culture conditions. Fetal bovine serum resulted in equally high levels of GAP-43 and Coronin 1b. Moreover, the proportion of CD56/NCAM-positive bmMSCs cultured in P/PL was 5.9 ± 2.1. Conclusions These data suggest that P/PL may prime a small portion of bmMSCs towards an early neural precursor cell type. Collectively, this shows that P/PL partially primes the cells towards a neurogenic phenotype, but does not prime adult human bmMSCs towards the skeletal muscle lineage.
Collapse
Affiliation(s)
- Dominik Barisic
- G.E.R.N. Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopaedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marita Erb
- G.E.R.N. Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopaedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marie Follo
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dahlia Al-Mudaris
- G.E.R.N. Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopaedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd Rolauffs
- G.E.R.N. Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopaedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie L Hart
- G.E.R.N. Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopaedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Talovic M, Patel K, Schwartz M, Madsen J, Garg K. Decellularized extracellular matrix gelloids support mesenchymal stem cell growth and function in vitro. J Tissue Eng Regen Med 2019; 13:1830-1842. [PMID: 31306568 DOI: 10.1002/term.2933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/10/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022]
Abstract
Volumetric muscle loss (VML) injuries are irrecoverable due to a significant loss of regenerative elements, persistent inflammation, extensive fibrosis, and functional impairment. When used in isolation, previous stem cell and biomaterial-based therapies have failed to regenerate skeletal muscle at clinically relevant levels. The extracellular matrix (ECM) microenvironment is crucial for the viability, stemness, and differentiation of stem cells. Decellularized-ECM (D-ECM) scaffolds are at the forefront of ongoing research to develop a viable therapy for VML. Due to the retention of key ECM components, D-ECM scaffolds provide an excellent substrate for the adhesion and migration of several cell types. Mesenchymal stem cells (MSCs) possess regenerative and immunomodulatory properties and are currently under investigation in clinical trials for a wide range of medical conditions. However, a major limitation to the use of MSCs in clinical applications is their poor viability at the site of transplantation. In this study, we have fabricated spherical scaffolds composed of gelatin and skeletal muscle D-ECM for the adhesion and delivery of MSCs to the site of VML injury. These spherical scaffolds termed "gelloids" supported MSC survival, expansion, trophic factor secretion, immunomodulation, and myogenic protein expression in vitro. Future studies would determine the therapeutic efficacy of this approach in a murine model of VML injury.
Collapse
Affiliation(s)
- Muhamed Talovic
- Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, MO
| | - Krishna Patel
- Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, MO
| | - Mark Schwartz
- Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, MO
| | - Josh Madsen
- Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, MO
| | - Koyal Garg
- Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, MO
| |
Collapse
|
5
|
Gallo F, Ninotta G, Schenone M, Cortese P, Giberti C. Advances in stem cell therapy for male stress urinary incontinence. Expert Opin Biol Ther 2019; 19:293-300. [PMID: 30709326 DOI: 10.1080/14712598.2019.1578343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Among the several options that have been proposed in recent years for the management of male stress urinary incontinence (SUI), stem cell therapy represents a new frontier in treatment. The aim of this paper is to update the current status of stem cell therapy in animal and human studies for the management of iatrogenic male SUI. AREAS COVERED A literature review was conducted based on MEDLINE/PubMed searches for English articles using a combination of the following keywords: stem cell therapy, urinary incontinence, prostatectomy, regenerative medicine, mesenchymal stem cells. EXPERT OPINION The few studies reported in the literature have demonstrated short-term safety and promising results of stem cell therapy in treating male SUI. However, many aspects need to be clarified before stem cell therapy can be introduced into daily urologic practice. In fact, important issues such as the limitations of these studies in terms of small sample sizes and short follow-ups, the incomplete knowledge of the mechanism of action of stem cells, the technical details regarding the delivery method and the best sources of stem cells, the safety risks regarding genomic or epigenetic changes and potential immune reactions in the longer term need to be identified in more stringent clinical trials.
Collapse
Affiliation(s)
- Fabrizio Gallo
- a Department of Surgery, Division of Urology , San Paolo Hospital , Savona , Italy
| | - Gaetano Ninotta
- a Department of Surgery, Division of Urology , San Paolo Hospital , Savona , Italy
| | - Maurizio Schenone
- a Department of Surgery, Division of Urology , San Paolo Hospital , Savona , Italy
| | - Pierluigi Cortese
- a Department of Surgery, Division of Urology , San Paolo Hospital , Savona , Italy
| | - Claudio Giberti
- a Department of Surgery, Division of Urology , San Paolo Hospital , Savona , Italy
| |
Collapse
|
6
|
Fazeli Z, Faramarzi S, Ahadi A, Omrani MD, Ghaderian SM. Efficiency of mesenchymal stem cells in treatment of urinary incontinence: a systematic review on animal models. Regen Med 2018; 14:69-76. [PMID: 30560712 DOI: 10.2217/rme-2018-0040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM In recent years, the administration of stem cells has been considered a new option for treatment of urinary incontinence (UI). In the present study, the efficiency of mesenchymal stem cell (MSC) transplantation in the treatment of UI was evaluated. METHODS Combinations of the key words 'mesenchymal stem cells', 'MSCs', 'urinary incontinence', 'urethral sphincter' and 'involuntary urination' were searched in PubMed and Science Direct databases. Following application of exclusion criteria to the 1946 papers obtained and review and duplicate articles were removed, 23 articles were considered further. The search was limited to the animal model studies. RESULTS The data obtained from the evaluation of different studies indicated that the injected MSCs play an important role in the neovascularization and the recovery of muscle cells in UI models through the paracrine process. CONCLUSION The obtained data suggested that further trials are needed to be focused on clinical phase of MSC therapy on the patients affected by UI.
Collapse
Affiliation(s)
- Zahra Fazeli
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Sepideh Faramarzi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Alireza Ahadi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Mir D Omrani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Sayyed Mh Ghaderian
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| |
Collapse
|
7
|
Nguyen HG, Metavarayuth K, Wang Q. Upregulation of osteogenesis of mesenchymal stem cells with virus-based thin films. Nanotheranostics 2018; 2:42-58. [PMID: 29291162 PMCID: PMC5743837 DOI: 10.7150/ntno.19974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 10/15/2017] [Indexed: 01/16/2023] Open
Abstract
A major aim of tissue engineering is to develop biomimetic scaffolding materials that can guide the proliferation, self-renewal and differentiation of multipotent stem cells into specific lineages. Cellular functions can be controlled by the interactions between cells and biomaterials. Therefore, the surface chemistry and topography of support materials play a pivotal role in modulating cell behaviors at many stages of cell growth and development. Due to their highly ordered structure and programmable surface chemistries, which provide unique topography as biomaterials, viral nanoparticles have been utilized as building blocks for targeted cell growth and differentiation. This review article discusses the fabrication of two-dimensional virus-based thin film on substrates and highlights the study of the effect of chemical and physical cues introduced by plant virus nanoparticle thin films on the promotion of osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Huong Giang Nguyen
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Kamolrat Metavarayuth
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| |
Collapse
|
8
|
In vivo imaging system for explants analysis-A new approach for assessment of cell transplantation effects in large animal models. PLoS One 2017; 12:e0184588. [PMID: 28931067 PMCID: PMC5607129 DOI: 10.1371/journal.pone.0184588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/26/2017] [Indexed: 12/20/2022] Open
Abstract
Introduction Despite spectacular progress in cellular transplantology, there are still many concerns about the fate of transplanted cells. More preclinical studies are needed, especially on large animal models, to bridge the translational gap between basic research and the clinic. Herein, we propose a novel approach in analysis of cell transplantation effects in large animals explants using in vivo imaging system (IVIS®) or similar equipment. Material and methods In the in vitro experiment cells labeled with fluorescent membrane dyes: DID (far red) or PKH26 (orange) were visualized with IVIS®. The correlation between the fluorescence signal and cell number with or without addition of minced muscle tissue was calculated. In the ex vivo study urethras obtained from goats after intraurethral cells (n = 9) or PBS (n = 4) injections were divided into 0.5 cm cross-slices and analyzed by using IVIS®. Automatic algorithm followed or not by manual setup was used to separate specific dye signal from tissue autofluorescence. The results were verified by systematic microscopic analysis of standard 10 μm specimens prepared from slices before and after immunohistochemical staining. Comparison of obtained data was performed using diagnostic test function. Results Fluorescence signal strength in IVIS® was directly proportional to the number of cells regardless of the dye used and detectable for minimum 0.25x106 of cells. DID-derived signal was much less affected by the background signal in comparison to PKH26 in in vitro test. Using the IVIS® to scan explants in defined arrangement resulted in precise localization of DID but not PKH26 positive spots. Microscopic analysis of histological specimens confirmed the specificity (89%) and sensitivity (80%) of IVIS® assessment relative to DID dye. The procedure enabled successful immunohistochemical staining of specimens derived from analyzed slices. Conclusions The IVIS® system under appropriate conditions of visualization and analysis can be used as a method for ex vivo evaluation of cell transplantation effects. Presented protocol allows for evaluation of cell delivery precision rate, enables semi-quantitative assessment of signal, preselects material for further analysis without interfering with the tissue properties. Far red dyes are appropriate fluorophores to cell labeling for this application.
Collapse
|
9
|
Witt R, Weigand A, Boos AM, Cai A, Dippold D, Boccaccini AR, Schubert DW, Hardt M, Lange C, Arkudas A, Horch RE, Beier JP. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering. BMC Cell Biol 2017; 18:15. [PMID: 28245809 PMCID: PMC5331627 DOI: 10.1186/s12860-017-0131-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/22/2017] [Indexed: 02/07/2023] Open
Abstract
Background Volumetric muscle loss caused by trauma or after tumour surgery exceeds the natural regeneration capacity of skeletal muscle. Hence, the future goal of tissue engineering (TE) is the replacement and repair of lost muscle tissue by newly generating skeletal muscle combining different cell sources, such as myoblasts and mesenchymal stem cells (MSCs), within a three-dimensional matrix. Latest research showed that seeding skeletal muscle cells on aligned constructs enhance the formation of myotubes as well as cell alignment and may provide a further step towards the clinical application of engineered skeletal muscle. In this study the myogenic differentiation potential of MSCs upon co-cultivation with myoblasts and under stimulation with hepatocyte growth factor (HGF) and insulin-like growth factor-1 (IGF-1) was evaluated. We further analysed the behaviour of MSC-myoblast co-cultures in different 3D matrices. Results Primary rat myoblasts and rat MSCs were mono- and co-cultivated for 2, 7 or 14 days. The effect of different concentrations of HGF and IGF-1 alone, as well as in combination, on myogenic differentiation was analysed using microscopy, multicolour flow cytometry and real-time PCR. Furthermore, the influence of different three-dimensional culture models, such as fibrin, fibrin-collagen-I gels and parallel aligned electrospun poly-ε-caprolacton collagen-I nanofibers, on myogenic differentiation was analysed. MSCs could be successfully differentiated into the myogenic lineage both in mono- and in co-cultures independent of HGF and IGF-1 stimulation by expressing desmin, myocyte enhancer factor 2, myosin heavy chain 2 and alpha-sarcomeric actinin. An increased expression of different myogenic key markers could be observed under HGF and IGF-1 stimulation. Even though, stimulation with HGF/IGF-1 does not seem essential for sufficient myogenic differentiation. Three-dimensional cultivation in fibrin-collagen-I gels induced higher levels of myogenic differentiation compared with two-dimensional experiments. Cultivation on poly-ε-caprolacton-collagen-I nanofibers induced parallel alignment of cells and positive expression of desmin. Conclusions In this study, we were able to myogenically differentiate MSC upon mono- and co-cultivation with myoblasts. The addition of HGF/IGF-1 might not be essential for achieving successful myogenic differentiation. Furthermore, with the development of a biocompatible nanofiber scaffold we established the basis for further experiments aiming at the generation of functional muscle tissue. Electronic supplementary material The online version of this article (doi:10.1186/s12860-017-0131-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- R Witt
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - A Weigand
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - A M Boos
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - A Cai
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - D Dippold
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nürnberg (FAU), Cauerstraße 6, 91058, Erlangen, Germany.,Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen- Nürnberg (FAU), Martensstrasse 7, 91058, Erlangen, Germany
| | - A R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nürnberg (FAU), Cauerstraße 6, 91058, Erlangen, Germany
| | - D W Schubert
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen- Nürnberg (FAU), Martensstrasse 7, 91058, Erlangen, Germany
| | - M Hardt
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - C Lange
- Interdisciplinary Clinic for Stem Cell Transplantation, University Cancer Center Hamburg (UCCH), 20246, Hamburg, Germany
| | - A Arkudas
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - R E Horch
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - J P Beier
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany.
| |
Collapse
|
10
|
Ji M, Bai C, Li L, Fan Y, Ma C, Li X, Guan W. Biological characterization of sheep kidney-derived mesenchymal stem cells. Exp Ther Med 2016; 12:3963-3971. [PMID: 28105130 PMCID: PMC5228473 DOI: 10.3892/etm.2016.3902] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/01/2016] [Indexed: 12/29/2022] Open
Abstract
The aim of the present study was to isolate, culture and characterize sheep metanephric mesenchymal stem cells (MMSCs). The MMSCs were isolated from the kidney tissue of six-week-old sheep fetus. This study investigated whether primary MMSCs could be grown for 26 passages and expressed Oct-4, which is involved in the self-renewal of undifferentiated pluripotent stem cells. The MMSCs also expressed the renal lineage marker gene PAX2, and mesenchymal cell marker genes CD44, FN1 and VIM. Expression of these genes was detected using immunofluorescence and reverse transcription-polymerase chain reaction assays. Additionally, we observed that the MMSCs are able to differentiate into adipocyte, hepatocyte and chondrocyte cells. Karyotype analyses showed that these cells were 95% diploid and thus differentiated. These results indicate that the MMSCs obtained from sheep fetuses possessed certain characteristics of multipotent stem cells. Therefore, MMSCs may potentially offer utility for tissue engineering and cellular transplantation therapy, and further studies are required to investigate these uses.
Collapse
Affiliation(s)
- Meng Ji
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Chunyu Bai
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Lu Li
- Department of Animal Genetic Resources, College of Animal Science and Technology, Agricultural University of Hebei, Baoding, Hebei 071000, P.R. China
| | - Ya'Nan Fan
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Caiyun Ma
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Xiangchen Li
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Weijun Guan
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| |
Collapse
|
11
|
Regmi S, Jeong JH. Superiority of three-dimensional stem cell clusters over monolayer culture: An archetype to biological application. Macromol Res 2016. [DOI: 10.1007/s13233-016-4107-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Giberti C, Gallo F, Schenone M, Cortese P, Ninotta G. Stem Cell Therapy for Male Urinary Incontinence. Urol Int 2016; 90:249-52. [PMID: 23221307 DOI: 10.1159/000342415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Among the medical and surgical options which have been proposed in the last years for the management of male stress urinary incontinence (SUI), stem cell therapy represents a new frontier treatment. The aim of this paper is to update the current status of stem cell therapy in animal and human studies for the management of iatrogenic male SUI. MATERIAL AND METHODS A PubMed review of the literature on stem cell therapy for the treatment of male SUI was performed. RESULTS Regarding animal studies, bone marrow-, muscle- and adipose-derived stem cells have been widely studied, showing regeneration of the urethral sphincter and recovery of the damaged pelvic nerves. With regard to human studies, only four papers are available in the literature using muscle- and adipose-derived stem cells which reported a significant improvement in sphincteric function and incontinence with no severe side effects. CONCLUSIONS In spite of these promising results, further studies are needed with longer follow-ups and larger numbers of patients in order to clarify the potential role of stem cell therapy for the treatment of male SUI.
Collapse
Affiliation(s)
- C Giberti
- Department of Surgery, Division of Urology, San Paolo Hospital, Savona, Italy
| | | | | | | | | |
Collapse
|
13
|
Kozdon K, Fitchett C, Rose GE, Ezra DG, Bailly M. Mesenchymal Stem Cell-Like Properties of Orbital Fibroblasts in Graves' Orbitopathy. Invest Ophthalmol Vis Sci 2015; 56:5743-50. [PMID: 26325413 DOI: 10.1167/iovs.15-16580] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Graves' orbitopathy (GO) is a sight-threatening autoimmune disorder causing extraocular muscle fibrosis, upper lid retraction and eye bulging due to orbital fat expansion. These clinical features are mediated by aspects of orbital fibroblasts differentiation, including adipogenesis and fibrosis. Our previous work suggested that this dual phenotype might be a manifestation of mixed cell populations, partially linked to the expression of mesenchymal stem cell (MSC) marker CD90. Thus, we set out to determine whether GO orbital fibroblasts displayed MSC properties. METHODS Control and GO orbital fibroblasts previously characterized for CD90 and CD45 expression were analyzed by flow cytometry for classical MSC positive (CD73, CD105) and negative (CD14, CD19, HLA-DR, and CD34) markers. Graves' orbitopathy fibroblasts were tested further for their ability to undergo lineage specific differentiation following standard protocols. RESULTS Control and GO fibroblasts strongly expressed CD73 and CD105, with a higher percentage of positive cells and stronger expression levels in GO. Neither cell type expresses CD14, CD19, and HLA-DR. Protein CD34 was expressed at low levels by 45% to 70% of the cells, with its expression significantly lower in GO cells. Graves' orbitopathy fibroblasts displayed features of osteogenesis (calcium deposits, and osteocalcin [BGLAP] and osteonectin [SPARC] expression), chondrogenesis (glycosaminoglycan production; SOX9 and aggrecan [ACAN] expression), myogenesis (α-smooth muscle actin expression), and neurogenesis (β-III tubulin expression) upon differentiation. CONCLUSIONS Our findings suggest that orbital fibroblasts contain a population of cells that fulfil the criteria defining MSC. This subpopulation may be increased in GO, possibly underlying the complex differentiation phenotype of the disease.
Collapse
Affiliation(s)
- Katarzyna Kozdon
- Department of Cell Biology UCL Institute of Ophthalmology, London, United Kingdom
| | - Caroline Fitchett
- Department of Cell Biology UCL Institute of Ophthalmology, London, United Kingdom
| | - Geoffrey E Rose
- Orbital clinic, Moorfields Eye Hospital and the National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Daniel G Ezra
- Department of Cell Biology UCL Institute of Ophthalmology, London, United Kingdom 2Orbital clinic, Moorfields Eye Hospital and the National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and
| | - Maryse Bailly
- Department of Cell Biology UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
14
|
Ramírez-Espinosa JJ, González-Dávalos L, Shimada A, Piña E, Varela-Echavarria A, Mora O. Bovine (Bos taurus) Bone Marrow Mesenchymal Cell Differentiation to Adipogenic and Myogenic Lineages. Cells Tissues Organs 2015; 201:51-64. [PMID: 26565958 DOI: 10.1159/000440878] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2015] [Indexed: 11/19/2022] Open
Abstract
PURPOSE We evaluated the effect of peroxisome proliferator-activated receptor (PPAR) agonists on the differentiation and metabolic features of bovine bone marrow-derived mesenchymal cells induced to adipogenic or myogenic lineages. METHODS Cells isolated from 7-day-old calves were cultured in basal medium (BM). For adipogenic differentiation, cells were cultured for one passage in BM and then transferred to a medium supplemented with either rosiglitazone, telmisartan, sirtinol or conjugated c-9, t-11 linoleic acid; for myogenic differentiation, third-passage cells were added with either bezafibrate, telmisartan or sirtinol. The expression of PPARx03B3; (an adipogenic differentiation marker), myosin heavy chain (MyHC; a myogenic differentiation marker) and genes related to energy metabolism were measured by quantitative real-time PCR in a completely randomized design. RESULTS For adipogenic differentiation, 20 µM telmisartan showed the highest PPARx03B3; expression (15.58 ± 0.62-fold, p < 0.0001), and differences in the expression of energy metabolism-related genes were found for hexokinase II, phosphofructokinase, adipose triglyceride lipase, acetyl-CoA carboxylase α(ACACα) and fatty acid synthase (p < 0.001), but not for ACACβ (p = 0.4275). For myogenic differentiation, 200 µM bezafibrate showed the highest MyHC expression (73.98 ± 11.79-fold), and differences in the expression of all energy metabolism-related genes were found (p < 0.05). CONCLUSIONS Adipocyte and myocyte differentiation are enhanced with telmisartan and bezafibrate, respectively, and energy uptake, storage and mobilization are improved with both.
Collapse
Affiliation(s)
- Jesus J Ramírez-Espinosa
- Programa de Posgrado en Ciencias de la Produccix00F3;n y de la Salud Animal, Universidad Nacional Autx00F3;noma de Mx00E9;xico (UNAM), Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
15
|
Arenas da Silva LF, Schober L, Sloff M, Traube A, Hart ML, Feitz WF, Stenzl A. New technique for needle-less implantation of eukaryotic cells. Cytotherapy 2015; 17:1655-61. [DOI: 10.1016/j.jcyt.2015.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 07/10/2015] [Accepted: 07/30/2015] [Indexed: 01/14/2023]
|
16
|
LeBlon CE, Casey ME, Fodor CR, Zhang T, Zhang X, Jedlicka SS. Correlation between in vitro expansion-related cell stiffening and differentiation potential of human mesenchymal stem cells. Differentiation 2015; 90:1-15. [PMID: 26381795 DOI: 10.1016/j.diff.2015.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 08/10/2015] [Accepted: 08/20/2015] [Indexed: 12/28/2022]
Abstract
Human mesenchymal stem cells (hMSCs) are an attractive cell source for tissue regeneration, given their self-renewal and multilineage potential. However, they are present in only small percentages in human bone marrow, and are generally propagated in vitro prior to downstream use. Previous work has shown that hMSC propagation can lead to alterations in cell behavior and differentiation potency, yet optimization of differentiation based on starting cell elastic modulus is an area still under investigation. To further advance the knowledge in this field, hMSCs were cultured and routinely passaged on tissue-culture polystyrene to investigate the correlation between cell stiffening and differentiation potency during in vitro aging. Local cell elastic modulus was measured at every passage using atomic force microscopy indentation. At each passage, cells were induced to differentiate down myogenic and osteogenic paths. Cells induced to differentiate, as well as undifferentiated cells were assessed for gene and protein expression using quantitative polymerase chain reaction and immunofluorescent staining, respectively, for osteogenic and myogenic markers. Myogenic and osteogenic cell potential are highly reliant on the elastic modulus of the starting cell population (of undifferentiated cells), and this potential appears to peak when the innate cell elastic modulus is close to that of differentiated tissue. However, the latent expression of the same markers in undifferentiated cells also appears to undergo a correlative relationship with cell elastic modulus, indicating some endogenous effects of cell elastic modulus and gene/protein expression. Overall, this study correlates age-related changes with regards to innate cell stiffening and gene/protein expression in commercial hMSCs, providing some guidance as to maintenance and future use of hMSCs in future tissue engineering applications.
Collapse
Affiliation(s)
- Courtney E LeBlon
- Mechanical Engineering & Mechanics, Packard Laboratory, Lehigh University, 19 Memorial Drive, Bethlehem, PA 18015, United States
| | - Meghan E Casey
- Bioengineering Program, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, United States
| | - Caitlin R Fodor
- Bioengineering Program, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, United States
| | - Tony Zhang
- Bioengineering Program, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, United States
| | - Xiaohui Zhang
- Mechanical Engineering & Mechanics, Packard Laboratory, Lehigh University, 19 Memorial Drive, Bethlehem, PA 18015, United States; Bioengineering Program, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, United States
| | - Sabrina S Jedlicka
- Bioengineering Program, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, United States; Materials Science and Engineering, Whitaker Laboratory, Lehigh University, 5 East Packer Ave., Bethlehem, PA 18015, United States; Center for Advanced Materials & Nanotechnology, Whitaker Laboratory, Lehigh University, 5 East Packer Ave., Bethlehem, PA 18015, United States.
| |
Collapse
|
17
|
Mesenchymal stromal cells for sphincter regeneration. Adv Drug Deliv Rev 2015; 82-83:123-36. [PMID: 25451135 DOI: 10.1016/j.addr.2014.10.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/29/2014] [Accepted: 10/15/2014] [Indexed: 02/06/2023]
Abstract
Stress urinary incontinence (SUI), defined as the involuntary loss of considerable amounts of urine during increased abdominal pressure (exertion, effort, sneezing, coughing, etc.), is a severe problem to the individuals affected and a significant medical, social and economic challenge. SUI is associated with pelvic floor debility, absence of detrusor contraction, or a loss of control over the sphincter muscle apparatus. The pathology includes an increasing loss of muscle cells, replacement of muscular tissue with fibrous tissue, and general aging associated processes of the sphincter complex. When current therapies fail to cure or improve SUI, application of regeneration-competent cells may be an alternative therapeutic option. Here we discuss different aspects of the biology of mesenchymal stromal cells, which are relevant to their clinical applications and for regenerating the sphincter complex. However, there are reports in favor of and against cell-based therapies. We therefore summarize the potential and the risks of cell-based therapies for the treatment of SUI.
Collapse
|
18
|
Amend B, Vaegler M, Fuchs K, Mannheim JG, Will S, Kramer U, Hart ML, Feitz W, Chapple C, Stenzl A, Aicher WK. Regeneration of degenerated urinary sphincter muscles: improved stem cell-based therapies and novel imaging technologies. Cell Transplant 2015; 24:2171-83. [PMID: 25608017 DOI: 10.3727/096368915x686229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Stress urinary incontinence (SUI) is a largely ousted but significant medical, social, and economic problem. Surveys suggest that nowadays approximately 10% of the male and 15% of the female population suffer from urinary incontinence at some stage in their lifetime. In women, two major etiologies contribute to SUI: degeneration of the urethral sphincter muscle controlling the closing mechanism of the bladder outflow and changes in lower pelvic organ position associated with degeneration of connective tissue or with mechanical stress, including obesity and load and tissue injury during pregnancy and delivery. In males, the reduction of the sphincter muscle function is sometimes due to surgical interventions as a consequence of prostate cancer treatment, benign prostate hyperplasia, or of neuropathical origin. Accordingly, for women and men different therapies were developed. In some cases, SUI can be treated by physical exercise, electrophysiological stimulation, and pharmacological interventions. If this fails to improve the situation, surgical interventions are required. In standard procedures, endoprostheses for mechanical support of the weakened tissue or mechanical valves for a bladder outflow control are implanted. In 20% of cases treated, repeat procedures are required as implants yield all sorts of side effects in time. Based on preclinical studies, the application of an advanced therapy medicinal product (ATMP) such as implantation of autologous cells may be a curative and long-lasting therapy for SUI. Cellular therapy could also be an option for men suffering from incontinence caused by injury of the nerves controlling the muscular sphincter system. Here we briefly report on human progenitor cells, especially on mesenchymal stromal cells (MSCs), their expansion and differentiation to smooth muscle or striated muscle cells in vitro, labeling of cells for in vivo imaging, concepts of improved, precise, yet gentle application of cells in muscle tissue, and monitoring of injected cells in situ.
Collapse
Affiliation(s)
- Bastian Amend
- Department of Urology, University of Tuebingen Hospital, Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bartaula-Brevik S, Pedersen TO, Blois AL, Papadakou P, Finne-Wistrand A, Xue Y, Bolstad AI, Mustafa K. Leukocyte transmigration into tissue-engineered constructs is influenced by endothelial cells through Toll-like receptor signaling. Stem Cell Res Ther 2014; 5:143. [PMID: 25528303 PMCID: PMC4445275 DOI: 10.1186/scrt533] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Inflammation plays a crucial role in tissue regeneration, wound healing, and the success of tissue-engineered constructs. The aim of this study was to investigate the influence of human umbilical vein endothelial cells (ECs) on leukocyte transmigration when co-cultured with primary human bone marrow-derived multipotent stromal cells (MSCs). METHODS MSCs with and without ECs were cultured in poly (L-lactide-co-1, 5-dioxepan-2-one) (poly (LLA-co-DXO)) scaffolds for 1 week in vitro in a bioreactor system, after which they were implanted subcutaneously in non-obese diabetic/severe combined immunodeficient mice. After 1 and 3 weeks, scaffolds were retrieved, and the mRNA expression of interleukin 1-beta (IL-1β), IL-6, IL-10, hypoxia-inducible factor 1-alpha (HIF-1α), HIF-1β, and mammalian target of rapamycin was examined by real-time reverse transcription-polymerase chain reaction. Furthermore, immunofluorescent staining was performed for IL-1β, IL-6, neutrophils, and CD11b. In addition, Western blotting was done for IL-1β and IL-6. Leukocyte transmigration genes and genes in Toll-like receptor pathways, expressed by MSCs cultured in vitro with or without ECs, were further investigated with a microarray dataset. RESULTS In vitro, genes involved in leukocyte transmigration and Toll-like receptor pathways were clearly influenced by the addition of ECs. Platelet/endothelial cell adhesion molecule-1 (PECAM-1) and cadherin-5 (CDH5), both genes involved in leukocyte transmigration, were expressed significantly higher in the MSC/EC group. CONCLUSIONS The recruitment of leukocytes into tissue-engineered constructs with MSCs is strongly influenced by the addition of ECs via activation of leukocyte transmigration and Toll-like receptor pathways.
Collapse
Affiliation(s)
- Sushma Bartaula-Brevik
- />Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Årstadveien 19, N-5009 Bergen, Norway
| | - Torbjorn O Pedersen
- />Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Årstadveien 19, N-5009 Bergen, Norway
- />Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Anna L Blois
- />Centre for Cancer Biomarkers, Department of Clinical Medicine, Section for Pathology, University of Bergen, Jonas Lies vei 91B, 5021 Bergen, Norway
- />Children’s Hospital Boston, Vascular Biology Department, Harvard Medical School, 300 Longwood Avenue, Boston, MA USA
| | - Panagiota Papadakou
- />Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Anna Finne-Wistrand
- />Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 42, SE-100 44 Stockholm, Sweden
| | - Ying Xue
- />Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Årstadveien 19, N-5009 Bergen, Norway
| | - Anne Isine Bolstad
- />Department of Clinical Dentistry - Periodontics, University of Bergen, Årstadveien 19, 5009 Bergen, Norway
| | - Kamal Mustafa
- />Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Årstadveien 19, N-5009 Bergen, Norway
| |
Collapse
|
20
|
LI XIUYING, YANG QIWEI, BAI JINPING, YANG YANYAN, ZHONG LINGZHI, WANG YIMIN. Identification of optimal reference genes for quantitative PCR studies on human mesenchymal stem cells. Mol Med Rep 2014; 11:1304-11. [DOI: 10.3892/mmr.2014.2841] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 08/29/2014] [Indexed: 11/06/2022] Open
|
21
|
Gopinath C, Ponsaerts P, Wyndaele JJ. Cell-Based Therapies in Lower Urinary Tract Disorders. Cell Transplant 2014; 24:1679-86. [PMID: 25291710 DOI: 10.3727/096368914x685050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cell-based therapy for the bladder has its beginnings in the 1990s with the successful isolation and culture of bladder smooth muscle cells. Since then, several attempts have been made to artificially implant native cell types and stem cell-derived cells into damaged bladders in the form of single-cell injectables or as grafts seeded onto artificial extracellular matrix. We critically examined in the literature the types of cells and their probable role as an alternative to non-drug-based, non-bowel-based graft replacement therapy in disorders of the urinary bladder. The limitations and plausible improvements to these novel therapies have also been discussed, keeping in mind an ideal therapy that could suit most bladder abnormalities arising out of varied number of disorders. In conclusion, muscle-derived cell types have consistently proven to be a promising therapy to emerge in the coming decade. However, tissue-engineered constructs have yet to prove their success in preclinical and long-term clinical setting.
Collapse
|
22
|
Isolation and characterization of adipose-derived mesenchymal stem cells (ADSCs) from cattle. Appl Biochem Biotechnol 2014; 174:719-28. [PMID: 25086927 DOI: 10.1007/s12010-014-1128-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
Abstract
Adipose-derived mesenchymal stem cells (ADSCs) were isolated from the adult adipose tissue of 2-year-old cattle, and then characterized by immunofluorescence and RT-PCR. We found that primary bADSCs could be expanded for 25 passages. Expression of β-integrin, CD44, and CD73 was observed by immunofluorescence and RT-PCR. Passage 3 bADSCs were successfully induced to differentiate into osteoblasts and adipocytes. The results indicate the potential for multi-lineage differentiation of bADSCs that may represent an ideal candidate for cellular transplantation therapy.
Collapse
|
23
|
Hart ML, Neumayer KMH, Vaegler M, Daum L, Amend B, Sievert KD, Di Giovanni S, Kraushaar U, Guenther E, Stenzl A, Aicher WK. Cell-based therapy for the deficient urinary sphincter. Curr Urol Rep 2014; 14:476-87. [PMID: 23824516 DOI: 10.1007/s11934-013-0352-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
When sterile culture techniques of mammalian cells first became state of the art, there was tremendous anticipation that such cells could be eventually applied for therapeutic purposes. The discovery of adult human stem or progenitor cells further motivated scientists to pursue research in cell-based therapies. Although evidence from animal studies suggests that application of cells yields measurable benefits, in urology and many other disciplines, progenitor-cell-based therapies are not yet routinely clinically available. Stress urinary incontinence (SUI) is a condition affecting a large number of patients. The etiology of SUI includes, but is not limited to, degeneration of the urinary sphincter muscle tissue and loss of innervation, as well as anatomical and biomechanical causes. Therefore, different regimens were developed to treat SUI. However, at present, a curative functional treatment is not at hand. A progenitor-cell-based therapy that can tackle the etiology of incontinence, rather than the consequences, is a promising strategy. Therefore, several research teams have intensified their efforts to develop such a therapy for incontinence. Here, we introduce candidate stem and progenitor cells suitable for SUI treatment, show how the functional homogeneity and state of maturity of differentiated cells crucial for proper tissue integration can be assessed electrophysiologically prior to their clinical application, and discuss the trophic potential of adult mesenchymal stromal (or stem) cells in regeneration of neuronal function.
Collapse
Affiliation(s)
- Melanie L Hart
- KFO273, Department of Urology, UKT, University of Tuebingen, Paul-Ehrlich-Str. 15, 72076, Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kim JH, Lee HJ, Song YS. Treatment of bladder dysfunction using stem cell or tissue engineering technique. Korean J Urol 2014; 55:228-38. [PMID: 24741410 PMCID: PMC3988432 DOI: 10.4111/kju.2014.55.4.228] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/28/2014] [Indexed: 01/22/2023] Open
Abstract
Tissue engineering and stem cell transplantation are two important options that may help overcome limitations in the current treatment strategy for bladder dysfunction. Stem cell therapy holds great promise for treating pathophysiology, as well as for urological tissue engineering and regeneration. To date, stem cell therapy in urology has mainly focused on oncology and erectile dysfunction. The therapeutic potency of stem cells (SCs) was originally thought to derive from their ability to differentiate into various cell types including smooth muscle. The main mechanisms of SCs in reconstituting or restoring bladder function are migration, differentiation, and paracrine effects. Nowadays, paracrine effects of stem cells are thought to be more prominent because of their stimulating effects on stem cells and adjacent cells. Studies of stem cell therapy for bladder dysfunction have been limited to experimental models and have been less focused on tissue engineering for bladder regeneration. Bladder outlet obstruction is a representative model. Adipose-derived stem cells, bone marrow stem cells (BMSCs), and skeletal muscle-derived stem cells or muscle precursor cells are used for transplantation to treat bladder dysfunction. The aim of this study is to review stem cell therapy and updated tissue regeneration as treatments for bladder dysfunction and to provide the current status of stem cell therapy and tissue engineering for bladder dysfunction including its mechanisms and limitations.
Collapse
Affiliation(s)
- Jae Heon Kim
- Department of Urology, Soonchunhyang University Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Hong Jun Lee
- Medical Research Institute, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yun Seob Song
- Department of Urology, Soonchunhyang University Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Vaegler M, DaSilva L, Benz K, Amend B, Mollenhauer J, Aicher W, Stenzl A, Sievert KD. Zellbasierte Therapie der Belastungsinkontinenz. Urologe A 2014; 53:354-61. [DOI: 10.1007/s00120-013-3353-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Aicher WK, Hart ML, Stallkamp J, Klünder M, Ederer M, Sawodny O, Vaegler M, Amend B, Sievert KD, Stenzl A. Towards a Treatment of Stress Urinary Incontinence: Application of Mesenchymal Stromal Cells for Regeneration of the Sphincter Muscle. J Clin Med 2014; 3:197-215. [PMID: 26237258 PMCID: PMC4449674 DOI: 10.3390/jcm3010197] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/16/2014] [Accepted: 01/17/2014] [Indexed: 02/07/2023] Open
Abstract
Stress urinary incontinence is a significant social, medical, and economic problem. It is caused, at least in part, by degeneration of the sphincter muscle controlling the tightness of the urinary bladder. This muscular degeneration is characterized by a loss of muscle cells and a surplus of a fibrous connective tissue. In Western countries approximately 15% of all females and 10% of males are affected. The incidence is significantly higher among senior citizens, and more than 25% of the elderly suffer from incontinence. When other therapies, such as physical exercise, pharmacological intervention, or electrophysiological stimulation of the sphincter fail to improve the patient’s conditions, a cell-based therapy may improve the function of the sphincter muscle. Here, we briefly summarize current knowledge on stem cells suitable for therapy of urinary incontinence: mesenchymal stromal cells, urine-derived stem cells, and muscle-derived satellite cells. In addition, we report on ways to improve techniques for surgical navigation, injection of cells in the sphincter muscle, sensors for evaluation of post-treatment therapeutic outcome, and perspectives derived from recent pre-clinical studies.
Collapse
Affiliation(s)
- Wilhelm K Aicher
- KFO273, Department of Urology, University of Tuebingen Hospital, Tuebingen 72076, Germany.
| | - Melanie L Hart
- KFO273, Department of Urology, University of Tuebingen Hospital, Tuebingen 72076, Germany.
| | - Jan Stallkamp
- FRAUNHOFER Institute, Klinikum Mannhein, Mannheim 68167, Germany.
| | - Mario Klünder
- Department for Systems Dynamics, University of Stuttgart, Stuttgart 70569, Germany.
| | - Michael Ederer
- Department for Systems Dynamics, University of Stuttgart, Stuttgart 70569, Germany.
| | - Oliver Sawodny
- Department for Systems Dynamics, University of Stuttgart, Stuttgart 70569, Germany.
| | - Martin Vaegler
- KFO273, Department of Urology, University of Tuebingen Hospital, Tuebingen 72076, Germany.
| | - Bastian Amend
- KFO273, Department of Urology, University of Tuebingen Hospital, Tuebingen 72076, Germany.
- Department of Urology, University of Tuebingen Hospital, Tuebingen 72076, Germany.
| | - Karl D Sievert
- KFO273, Department of Urology, University of Tuebingen Hospital, Tuebingen 72076, Germany.
- Department of Urology, University of Tuebingen Hospital, Tuebingen 72076, Germany.
| | - Arnulf Stenzl
- KFO273, Department of Urology, University of Tuebingen Hospital, Tuebingen 72076, Germany.
- Department of Urology, University of Tuebingen Hospital, Tuebingen 72076, Germany.
| |
Collapse
|
27
|
Joo S, Lim HJ, Jackson JD, Atala A, Yoo JJ. Myogenic-induced mesenchymal stem cells are capable of modulating the immune response by regulatory T cells. J Tissue Eng 2014; 5:2041731414524758. [PMID: 24555015 PMCID: PMC3927963 DOI: 10.1177/2041731414524758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 01/28/2014] [Indexed: 12/29/2022] Open
Abstract
Cell therapy for patients who have intractable muscle disorders may require highly regenerative cells from young, healthy allogeneic donors. Mesenchymal stem cells are currently under clinical investigation because they are known to induce muscle regeneration and believed to be immune privileged, thus making them suitable for allogeneic applications. However, it is unclear whether allogeneic and myogenic-induced mesenchymal stem cells retain their immunomodulatory characteristics. Therefore, our aim was to evaluate the effects of mesenchymal stem cell differentiation on the immune characteristics of cells in vitro. We investigated the immunologic properties of mesenchymal stem cells after myogenic induction. Mesenchymal stem cells were obtained from C57BL/6 mice and the C3H/10T1/2 murine mesenchymal stem cell line. Two different 5-aza-2'-deoxycytidine doses (0.5 and 3 µM) were evaluated for their effects on mesenchymal stem cell skeletal myogenic differentiation potential, immune antigen expression, and mixed lymphocytic reactions. Using a mixed lymphocytic reaction, we determined the optimal splenocyte proliferation inhibition dose. The induction of regulatory T cells was markedly increased by the addition of 3 µM 5-aza-2'-deoxycytidine-treated mesenchymal stem cells. Myogenic-induced mesenchymal stem cells do not elicit alloreactive lymphocyte proliferative responses and are able to modulate immune responses. These findings support the hypothesis that myogenic-induced mesenchymal stem cells may be transplantable across allogeneic barriers.
Collapse
Affiliation(s)
- Sunyoung Joo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA ; Biomedical Research Institute, Joint Institute for Regenerative Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Hyun Ju Lim
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - John D Jackson
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| |
Collapse
|
28
|
Vaegler M, Amend B, Aicher W, Stenzl A, Sievert KD. [Stem cell therapy and tissue engineering in regenerative urology]. Urologe A 2013; 52:1671-8. [PMID: 24166059 DOI: 10.1007/s00120-013-3328-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND So far there is no clinically established, effective tissue engineering therapy for dysfunction or defects of the lower urinary tract. The concentration of experimental data, initial clinical studies and individual case reports underlines that stem cell treatment for bladder storage and voiding problems, erectile dysfunction and other urothelial defects of the lower urinary tract could close the gap between individualized therapy and potential biomedical applications. RESULTS As a result of fundamental research work over the last decade a characterization of various stem cell populations and evaluation of different urological therapy options could be performed. Thereby, aspects of optimal administration, migration, secretion of bioactive factors and stage of differentiation of stem cells with respect to an improved efficiency of treatment were investigated. Because successful tissue regeneration depends on angiogenesis and innervation, particular attention was paid to these important factors. CONCLUSIONS Various clinical indications for stem cell treatment and tissue reconstruction that may be required after radical prostatectomy, such as stress urinary incontinence, urethral reconstruction and erectile dysfunction have materialized and are currently being verified in preclinical studies and phase I trials.
Collapse
Affiliation(s)
- M Vaegler
- Klinik für Urologie, Universitätsklinik Tübingen, Eberhard-Karls-Universität Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Deutschland
| | | | | | | | | |
Collapse
|
29
|
Mazzanti B, Lorenzi B, Lorenzoni P, Borghini A, Boieri M, Lorenzi M, Santosuosso M, Bosi A, Saccardi R, Weber E, Pessina F. Treatment of experimental esophagogastric myotomy with bone marrow mesenchymal stem cells in a rat model. Neurogastroenterol Motil 2013; 25:e669-79. [PMID: 23859028 DOI: 10.1111/nmo.12182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/16/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Over the last 15 years, many studies demonstrated the myogenic regenerative potential of bone marrow mesenchymal stem cells (BM-MSC), making them an attractive tool for the regeneration of damaged tissues. In this study, we have developed an animal model of esophagogastric myotomy (MY) aimed at determining the role of autologous MSC in the regeneration of the lower esophageal sphincter (LES) after surgery. METHODS Syngeneic BM-MSC were locally injected at the site of MY. Histological and functional analysis were performed to evaluate muscle regeneration, contractive capacity, and the presence of green fluorescent protein-positive BM-MSC (BM-MSC-GFP(+) ) in the damaged area at different time points from implantation. KEY RESULTS Treatment with syngeneic BM-MSC improved muscle regeneration and increased contractile function of damaged LES. Transplanted BM-MSC-GFP(+) remained on site up to 30 days post injection. Immunohistochemical analysis demonstrated that MSC maintain their phenotype and no differentiation toward smooth or striated muscle was shown at any time point. CONCLUSIONS & INFERENCES Our data support the use of autologous BM-MSC to both improve sphincter regeneration of LES and to control the gastro-esophageal reflux after MY.
Collapse
Affiliation(s)
- B Mazzanti
- Haematology Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lu T, Huang Y, Wang H, Ma Y, Guan W. Multi-lineage potential research of bone marrow-derived stromal cells (BMSCs) from cattle. Appl Biochem Biotechnol 2013; 172:21-35. [PMID: 24043451 DOI: 10.1007/s12010-013-0458-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/22/2013] [Indexed: 12/15/2022]
Abstract
Bovine bone marrow-derived mesenchymal stem cells (bBMSCs) were isolated from the bone marrow of a 4-6-month-old fetal bovine and then characterized by immunofluorescence and reverse transcriptase polymerase chain reaction. We found that primary bBMSCs could be expanded for 46 passages; the total culture time in vitro was 125 days. The results of surface antigen detection showed that bBMSCs expressed CD29, CD44, and CD73 but did not express endothelial cells and hematopoietic cells-specific marker CD31, CD34, and CD45. The cells from four passages (passages 3, 9, 15, and 25) were successfully induced to differentiate into osteoblasts, adipocytes, hepatic, and islet-like cells. The results indicate the potential for multi-lineage differentiation of bBMSCs that may represent an ideal candidate for cellular transplantation therapy.
Collapse
Affiliation(s)
- Taofeng Lu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | | | | | | | | |
Collapse
|
31
|
Isolation and characterization of chicken dermis-derived mesenchymal stem/progenitor cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:626258. [PMID: 23984389 PMCID: PMC3747373 DOI: 10.1155/2013/626258] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 06/30/2013] [Accepted: 07/02/2013] [Indexed: 01/22/2023]
Abstract
Dermis-derived mesenchymal stem/progenitor cells (DMS/PCs) were isolated from the skin tissue of 16-day-old chick embryos and then characterized by immunofluorescence and RT-PCR. We found that primary DMS/PCs could be expanded for 15 passages. Expression of β -integrin, CD44, CD71, and CD73 was observed by immunofluorescence and RT-PCR. Passage 3 DMS/PCs were successfully induced to differentiate into osteoblasts, adipocytes, and neurocytes. The results indicate the potential for multilineage differentiation of DMS/PCs that may represent an ideal candidate for cellular transplantation therapy.
Collapse
|
32
|
Burdzińska A, Crayton R, Dybowski B, Idziak M, Gala K, Radziszewski P, Pączek L. The effect of endoscopic administration of autologous porcine muscle-derived cells into the urethral sphincter. Urology 2013; 82:743.e1-8. [PMID: 23866762 DOI: 10.1016/j.urology.2013.03.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 02/13/2013] [Accepted: 03/09/2013] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To verify the fate of autologous porcine myogenic cells after endoscopic administration into the urethral sphincter. METHODS This study was performed on pig animal models. The muscle-derived cells (MDCs) were isolated and identified. After the third passage, the 6 × 10(7) of PKH26 labeled cells were injected into the urethral sphincter using a urethrocystoscope. The urethras were collected after 28 days. To analyze the fate of injected cells, the PKH26 presence, the desmin expression, and the distribution of acetylcholine receptors were evaluated in the tissue sections. Moreover, the maximal urethral closure pressure (MUCP) was assessed in experimental and control groups at day 1 and day 28. RESULTS The isolated porcine MDCs expressed desmin and were able to differentiate into myotubes in vitro. At day 28 after the transplantation, the depots of PKH26-positive cells were observed in the muscular layer, but also in the submucosa. The staining for desmin revealed that cells located in the muscle layer were integrated with muscle fibers that possessed acetylcholine receptors. However, cells administered into nonmuscle tissue did not express desmin. Urethral pressure profilometry demonstrated no significant differences between MUCP in the transplanted group in comparison to the control group at day 28. CONCLUSION The present study demonstrates the successful endoscopic transplantation of myogenic cells into the urethral sphincter. The experiments indicated the key importance of precise cell administration in terms of their fate after the injection.
Collapse
Affiliation(s)
- Anna Burdzińska
- Department of Immunology, Medical University of Warsaw, Warsaw, Nowogrodzka, Poland.
| | | | | | | | | | | | | |
Collapse
|
33
|
Mabuchi Y, Morikawa S, Harada S, Niibe K, Suzuki S, Renault-Mihara F, Houlihan DD, Akazawa C, Okano H, Matsuzaki Y. LNGFR(+)THY-1(+)VCAM-1(hi+) cells reveal functionally distinct subpopulations in mesenchymal stem cells. Stem Cell Reports 2013; 1:152-65. [PMID: 24052950 PMCID: PMC3757748 DOI: 10.1016/j.stemcr.2013.06.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/31/2013] [Accepted: 06/03/2013] [Indexed: 12/31/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs), which conventionally are isolated based on their adherence to plastic, are heterogeneous and have poor growth and differentiation, limiting our ability to investigate their intrinsic characteristics. We report an improved prospective clonal isolation technique and reveal that the combination of three cell-surface markers (LNGFR, THY-1, and VCAM-1) allows for the selection of highly enriched clonogenic cells (one out of three isolated cells). Clonal characterization of LNGFR+THY-1+ cells demonstrated cellular heterogeneity among the clones. Rapidly expanding clones (RECs) exhibited robust multilineage differentiation and self-renewal potency, whereas the other clones tended to acquire cellular senescence via P16INK4a and exhibited frequent genomic errors. Furthermore, RECs exhibited unique expression of VCAM-1 and higher cellular motility compared with the other clones. The combination marker LNGFR+THY-1+VCAM-1hi+ (LTV) can be used selectively to isolate the most potent and genetically stable MSCs. The LNGFR+THY-1+ population is significantly enriched for CFU-Fs in human bone marrow Rapidly expanding clones (RECs) exhibited stem-like characteristics Expression of VCAM-1 correlated with proliferation and migration ability The combination marker LNGFR+THY-1+VCAM-1hi+ is useful for isolating multipotent MSCs
Collapse
Affiliation(s)
- Yo Mabuchi
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan ; Department of Biochemistry and Biophysics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Akizawa Y, Kanno H, Kawamichi Y, Matsuda Y, Ohta H, Fujii H, Matsui H, Saito K. Enhanced expression of myogenic differentiation factors and skeletal muscle proteins in human amnion-derived cells via the forced expression of MYOD1. Brain Dev 2013; 35:349-55. [PMID: 22727434 DOI: 10.1016/j.braindev.2012.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 05/12/2012] [Accepted: 05/21/2012] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Mesenchymal stem cells are expected to be an ideal cell source for cellular and gene therapy. We previously showed that cells derived from the human placenta can be induced to differentiate into myotubes in vitro and to express dystrophin in mdx/scid mice in vivo. In this study, we examined whether amnion-derived cells can be efficiently transduced and differentiated using lentiviral vectors carrying human MYOD1. METHODS The amnion-derived cells were isolated from human preterm placentas. They were transduced with the MYOD1 vector, and mRNA levels for MYOD1, MYF5, MYOG, MYH2 and DMD were determined by quantitative-reverse transcriptase-polymerase chain reaction, and also examined immunocytochemically. RESULTS Approximately 70% of amnion-derived cells were efficiently transduced by the lentiviral vectors. MYOD1 activates MYF5 and MYOG, MYH2 and DMD after a 7-day culture. The concerted upregulations of these myogenic regulatory factors enhanced MYH2 and DMD expressions. PAX7 was below the detectable level. Both myosin heavy chain and dystrophin were demonstrated by immunocytochemistry. CONCLUSIONS MYOD1 activates MYF5 and MYOG, the transcription factor genes essential for myogenic differentiation, and the concerted upregulation of these myogenic regulatory factors enhanced MYH2 and DMD expressions. The amniotic membrane is an immune-privileged tissue, making MYOD1-transduced amnion-derived cells an ideal cell source for cellular and gene therapy for muscle disorders. This is the first report showing that amnion-derived cells can be modified by exogenous genes using lentiviral vectors. Furthermore, MYOD1-transduced amnion-derived cells are capable of the dystrophin expression necessary for myogenic differentiation.
Collapse
Affiliation(s)
- Yoshika Akizawa
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW In recent years, stem cell therapy has been investigated as a promising approach for the treatment of stress urinary incontinence (SUI). This article reviews the biology of stem cells and their applications as a cell-based treatment for SUI. The current status and future direction of this forefront research in urinary incontinence are also examined. RECENT FINDINGS During the past decade, adult stem cells have been studied as a potential cell-based approach for the treatment of SUI. The results of current preclinical and clinical studies are presented. These studies demonstrated the improvement in histologic and functional outcomes with stem cell therapies for SUI. Adult stem cells may augment sphincter regeneration and also release trophic factors, promoting vessel and nerve integration into the generated tissues. So far, the findings of the clinical trials are less impressive than the results obtained with animal studies. SUMMARY Although stem cell therapy holds much promise for SUI, the clinical applications in patients have been slow to materialize. This challenge, together with the currently limited data on basic science studies and clinical trials, will undoubtedly stimulate new investigations in the near future.
Collapse
|
36
|
Zheng Z, Leng Y, Zhou C, Ma Z, Zhong Z, Shi XM, Zhang W. Effects of matrix metalloproteinase-1 on the myogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro. Biochem Biophys Res Commun 2012; 428:309-14. [PMID: 23085232 DOI: 10.1016/j.bbrc.2012.10.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 10/11/2012] [Indexed: 11/24/2022]
Abstract
Matrix metalloproteinase-1 (MMP-1) is a member of the family of zinc-dependent endopeptidases that are capable of degrading extracellular matrix (ECM) and certain non-matrix proteins. It has been shown that MMP-1 can enhance muscle regeneration by improving the differentiation and migration of myoblasts. However, it is still not known whether MMP-1 can promote the myogenesis of bone marrow-derived mesenchymal stem cells (BMSCs). To address this question, we isolated BMSCs from C57BL/6J mice and investigated the effects of MMP-1 on their proliferation and myogenic differentiation. Our results showed that MMP-1 treatment, which had no cytotoxic effects on BMSCs, increased the mRNA and protein levels of MyoD and desmin in a dose-dependent manner, indicating that MMP-1 promoted myogenic differentiation of BMSCs in vitro. These results suggest that BMSCs may have a therapeutic potential for treating muscular disorders.
Collapse
Affiliation(s)
- Zhenyang Zheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou 510080, Guangdong Province, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Myogenic potential of whole bone marrow mesenchymal stem cells in vitro and in vivo for usage in urinary incontinence. PLoS One 2012; 7:e45538. [PMID: 23029081 PMCID: PMC3448658 DOI: 10.1371/journal.pone.0045538] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 08/23/2012] [Indexed: 12/21/2022] Open
Abstract
Urinary incontinence, defined as the complaint of any involuntary loss of urine, is a pathological condition, which affects 30% females and 15% males over 60, often following a progressive decrease of rhabdosphincter cells due to increasing age or secondary to damage to the pelvic floor musculature, connective tissue and/or nerves. Recently, stem cell therapy has been proposed as a source for cell replacement and for trophic support to the sphincter. To develop new therapeutic strategies for urinary incontinence, we studied the interaction between mesenchymal stem cells (MSCs) and muscle cells in vitro; thereafter, aiming at a clinical usage, we analyzed the supporting role of MSCs for muscle cells in vitro and in in vivo xenotransplantation. MSCs can express markers of the myogenic cell lineages and give rise, under specific cell culture conditions, to myotube-like structures. Nevertheless, we failed to obtain mixed myotubes both in vitro and in vivo. For in vivo transplantation, we tested a new protocol to collect human MSCs from whole bone marrow, to get larger numbers of cells. MSCs, when transplanted into the pelvic muscles close to the external urethral sphincter, survived for a long time in absence of immunosuppression, and migrated into the muscle among fibers, and towards neuromuscular endplates. Moreover, they showed low levels of cycling cells, and did not infiltrate blood vessels. We never observed formation of cell masses suggestive of tumorigenesis. Those which remained close to the injection site showed an immature phenotype, whereas those in the muscle had more elongated morphologies. Therefore, MSCs are safe and can be easily transplanted without risk of side effects in the pelvic muscles. Further studies are needed to elucidate their integration into muscle fibers, and to promote their muscular transdifferentiation either before or after transplantation.
Collapse
|
38
|
Abstract
Urinary diversion after radical cystectomy in patients with bladder cancer normally takes the form of an ileal conduit or neobladder. However, such diversions are associated with a number of complications including increased risk of infection. A plausible alternative is the construction of a neobladder (or bladder tissue) in vitro using autologous cells harvested from the patient. Biomaterials can be used as a scaffold for naturally occurring regenerative stem cells to latch onto to regrow the bladder smooth muscle and epithelium. Such engineered tissues show great promise in urologic tissue regeneration, but are faced with a number of challenges. For example, the differentiation mesenchymal stem cells from various sources can be difficult and the smooth muscle cells formed do not precisely mimic the natural cells.
Collapse
|
39
|
Vaegler M, Lenis AT, Daum L, Amend B, Stenzl A, Toomey P, Renninger M, Damaser MS, Sievert KD. Stem cell therapy for voiding and erectile dysfunction. Nat Rev Urol 2012; 9:435-47. [PMID: 22710667 PMCID: PMC3769422 DOI: 10.1038/nrurol.2012.111] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Voiding dysfunction comprises a variety of disorders, including stress urinary incontinence and overactive bladder, and affects millions of men and women worldwide. Erectile dysfunction (ED) also decreases quality of life for millions of men, as well as for their partners. Advanced age and diabetes are common comorbidities that can exacerbate and negatively impact upon the development of these disorders. Therapies that target the pathophysiology of these conditions to halt progression are not currently available. However, stem cell therapy could fill this therapeutic void. Stem cells can reduce inflammation, prevent fibrosis, promote angiogenesis, recruit endogenous progenitor cells, and differentiate to replace damaged cells. Adult multipotent stem cell therapy, in particular, has shown promise in case reports and preclinical animal studies. Stem cells also have a role in urological tissue engineering for ex vivo construction of bladder wall and urethral tissue (using a patient's own cells) prior to transplantation. More recent studies have focused on bioactive factor secretion and homing of stem cells. In the future, clinicians are likely to utilize allogeneic stem cell sources, intravenous systemic delivery, and ex vivo cell enhancement to treat voiding dysfunction and ED.
Collapse
Affiliation(s)
- Martin Vaegler
- Department of Urology, University of Tuebingen, Hoppe-Seyler-Strasse 3, D72076 Tuebingen, Germany
| | - Andrew T Lenis
- The Cleveland Clinic, Case Western Reserve University School of Medicine, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Lisa Daum
- Department of Urology, University of Tuebingen, Hoppe-Seyler-Strasse 3, D72076 Tuebingen, Germany
| | - Bastian Amend
- Department of Urology, University of Tuebingen, Hoppe-Seyler-Strasse 3, D72076 Tuebingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University of Tuebingen, Hoppe-Seyler-Strasse 3, D72076 Tuebingen, Germany
| | - Patricia Toomey
- Department of Urology, University of Tuebingen, Hoppe-Seyler-Strasse 3, D72076 Tuebingen, Germany
| | - Markus Renninger
- Department of Urology, University of Tuebingen, Hoppe-Seyler-Strasse 3, D72076 Tuebingen, Germany
| | - Margot S Damaser
- The Cleveland Clinic, Case Western Reserve University School of Medicine, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Karl-Dietrich Sievert
- Department of Urology, University of Tuebingen, Hoppe-Seyler-Strasse 3, D72076 Tuebingen, Germany
| |
Collapse
|
40
|
Takamoto T, Ichinohe N, Tabata Y. Proliferation of rat mesenchymal stem cells in collagen sponges reinforced with poly(ethylene terephthalate) fibers by stirring culture method. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:1741-53. [PMID: 21943688 DOI: 10.1163/156856211x598184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective of this study is to investigate the effect of medium stirring conditions on the proliferation of rat mesenchymal stem cells (MSC) in collagen sponges reinforced by the incorporation of poly(ethylene terephthalate) (PET) fibers. A collagen solution with PET fibers homogeneously dispersed was freeze-dried, followed by dehydrothermal cross-linking to obtain a collagen sponge incorporating PET fibers. MSC were proliferated in the sponge by a stirring culture method. The PET fibers reinforcement significantly suppressed the sponge deformation in culture. The MSC proliferation was enhanced by the stirring culture to a significantly higher extent than that of a static one. Homogeneous distribution of cells proliferated was observed at the stirring rate of 50 rpm and compared with that at lower and higher rates. Combination of the PET fiber-reinforced sponge with the stirring culture method is a promising way to allow cells to homogeneously proliferate in the sponge.
Collapse
Affiliation(s)
- Tomoaki Takamoto
- a Department of Biomaterials , Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University , 53 Kawara-cho Shogoin , Sakyo-ku Kyoto , 606-8507 , Japan
| | | | | |
Collapse
|
41
|
Goldman HB, Sievert KD, Damaser MS. Will we ever use stem cells for the treatment of SUI? ICI-RS 2011. Neurourol Urodyn 2012; 31:386-9. [PMID: 22431263 DOI: 10.1002/nau.22217] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 01/12/2012] [Indexed: 12/12/2022]
Abstract
AIMS To review the current state of research in the use of stem cells (SCs) for stress urinary incontinence (SUI) and assess the likelihood of this becoming a relevant treatment option. METHODS The peer-reviewed literature consisting of relevant clinical and animal studies on the topic of SUI was surveyed and reviewed. RESULTS Animal studies have demonstrated the potential utility of SCs in promoting functional recovery of the urethra after simulated childbirth injury. Research in animals suggests similar urethral recovery after injection of bone marrow derived mesenchymal SC secretions as after injection of the SCs themselves. Therefore, whether the improvements result from the injection of the SCs themselves or from their secretion of specific proteins is unclear. Early clinical trials have demonstrated the feasibility and short-term safety of injecting muscle-derived SCs into the urethra to treat SUI. CONCLUSIONS Larger and longer-term clinical trials are needed. Nonetheless, efficacious SC-based therapy for the treatment of SUI is practical, achievable and should be available as a treatment modality in the near future.
Collapse
Affiliation(s)
- Howard B Goldman
- Section of Female Pelvic Medicine and Reconstructive Surgery, Glickman Urologic and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | |
Collapse
|
42
|
The efficiency of in vitro isolation and myogenic differentiation of MSCs derived from adipose connective tissue, bone marrow, and skeletal muscle tissue. In Vitro Cell Dev Biol Anim 2012; 48:203-15. [PMID: 22396125 DOI: 10.1007/s11626-012-9488-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/19/2012] [Indexed: 12/19/2022]
Abstract
The objective of the study is to evaluate efficiency of in vitro isolation and myogenic differentiation of mesenchymal stem cells (MSCs) derived from adipose connective tissue (AD-MSCs), bone marrow (BM-MSCs), and skeletal muscle tissue (MC-MSCs). MSCs were isolated from adipose connective tissue, bone marrow, and skeletal muscle tissue of two adult 6-wk-old rats. Cultured MSCs were treated with 5-azacytidine (AZA) to induce myogenic differentiation. Isolated MSCs and differentiated cells were evaluated by immunocytochemistry (ICC), fluorescence-activated cell sorting (FACS), PCR, and RT-PCR. AD-MSCs showed the highest proliferation rate while BM-MSCs had the lowest one. In ICC, isolated MSCs had strong CD90- and CD44-positive expression and negative expression of CD45, CD31, and CD34, while AZA-treated MSCs had strong positive desmin expression. In FACS analysis, AD-MSCs had the highest percentage of CD90- and CD44-positive-expressing cells (99% and 96%) followed by BM-MSCs (97% and 94%) and MC-MSCs (92% and 91%).At 1 wk after incubation with AZA treatment, the peak of myogenin expression reached 93% in differentiated MC-MSCs, 83.3% in BM-MSCs, and 77% in AD-MSCs. MSCs isolated from adipose connective tissue, bone marrow, and skeletal muscle tissue have the same morphology and phenotype, but AD-MSCs were the most easily accessible and had the highest rate of growth on cultivation and the highest percentage of stem cell marker expression. Moreover, although MC-MSCs showed the highest rate of myogenic differentiation potential and expression of myoblast markers, AD-MSCs and BM-MSCs still can be valuable alternatives. The differentiated myoblastic cells could be an available new choice for myoblastic auto-transplantation in regeneration medicine.
Collapse
|
43
|
Imamura T, Ishizuka O, Nishizawa O. Autologous Bone Marrow-Derived Cells Regenerate Urethral Sphincters. Low Urin Tract Symptoms 2012; 4 Suppl 1:87-94. [PMID: 26676706 DOI: 10.1111/j.1757-5672.2011.00136.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Regenerative medicine based on tissue engineering and/or stem cell therapy techniques has the potential to improve irreversibly damaged tissues. Surgical injury to the lower urinary tract can occur as a result of radical prostatectomy or bladder neck surgery. Regeneration of urethral sphincters could be an effective treatment for post-surgical intrinsic sphincter deficiency (ISD)-related urinary incontinence. The replacement, enhancement, and/or recovery the urethral sphincter striated and smooth muscles could increase urethral closure pressure to help patients regain continence. Stem cells from muscle-derived satellite or adipose-derived mesenchymal cells provide temporary improvement in urethral closure pressure but do not reconstruct the muscle layer structures. Our strategy to accomplish regeneration of urethral sphincters is the utilization of autologous bone marrow-derived cells. We have developed a freeze injury model of ISD in rabbits. Freezing of the urinary sphincter causes loss of the majority of striated and smooth muscle cells, and causes a significant decrease in leak point pressure. In this review, we show that the autologous bone marrow-derived cells implanted within the freeze-injured sphincters differentiate into striated or smooth muscle cells. These cells then develop to reconstitute muscle layer structures within the sphincter. Furthermore, the leak point pressure of cell-implanted rabbits is significantly higher than that of cell-free injected controls. We conclude that implantation of autologous bone marrow-derived cells could be an effective treatment for human post-surgical ISD-related urinary incontinence.
Collapse
Affiliation(s)
- Tetsuya Imamura
- Department of Lower Urinary Tract Medicine, Shinshu University School of Medicine, Nagano, JapanDepartment of Urology, Shinshu University School of Medicine, Nagano, Japan
| | - Osamu Ishizuka
- Department of Lower Urinary Tract Medicine, Shinshu University School of Medicine, Nagano, JapanDepartment of Urology, Shinshu University School of Medicine, Nagano, Japan
| | - Osamu Nishizawa
- Department of Lower Urinary Tract Medicine, Shinshu University School of Medicine, Nagano, JapanDepartment of Urology, Shinshu University School of Medicine, Nagano, Japan
| |
Collapse
|
44
|
Sitasuwan P, Andrew Lee L, Bo P, Davis EN, Lin Y, Wang Q. A plant virus substrate induces early upregulation of BMP2 for rapid bone formation. Integr Biol (Camb) 2012; 4:651-60. [DOI: 10.1039/c2ib20041d] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Dissaranan C, Cruz MA, Couri BM, Goldman HB, Damaser MS. Stem cell therapy for incontinence: where are we now? What is the realistic potential? Curr Urol Rep 2011; 12:336-44. [PMID: 21842258 PMCID: PMC3218558 DOI: 10.1007/s11934-011-0210-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A significant number of women experience stress urinary incontinence (SUI), which greatly affects their quality of life. Recent research investigating utilization of stem cells and their derivatives for the prevention and treatment of SUI has been performed to test the effect of cell source and method of administration in several animal models of SUI. The type of stem cell, timing of optimal dose or doses after injury, mechanism of action of stem cells, and route of administration must be investigated both preclinically and clinically before stem cell therapy becomes a possible treatment for SUI, although the future of this therapy looks promising. This article reviews the progress in stem cell research for incontinence and describes areas of future work as suggested by research in other fields.
Collapse
Affiliation(s)
- Charuspong Dissaranan
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Michelle A. Cruz
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Biomedical Engineering, Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH 44195, USA
| | - Bruna M. Couri
- Department of Obstetrics and Gynecology, Cleveland Clinic, Cleveland, OH 44105, USA
| | - Howard B. Goldman
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Margot S. Damaser
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Biomedical Engineering, Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH 44195, USA
- Louis Stokes Cleveland Department of Veterans Administration Medical Center, Advanced Platform Technology Center, Cleveland, OH 44106, USA
| |
Collapse
|
46
|
Gong X, Hou L, Bai C, Jin D, He X, Guan W, Ma Y. Isolation and biological characteristics of chicken adipose-derived progenitor cells. DNA Cell Biol 2011; 30:453-60. [PMID: 21651420 DOI: 10.1089/dna.2010.1154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Adipose-derived stem cells/adipose-derived progenitor cells (ADPCs) are multipotent stem cells that can differentiate in vitro into many cell types. However, the vast majority of experimental materials were obtained from human, mouse, rabbit, and other mammals but rarely from poultry. In this study, ADPCs were isolated from 1-day-old chicks. Primary ADPCs were subcultured to passage 15. The surface markers of ADPCs, CD29, CD44, CD71, and CD73, were detected by immunofluorescence and RT-polymerase chain reaction assays. The growth curves of different passages were all typically sigmoidal. In addition, ADPCs of different passages were successfully induced to differentiate into osteoblasts, adipocytes, and myocardial cells. The results suggest that the ADPCs isolated from chicken possess similar biological characteristics with those derived from other species, and their multilineage differentiation provides many potential applications.
Collapse
Affiliation(s)
- Xuelian Gong
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Feil G, Daum L, Amend B, Maurer S, Renninger M, Vaegler M, Seibold J, Stenzl A, Sievert KD. From tissue engineering to regenerative medicine in urology--the potential and the pitfalls. Adv Drug Deliv Rev 2011; 63:375-8. [PMID: 21167237 DOI: 10.1016/j.addr.2010.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/01/2010] [Accepted: 12/07/2010] [Indexed: 01/18/2023]
Abstract
Tissue engineering is a promising technique for the development of biological substitutes that can restore, maintain, or improve tissue function. The creation of human tissue-engineered products, generated of autologous somatic cells or adult stem cells with or without seeding of biocompatible matrices is a vision to resolve the lack of tissues and organs for transplantation and to offer new options for reconstructive surgery. Tissue engineering in urology aims at the reconstruction of the urinary tract by creating anatomically and functionally equal tissue. It is a rapidly evolving field in basic research and the transfer into the clinic has yet to be realized. Necessary steps from bench to bed are the proof of principle in animal models and the proof of concept in clinical trials following good manufacturing practice and ethical and legal requirements for human tissue-engineered products. Up to now, obstacles still occur in the neovascularization of implants and ingrowth of nerves in vivo. Moreover the harvesting of mesenchymal stem cells out of bone marrow as well as the explant of urothelial cells yet demands rather invasive surgery to achieve a successful outcome. Thus, other cell sources and harvesting techniques like placenta and adipose tissue for mesenchymal stem cells and bladder irrigation for urothelial cells require closer investigation.
Collapse
|
48
|
Wang HJ, Chuang YC, Chancellor MB. Development of cellular therapy for the treatment of stress urinary incontinence. Int Urogynecol J 2011; 22:1075-83. [PMID: 21505907 DOI: 10.1007/s00192-011-1432-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 04/04/2011] [Indexed: 12/16/2022]
Abstract
Stress urinary incontinence (SUI) is highly prevalent and associated with a reduced quality of life. An intact rhabdosphincter at the mid-urethra is mandatory to maintain urinary continence. Adult stem cell injection therapy for the regenerative repair of an impaired sphincter is currently at the forefront of incontinence research. The implanted cells will fuse with muscle and release trophic factors promoting nerve and muscle integration. Hereby, we review the use of mesenchymal stem cell therapy for SUI and the experience with the development of muscle-derived stem cells.
Collapse
Affiliation(s)
- Hung-Jen Wang
- Department of Urology, Chang Gung Memorial Hospital Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | |
Collapse
|
49
|
Abstract
Stress urinary incontinence (SUI) is highly prevalent. As of now, there is no minimally invasive long-term treatment available. Adult stem cells are nonimmunogenic and have the ability to self-renew and to differentiate into multiple cell types. Over the past decade, in vivo studies have described periurethral injections of adult-derived stem cells for the treatment of SUI. The ultimate goal has been to achieve a permanent cure for SUI by restoration of the intrinsic and extrinsic urethral sphincter and the surrounding connective tissue, including peripheral nerves and blood vessels. For this purpose, future studies need to focus on delivery systems, cell survival, and functional improvement of the urethral closure mechanism, including improvement of innervation and vascularization.
Collapse
Affiliation(s)
- Andrea Staack
- UCLA School of Medicine, 200 Medical Plaza, Suite 240, Los Angeles, CA 90095 USA
| | - Larissa V. Rodríguez
- UCLA School of Medicine, 200 Medical Plaza, Suite 240, Los Angeles, CA 90095 USA
| |
Collapse
|
50
|
Culture media for the differentiation of mesenchymal stromal cells. Acta Biomater 2011; 7:463-77. [PMID: 20688199 DOI: 10.1016/j.actbio.2010.07.037] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 07/20/2010] [Accepted: 07/27/2010] [Indexed: 02/08/2023]
Abstract
Mesenchymal stromal cells (MSCs) can be isolated from various tissues such as bone marrow aspirates, fat or umbilical cord blood. These cells have the ability to proliferate in vitro and differentiate into a series of mesoderm-type lineages, including osteoblasts, chondrocytes, adipocytes, myocytes and vascular cells. Due to this ability, MSCs provide an appealing source of progenitor cells which may be used in the field of tissue regeneration for both research and clinical purposes. The key factors for successful MSC proliferation and differentiation in vitro are the culture conditions. Hence, we here summarize the culture media and their compositions currently available for the differentiation of MSCs towards osteogenic, chondrogenic, adipogenic, endothelial and vascular smooth muscle phenotypes. However, optimal combination of growth factors, cytokines and serum supplements and their concentration within the media is essential for the in vitro culture and differentiation of MSCs and thereby for their application in advanced tissue engineering.
Collapse
|