1
|
Abdalbagemohammedabdalsadeg S, Xiao BL, Ma XX, Li YY, Wei JS, Moosavi-Movahedi AA, Yousefi R, Hong J. Catalase immobilization: Current knowledge, key insights, applications, and future prospects - A review. Int J Biol Macromol 2024; 276:133941. [PMID: 39032907 DOI: 10.1016/j.ijbiomac.2024.133941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Catalase (CAT), a ubiquitous enzyme in all oxygen-exposed organisms, effectively decomposes hydrogen peroxide (H2O2), a harmful by-product, into water and oxygen, mitigating oxidative stress and cellular damage, safeguarding cellular organelles and tissues. Therefore, CAT plays a crucial role in maintaining cellular homeostasis and function. Owing to its pivotal role, CAT has garnered considerable interest. However, many challenges arise when used, especially in multiple practical processes. "Immobilization", a widely-used technique, can help improve enzyme properties. CAT immobilization offers numerous advantages, including enhanced stability, reusability, and facilitated downstream processing. This review presents a comprehensive overview of CAT immobilization. It starts with discussing various immobilization mechanisms, support materials, advantages, drawbacks, and factors influencing the performance of immobilized CAT. Moreover, the review explores the application of the immobilized CAT in various industries and its prospects, highlighting its essential role in diverse fields and stimulating further research and investigation. Furthermore, the review highlights some of the world's leading companies in the field of the CAT industry and their substantial potential for economic contribution. This review aims to serve as a discerning, source of information for researchers seeking a comprehensive cutting-edge overview of this rapidly evolving field and have been overwhelmed by the size of publications.
Collapse
Affiliation(s)
| | - Bao-Lin Xiao
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Xin-Xin Ma
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Yang-Yang Li
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Jian-She Wei
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | | | - Reza Yousefi
- Institute of Biochemistry and Biophysics, University of Tehran, 1417614418 Tehran, Iran
| | - Jun Hong
- School of Life Sciences, Henan University, 475000 Kaifeng, China.
| |
Collapse
|
2
|
Li Q, Chen Z, Zhang L, Wei W, Song E, Song Y. Silicon dioxide nanoparticles adsorption alters the secondary and tertiary structures of catalase and undermines its activity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121601. [PMID: 37031852 DOI: 10.1016/j.envpol.2023.121601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
The expanding production and use of nanomaterials in various fields caused big concern for human health. Oxidative stress is the most frequently described mechanism of nanomaterial toxicity. A state of oxidative stress can be defined as the imbalance of reactive oxygen species (ROS) production and antioxidant enzyme activities. Although nanomaterials-triggered ROS generation has been extensively investigated, little is known regarding the regulation of antioxidant enzyme activities by nanomaterials. This study used two typical nanomaterials, SiO2 nanoparticles (NPs) and TiO2 NPs, to predict their binding affinities and interactions with antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD). The molecular docking results showed that CAT and SOD had different binding sites, binding affinity, and interaction modes with SiO2 NPs and TiO2 NPs. The binding affinities of the two NPs to CAT were more potent than those to SOD. Consistently, the experimental work indicated NPs adsorption caused the perturbation of the second and tertiary structures of both enzymes and thus resulted in the loss of enzyme activities.
Collapse
Affiliation(s)
- Qiong Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhangde Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lihui Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; School of Pharmaceutical Sciences, Tongren Polytechnic College, Tongren, Guizhou, 554300, China
| | - Wei Wei
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
3
|
Baral B, Nial PS, Subudhi U. Enhanced enzymatic activity and conformational stability of catalase in presence of tetrahedral DNA nanostructures: A biophysical and kinetic study. Int J Biol Macromol 2023; 242:124677. [PMID: 37141969 DOI: 10.1016/j.ijbiomac.2023.124677] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/07/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
The emergence of DNA nanotechnology has shown enormous potential in a vast array of applications, particularly in the medicinal and theranostics fields. Nevertheless, the knowledge of the compatibility between DNA nanostructures and cellular proteins is largely unknown. Herein, we report the biophysical interaction between proteins (circulatory protein bovine serum albumin, BSA, and the cellular enzyme bovine liver catalase, BLC) and tetrahedral DNA (tDNAs), which are well-known nanocarriers for therapeutics. Interestingly, the secondary conformation of BSA or BLC was unaltered in the presence of tDNAs which supports the biocompatible property of tDNA. In addition, thermodynamic studies showed that the binding of tDNAs with BLC has a stable non-covalent interaction via hydrogen bond and van der Waals contact, which is indicative of a spontaneous reaction. Furthermore, the catalytic activity of BLC was increased in the presence of tDNAs during 24 h of incubation. These findings indicate that the presence of tDNA nanostructures not only ensures a steady secondary conformation of proteins, but also stabilize the intracellular proteins like BLC. Surprisingly, our investigation discovered that tDNAs have no effect on albumin proteins, either by interfering or by adhering to the extracellular proteins. These findings will aid in the design of future DNA nanostructures for biomedical applications by increasing the knowledge on the biocompatible interaction of tDNAs with biomacromolecules.
Collapse
Affiliation(s)
- Bineeth Baral
- DNA Nanotechnology & Application Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; School of Biological Sciences, Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Partha S Nial
- DNA Nanotechnology & Application Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; School of Biological Sciences, Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Umakanta Subudhi
- DNA Nanotechnology & Application Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; School of Biological Sciences, Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Piorecka K, Kurjata J, Stanczyk WA. Acriflavine, an Acridine Derivative for Biomedical Application: Current State of the Art. J Med Chem 2022; 65:11415-11432. [PMID: 36018000 PMCID: PMC9469206 DOI: 10.1021/acs.jmedchem.2c00573] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Acriflavine (ACF) has been known for years as an antibacterial
drug. The identification of key oncogenic mechanisms has brought,
in recent years, a significant increase in studies on ACF as a multipurpose
drug that would improve the prognosis for cancer patients. ACF interferes
with the expression of the hypoxia inducible factor, thus acting on
metastatic niches of tumors and significantly enhancing the effects
of other anticancer therapies. It has been recognized as the most
potent HIF-1 inhibitor out of the 336 drugs approved by the FDA. This
work presents up-to-date knowledge about the mechanisms of action
of ACF and its related prodrug systems in the context of anticancer
and SARS-CoV-2 inhibitory properties. It explains the multitask nature
of this drug and suggests mechanisms of ACF’s action on the
coronavirus. Other recent reports on ACF-based systems as potential
antibacterial and antiviral drugs are also described.
Collapse
Affiliation(s)
- Kinga Piorecka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences,Sienkiewicza 112, 90-363 Lodz, Poland
| | - Jan Kurjata
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences,Sienkiewicza 112, 90-363 Lodz, Poland
| | - Wlodzimierz A Stanczyk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences,Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
5
|
Baral B, Dutta J, Subudhi U. Biophysical interaction between self-assembled branched DNA nanostructures with bovine serum albumin and bovine liver catalase. Int J Biol Macromol 2021; 177:119-128. [PMID: 33609575 DOI: 10.1016/j.ijbiomac.2021.02.095] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/30/2021] [Accepted: 02/13/2021] [Indexed: 12/15/2022]
Abstract
Branched DNA (bDNA) nanostructures have emerged as self-assembled biomaterials and are being considered for biomedical applications. Herein, we report the biophysical interaction between self-assembled bDNA nanostructure with circulating protein bovine serum albumin (BSA) and cellular enzyme bovine liver catalase (BLC). The binding between bDNA and BSA or BLC was confirmed through the decrease in fluorescence spectra. The Stern-Volmer data supports for non-covalent bonding with ~1 binding site in case of BSA and BLC thus advocating a static binding. Furthermore, FTIR and ITC study confirmed the binding of bDNAs with proteins through hydrogen bonding and van der Waals interaction. The negative free energy observed in ITC represent spontaneous reaction for BLC-bDNA interaction. The biophysical interaction between bDNA nanostructures and proteins was also supported by DLS and zeta potential measurement. With an increase in bDNA concentrations up to 100 nM, no significant change in absorbance and CD spectra was observed for both BLC and BSA which suggests structural stability and unaffected secondary conformation of proteins in presence of bDNA. Furthermore, the catalytic activity of BLC was unaltered in presence of bDNAscr even with increasing the incubation period from 1 h to 24 h. Interestingly, the time-dependent decrease in activity of BLC was protected by bDNAmix. The thermal melting study suggests a higher Tm value for proteins in presence of bDNAmix which demonstrates that interaction with bDNAmix increases the thermal stability of proteins. Collectively these data suggest that self-assembled DNA nanostructure may bind to BSA for facilitating circulation in plasma or binding to intracellular proteins like BLC for stabilization, however the secondary conformation of protein or catalytic activity of enzyme is unaltered in presence of bDNA nanostructure. Thus, the newly established genomic sequence-driven self-assembled DNA nanostructure can be explored for in vitro or in vivo experimental work in recent future.
Collapse
Affiliation(s)
- Bineeth Baral
- DNA Nanotechnology & Application Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Juhi Dutta
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Umakanta Subudhi
- DNA Nanotechnology & Application Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
6
|
Samal RR, Mishra M, Subudhi U. Differential interaction of cerium chloride with bovine liver catalase: A computational and biophysical study. CHEMOSPHERE 2020; 239:124769. [PMID: 31526997 DOI: 10.1016/j.chemosphere.2019.124769] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 07/25/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
In this study, Cerium chloride-induced conformational changes of Bovine Liver Catalase (BLC) has been investigated by molecular docking and further supported by various biophysical techniques. The temporal change of catalytic activity of BLC has also been studied in presence of Ce(III) with different buffer solution in vitro at 25 °C. The differential binding of Ce(III) to BLC observed by simulation study was well supported by the differential regulation of BLC activity in different buffers. After 1 h of incubation with CeCl3, the reduction in activity of BLC was maximum in MOPS, HEPES and Tris buffer, whereas no change in activity was noticed in phosphate buffer. Isothermal Titration Calorimetric (ITC) study also supports the differential binding of Ce(III) to BLC in different buffers. Ce(III)-induced conformational transition in BLC was followed as a function of concentration. Nevertheless, with 24 h incubation of CeCl3 the activity of BLC was highest with higher molar concentration of CeCl3 suggesting the conformational stability of BLC in presence of Ce(III). The compromised activity of BLC in response to Ce(III) is due to the induced conformational change and the degree of change in secondary conformation of BLC was maximum in MOPS, HEPES and Tris and least in phosphate buffer. Therefore, the reduced activity of BLC is controlled by the direct interaction of Ce(III) in the active site of BLC in Tris buffer or indirect interaction of Ce(III) in the non-active site of BLC in MOPS and HEPES buffer.
Collapse
Affiliation(s)
- Rashmi R Samal
- CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, 751 013, India; Academy of Scientific & Innovative Research (AcSIR), New Delhi, 110025, India
| | - Madhusmita Mishra
- CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, 751 013, India
| | - Umakanta Subudhi
- CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, 751 013, India; Academy of Scientific & Innovative Research (AcSIR), New Delhi, 110025, India.
| |
Collapse
|
7
|
Huang XN, Du XY, Xing JF, Ge ZQ. Catalase-only nanoparticles prepared by shear alone: Characteristics, activity and stability evaluation. Int J Biol Macromol 2015; 90:81-8. [PMID: 26318217 DOI: 10.1016/j.ijbiomac.2015.08.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/24/2015] [Indexed: 12/21/2022]
Abstract
Catalase is a promising therapeutic enzyme; however, it carries risks of inactivation and rapid degradation when it is used in practical bioprocess, such as delivery in vivo. To overcome the issue, we made catalase-only nanoparticles using shear stress alone at a moderate shear rate of 217s(-1) in a coaxial cylinder flow cell. Properties of nanoparticles, including particle size, polydispersity index and zeta potential, were characterized. The conformational changes of pre- and post-sheared catalase were determined using spectroscopy techniques. The results indicated that the conformational changes of catalase and reduction in α-helical content caused by shear alone were less significant than that by desolvation method. Catalase-only nanoparticles prepared by single shear retained over 90% of its initial activity when compared with the native catalase. Catalase nanoparticles lost only 20% of the activity when stored in phosphate buffer solution for 72h at 4°C, whereas native catalase lost 53% under the same condition. Especially, the activity of nanogranulated catalase was decreased only slightly in the simulated intestinal fluid containing α-chymotrypsin during 4h incubation at 37°C, implying that the catalase nanoparticle was more resistant to the degradation of proteases than native catalase molecules. Overall, catalase-only nanoparticles offered a great potential to stabilize enzymes for various pharmaceutical applications.
Collapse
Affiliation(s)
- Xiao-Nan Huang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Education Ministry Key Laboratory of Systems Bioengineering, Tianjin 300072, PR China
| | - Xin-Ying Du
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Education Ministry Key Laboratory of Systems Bioengineering, Tianjin 300072, PR China
| | - Jin-Feng Xing
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Education Ministry Key Laboratory of Systems Bioengineering, Tianjin 300072, PR China
| | - Zhi-Qiang Ge
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Education Ministry Key Laboratory of Systems Bioengineering, Tianjin 300072, PR China.
| |
Collapse
|
8
|
Inhibitory effects of deferasirox on the structure and function of bovine liver catalase: a spectroscopic and theoretical study. J Biomol Struct Dyn 2015; 33:2255-66. [DOI: 10.1080/07391102.2014.999353] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Persinoti GF, de Aguiar Peres NT, Jacob TR, Rossi A, Vêncio RZ, Martinez-Rossi NM. RNA-sequencing analysis of Trichophyton rubrum transcriptome in response to sublethal doses of acriflavine. BMC Genomics 2014; 15 Suppl 7:S1. [PMID: 25573029 PMCID: PMC4243288 DOI: 10.1186/1471-2164-15-s7-s1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The dermatophyte Trichophyton rubrum is an anthropophilic filamentous fungus that infects keratinized tissues and is the most common etiologic agent isolated in human dermatophytoses. The clinical treatment of these infections is challenging because only few antifungal drugs are commercially available. To understand the mode of action of cytotoxic drugs against fungi, we evaluated the time-dependent effects of acriflavine on T. rubrum transcriptome using high-throughput RNA-sequencing (RNA-seq) technology. RESULTS RNA-seq analysis generated approximately 200 million short reads that were mapped to the Broad Institute's Dermatophyte Comparative Database before differential gene expression analysis was performed. By employing a stringent cut-off threshold of -1.5 and 1.5 log₂-fold changes in gene expression, a subset of 490 unique genes were found to be modulated in T. rubrum in response to acriflavine exposure. Among the selected genes, 69 genes were modulated at all exposure time points. Functional categorization indicated the putative involvement of these genes in various cellular processes such as oxidation-reduction reaction, transmembrane transport, and metal ion binding. Interestingly, genes putatively involved in the pathogenicity of dermatophytoses were down-regulated suggesting that this drug interferes with the virulence of T. rubrum. Moreover, we identified 159 novel putative transcripts in intergenic regions and two transcripts in intron regions of T. rubrum genome. CONCLUSION The results provide insights into the molecular events underlying the stress responses of T. rubrum to acriflavine, revealing that this drug interfered with important molecular events involved in the establishment and maintenance of fungal infection in the host. In addition, the identification of novel transcripts will further enable the improvement of gene annotation and open reading frame prediction of T. rubrum and other dermatophyte genomes.
Collapse
|
10
|
Zhang HM, Cao J, Tang BP, Wang YQ. Effect of TiO2 nanoparticles on the structure and activity of catalase. Chem Biol Interact 2014; 219:168-74. [DOI: 10.1016/j.cbi.2014.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 05/28/2014] [Accepted: 06/03/2014] [Indexed: 12/26/2022]
|
11
|
Pal S, Dey SK, Saha C. Inhibition of catalase by tea catechins in free and cellular state: a biophysical approach. PLoS One 2014; 9:e102460. [PMID: 25025898 PMCID: PMC4099323 DOI: 10.1371/journal.pone.0102460] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/19/2014] [Indexed: 01/04/2023] Open
Abstract
Tea flavonoids bind to variety of enzymes and inhibit their activities. In the present study, binding and inhibition of catalase activity by catechins with respect to their structure-affinity relationship has been elucidated. Fluorimetrically determined binding constants for (-)-epigallocatechin gallate (EGCG) and (-)-epicatechin gallate (ECG) with catalase were observed to be 2.27×106 M(-1) and 1.66×106 M(-1), respectively. Thermodynamic parameters evidence exothermic and spontaneous interaction between catechins and catalase. Major forces of interaction are suggested to be through hydrogen bonding along with electrostatic contributions and conformational changes. Distinct loss of α-helical structure of catalase by interaction with EGCG was captured in circular dichroism (CD) spectra. Gallated catechins demonstrated higher binding constants and inhibition efficacy than non-gallated catechins. EGCG exhibited maximum inhibition of pure catalase. It also inhibited cellular catalase in K562 cancer cells with significant increase in cellular ROS and suppression of cell viability (IC50 54.5 µM). These results decipher the molecular mechanism by which tea catechins interact with catalase and highlight the potential of gallated catechin like EGCG as an anticancer drug. EGCG may have other non-specific targets in the cell, but its anticancer property is mainly defined by ROS accumulation due to catalase inhibition.
Collapse
Affiliation(s)
- Sandip Pal
- Department of Biotechnology, West Bengal University of Technology, Kolkata, West Bengal, India
| | - Subrata Kumar Dey
- Department of Biotechnology, West Bengal University of Technology, Kolkata, West Bengal, India
| | - Chabita Saha
- Department of Biotechnology, West Bengal University of Technology, Kolkata, West Bengal, India
| |
Collapse
|
12
|
Elibol-Can B, Jakubowska-Dogru E, Severcan M, Severcan F. The Effects of Short-Term Chronic Ethanol Intoxication and Ethanol Withdrawal on the Molecular Composition of the Rat Hippocampus by FT-IR Spectroscopy. Alcohol Clin Exp Res 2011; 35:2050-62. [DOI: 10.1111/j.1530-0277.2011.01556.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|