1
|
Cheng Y, Liu H, Li J, Ma Y, Song C, Wang Y, Li P, Chen Y, Zhang Z. Evaluation of culture conditions for osteoclastogenesis in RAW264.7 cells. PLoS One 2022; 17:e0277871. [PMID: 36395187 PMCID: PMC9671299 DOI: 10.1371/journal.pone.0277871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/11/2022] [Indexed: 11/18/2022] Open
Abstract
Osteoclasts are the only multinucleated cells in vivo responsible for bone resorption and are vital for regulating bone remodeling and maintaining bone mass. The RAW264.7 cell line is widely used to study osteoclastic differentiation and biological molecular mechanism. However, protocols for inducing osteoclast formation in RAW264.7 cells vary considerably between laboratories, hindering the replication of results. Therefore, we tested the influence of culture conditions on osteoclast differentiation, including cell density and receptor activator of nuclear factor kappa-B ligand (RANKL) concentrations with or without macrophage colony-stimulating factors (M-CSF). Tartrate-resistant acid phosphatase (TRAP) staining was used to detect the morphology of osteoclasts. qPCR was used to detect gene expression of osteoclast-specific gene marker cathepsin K (CTSK), osteoclast transcription factors c-Fos and nuclear factor of activated T cells, cytoplasmic 1 (NFATc1). The bone resorption function was evaluated by a scanning electron microscope (SEM). RANKL treatment increased multinucleated osteoclasts formation and increased CTSK, c-Fos and NFATc1 gene expression. Compared with RANKL treatment, M-CSF significantly decreased multinucleated osteoclasts formation, reduced CTSK gene expression and had little effect on c-Fos and NFATc1 gene expression. Concerning bone resorption activity, RANKL treatment increased bone resorption pits on bovine bone slices. Significantly higher levels of osteoclastogenesis were observed with RAW264.7-cell density of 2×104 cells/well in 24-well plates. Our results suggest that the addition of 50 ng/ml M-CSF has no positive effect on osteoclastogenesis. RANKL treatment and cell density contribute to osteoclast formation, and the optimal conditions are beneficial when exploring osteoclast function and mechanism.
Collapse
Affiliation(s)
- Yin Cheng
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haixia Liu
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China
| | - Yujie Ma
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
| | - Changheng Song
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhan Wang
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pei Li
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanjing Chen
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
- * E-mail: (ZZ); (YC)
| | - Zhiguo Zhang
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
- * E-mail: (ZZ); (YC)
| |
Collapse
|
2
|
Wang Q, Wang H, Yan H, Tian H, Wang Y, Yu W, Dai Z, Chen P, Liu Z, Tang R, Jiang C, Fan S, Liu X, Lin X. Suppression of osteoclast multinucleation via a posttranscriptional regulation-based spatiotemporally selective delivery system. SCIENCE ADVANCES 2022; 8:eabn3333. [PMID: 35767605 PMCID: PMC9242458 DOI: 10.1126/sciadv.abn3333] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Redundancy of multinucleated mature osteoclasts, which results from the excessive fusion of mononucleated preosteoclasts (pOCs), leads to osteolytic diseases such as osteoporosis. Unfortunately, the currently available clinical drugs completely inhibit osteoclasts, thus interfering with normal physiological bone turnover. pOC-specific regulation may be more suitable for maintaining bone homeostasis. Here, circBBS9, a previously unidentified circular RNA, was found to exert regulatory effects via the circBBS9/miR-423-3p/Traf6 axis in pOCs. To overcome the long-standing challenge of spatiotemporal RNA delivery to cells, we constructed biomimetic nanoparticles to achieve the pOC-specific targeted delivery of circBBS9. pOC membranes (POCMs) were extracted to camouflage cationic polymer for RNA interference with circBBS9 (POCM-NPs@siRNA/shRNAcircBBS9). POCM-NPs endowed the nanocarriers with improved stability, accurate pOC targeting, fusogenic uptake, and reactive oxygen species-responsive release. In summary, our findings may provide an alternative strategy for multinucleated cell-related diseases that involves restriction of mononucleated cell multinucleation through a spatiotemporally selective delivery system.
Collapse
Affiliation(s)
- Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Haoli Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Huige Yan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Hongsen Tian
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Yining Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Wei Yu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Zhanqiu Dai
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Zhaoming Liu
- Department of Chemistry and Center for Biomaterials and Biopathways, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ruikang Tang
- Department of Chemistry and Center for Biomaterials and Biopathways, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Chao Jiang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
- Corresponding author. (S.F.); (X.L.); (X.L.)
| | - Xin Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
- Corresponding author. (S.F.); (X.L.); (X.L.)
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
- Corresponding author. (S.F.); (X.L.); (X.L.)
| |
Collapse
|
3
|
Dissociation of Bone Resorption and Formation in Spaceflight and Simulated Microgravity: Potential Role of Myokines and Osteokines? Biomedicines 2022; 10:biomedicines10020342. [PMID: 35203551 PMCID: PMC8961781 DOI: 10.3390/biomedicines10020342] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
The dissociation of bone formation and resorption is an important physiological process during spaceflight. It also occurs during local skeletal unloading or immobilization, such as in people with neuromuscular disorders or those who are on bed rest. Under these conditions, the physiological systems of the human body are perturbed down to the cellular level. Through the absence of mechanical stimuli, the musculoskeletal system and, predominantly, the postural skeletal muscles are largely affected. Despite in-flight exercise countermeasures, muscle wasting and bone loss occur, which are associated with spaceflight duration. Nevertheless, countermeasures can be effective, especially by preventing muscle wasting to rescue both postural and dynamic as well as muscle performance. Thus far, it is largely unknown how changes in bone microarchitecture evolve over the long term in the absence of a gravity vector and whether bone loss incurred in space or following the return to the Earth fully recovers or partly persists. In this review, we highlight the different mechanisms and factors that regulate the humoral crosstalk between the muscle and the bone. Further we focus on the interplay between currently known myokines and osteokines and their mutual regulation.
Collapse
|
4
|
Dellago B, Ricke A, Geyer T, Liska R, Baudis S. Photopolymerizable precursors for degradable biomaterials based on acetal moieties. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Quan J, Hou Y, Long W, Ye S, Wang Z. Characterization of different osteoclast phenotypes in the progression of bone invasion by oral squamous cell carcinoma. Oncol Rep 2017; 39:1043-1051. [PMID: 29286135 PMCID: PMC5802026 DOI: 10.3892/or.2017.6166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 12/05/2017] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to characterize different phenotypes of osteoclasts in the progression of bone invasion by oral squamous cell carcinoma (OSCC). A local bone invasion model of OSCC was established by injecting SCC25 human OSCC cells into the center of calvariae in nude mice, and all mice were found to have a typical bone resorption area. Staining for tartrate-resistant acid phosphatase (TRAP) revealed various types of giant osteoclasts in the tumour-bone interface. Bone marrow cells (BMCs) were isolated from the nude mice for primary osteoclast culture, but only a few giant osteoclasts were generated. Additionally, special blood centrifuge tubes were utilized to obtain large numbers of peripheral blood mononuclear cells (PBMCs). Using magnetic activated cell sorting (MACS) and the cytokines colony-stimulating factor (CSF) and receptor activator of nuclear factor-κb ligand (RANKL), we differentiated human osteoclasts from CD14+ monocytes of PBMCs. Bone resorption was further confirmed by a bone resorption assay. Finally, Transwell inserts were used for indirect cell co-culture of SCC25 cells and CD14+ monocytes. Expression of specific osteoclast markers was detected by real-time PCR and western blotting. After co-culture for 3 and 6 days, conditioned medium (CM) of SCC25 cells stimulated the expression of osteoclast markers, and additional osteoclasts were detected through staining of TRAP and F-actin. In the present study distinct osteoclast phenotypes were observed in the established bone invasion animal model, and were confirmed using various primary osteoclast cultures. CM of OSCC cells may promote the expression of osteoclast markers and induce the differentiation of monocytes to mature osteoclasts, which can resorb adjacent bone tissue.
Collapse
Affiliation(s)
- Jingjing Quan
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510080, P.R. China
| | - Yuluan Hou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510080, P.R. China
| | - Weiling Long
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510080, P.R. China
| | - Shu Ye
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510080, P.R. China
| | - Zhiyuan Wang
- Affiliated High School-South China Normal University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
6
|
|
7
|
Xie Y, Chen Y, Zhang L, Ge W, Tang P. The roles of bone-derived exosomes and exosomal microRNAs in regulating bone remodelling. J Cell Mol Med 2016; 21:1033-1041. [PMID: 27878944 PMCID: PMC5387131 DOI: 10.1111/jcmm.13039] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/19/2016] [Indexed: 12/17/2022] Open
Abstract
Pathological destructive bone diseases are primarily caused by the failure of a lifelong self-renewal process of the skeletal system called bone remodelling. The mechanisms underlying this process include enhanced osteoclast activity and decreased generation of the osteoblast lineage. Intercellular interaction and crosstalk among these cell types are crucial for the maintenance of bone remodelling, either through the secretion of growth factors or direct cell-cell physical engagement. Recent studies have revealed that exosomes derived from bone cells, including osteoclasts, osteoblasts and their precursors, play pivotal roles on bone remodelling by transferring biologically active molecules to target cells, especially in the processes of osteoclast and osteoblast differentiation. Here, we review the contents of bone-derived exosomes and their functions in the regulatory processes of differentiation and communication of osteoclasts and osteoblasts. In addition, we highlight the characteristics of microRNAs of bone-derived exosomes involved in the regulation of bone remodelling, as well as the potential clinical applications of bone-derived exosomes in bone remodelling disorders.
Collapse
Affiliation(s)
- Yong Xie
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Yanyu Chen
- National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Wei Ge
- National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
The Multiple Roles of Microrna-223 in Regulating Bone Metabolism. Molecules 2015; 20:19433-48. [PMID: 26512640 PMCID: PMC6332311 DOI: 10.3390/molecules201019433] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/13/2015] [Accepted: 10/20/2015] [Indexed: 12/23/2022] Open
Abstract
Bone metabolism is a lifelong process for maintaining skeletal system homeostasis, which is regulated by bone-resorbing osteoclasts and bone-forming osteoblasts. Aberrant differentiation of osteoclasts and osteoblasts leads to imbalanced bone metabolism, resulting in ossification and osteolysis diseases. MicroRNAs (miRNAs) are pivotal factors in regulating bone metabolism via post-transcriptional inhibition of target genes. Recent studies have revealed that miR-223 exerts multiple effects on bone metabolism, especially in the processes of osteoclast and osteoblasts differentiation. In this review, we highlight the roles of miR-223 during the processes of osteoclast and osteoblast differentiation, as well as the potential clinical applications of miR-223 in bone metabolism disorders.
Collapse
|
9
|
Detsch R, Boccaccini AR. The role of osteoclasts in bone tissue engineering. J Tissue Eng Regen Med 2014; 9:1133-49. [PMID: 24478169 DOI: 10.1002/term.1851] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 09/18/2013] [Accepted: 10/20/2013] [Indexed: 12/13/2022]
Abstract
The success of scaffold-based bone regeneration approaches strongly depends on the performance of the biomaterial utilized. Within the efforts of regenerative medicine towards a restitutio ad integrum (i.e. complete reconstruction of a diseased tissue), scaffolds should be completely degraded within an adequate period of time. The degradation of synthetic bone substitute materials involves both chemical dissolution (physicochemical degradation) and resorption (cellular degradation by osteoclasts). Responsible for bone resorption are osteoclasts, cells of haematopoietic origin. Osteoclasts play also a crucial role in bone remodelling, which is essential for the regeneration of bone defects. There is, however, surprisingly limited knowledge about the detailed effects of osteoclasts on biomaterials degradation behaviour. This review covers the relevant fundamental knowledge and progress made in the field of osteoclast activity related to biomaterials used for bone regeneration. In vitro studies with osteoclastic precursor cells on synthetic bone substitute materials show that there are specific parameters that inhibit or enhance resorption. Moreover, analyses of the bone-material interface reveal that biomaterials composition has a significant influence on their degradation in contact with osteoclasts. Crystallinity, grain size, surface bioactivity and density of the surface seem to have a less significant effect on osteoclastic activity. In addition, the topography of the scaffold surface can be tailored to affect the development and spreading of osteoclast cells. The present review also highlights possible areas on which future research is needed and which are relevant to enhance our understanding of the complex role of osteoclasts in bone tissue engineering.
Collapse
Affiliation(s)
- Rainer Detsch
- Institute of Biomaterials, University of Erlangen-Nuremberg, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Germany
| |
Collapse
|
10
|
Udagawa N, Koide M, Nakamura M, Takahashi N. Minocycline to be used a potential anti-bone resorption agents due to the suppression of osteoclastic bone resorption. J Oral Biosci 2013. [DOI: 10.1016/j.job.2013.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Zhuang J, Zhang J, Lwin ST, Edwards JR, Edwards CM, Mundy GR, Yang X. Osteoclasts in multiple myeloma are derived from Gr-1+CD11b+myeloid-derived suppressor cells. PLoS One 2012; 7:e48871. [PMID: 23173040 PMCID: PMC3500251 DOI: 10.1371/journal.pone.0048871] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 10/01/2012] [Indexed: 01/15/2023] Open
Abstract
Osteoclasts play a key role in the development of cancer-associated osteolytic lesions. The number and activity of osteoclasts are often enhanced by tumors. However, the origin of osteoclasts is unknown. Myeloid-derived suppressor cells (MDSCs) are one of the pre-metastatic niche components that are induced to expand by tumor cells. Here we show that the MDSCs can differentiate into mature and functional osteoclasts in vitro and in vivo. Inoculation of 5TGM1-GFP myeloma cells into C57BL6/KaLwRij mice led to a significant expansion of MDSCs in blood, spleen, and bone marrow over time. When grown in osteoclastogenic media in vitro, MDSCs from tumor-challenged mice displayed 14 times greater potential to differentiate into mature and functional osteoclasts than those from non-tumor controls. Importantly, MDSCs from tumor-challenged LacZ transgenic mice differentiated into LacZ+osteoclasts in vivo. Furthermore, a significant increase in tumor burden and bone loss accompanied by increased number of osteoclasts was observed in mice co-inoculated with tumor-challenged MDSCs and 5TGM1 cells compared to the control animals received 5TGM1 cells alone. Finally, treatment of MDSCs from myeloma-challenged mice with Zoledronic acid (ZA), a potent inhibitor of bone resorption, inhibited the number of osteoclasts formed in MDSC cultures and the expansion of MDSCs and bone lesions in mice. Collectively, these data provide in vitro and in vivo evidence that tumor-induced MDSCs exacerbate cancer-associated bone destruction by directly serving as osteoclast precursors.
Collapse
Affiliation(s)
- Junling Zhuang
- Department of Medicine & Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Hematology, Peking Union Medical College Hospital, Beijing, China
- * E-mail: (JZ); (XY)
| | - Jianghong Zhang
- Department of Medicine & Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Seint T. Lwin
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - James R. Edwards
- Department of Medicine & Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Claire M. Edwards
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Gregory R. Mundy
- Department of Medicine & Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Xiangli Yang
- Department of Medicine & Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail: (JZ); (XY)
| |
Collapse
|
12
|
Combs CE, Fuller K, Kumar H, Albert AP, Pirianov G, McCormick J, Locke IC, Chambers TJ, Lawrence KM. Urocortin is a novel regulator of osteoclast differentiation and function through inhibition of a canonical transient receptor potential 1-like cation channel. J Endocrinol 2012; 212:187-97. [PMID: 22083217 DOI: 10.1530/joe-11-0254] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study investigated the role of urocortin (UCN), a member of the corticotrophin-releasing factor (CRF) family of peptides, in osteoclast maturation and function. We found that 10(-7) M UCN significantly (P<0.05) suppressed osteoclast differentiation from bone marrow precursor cells in culture and reduced the expression of several osteoclastic markers. Furthermore, UCN potently suppressed osteoclast bone resorption, by significantly inhibiting both the plan area of bone resorbed by osteoclasts and actin ring formation within osteoclasts at 10(-9) M (P<0.05), with complete inhibition at 10(-7) M (P<0.001). UCN also inhibited osteoclast motility (10(-7) M) but had no effect on osteoclast survival. Osteoclasts expressed mRNA encoding both UCN and the CRF receptor 2β subtype. Pre-osteoclasts however, expressed CRF receptor 2β alone. Unstimulated osteoclasts contained constitutively active cation channel currents with a unitary conductance of 3-4 pS, which were inhibited by over 70% with UCN (10(-7) M). Compounds that regulate calcium signalling and energy status of the cell, both crucial for osteoclast activity were investigated. The non-selective cation channel blockers, lanthanum (La(3)(+)) and gadolinium (Gd(3)(+)), inhibited actin ring formation in osteoclasts, whereas modulators of voltage-dependent Ca(2)(+) channels and K(ATP) channels had no effect. These findings show for the first time that UCN is a novel anti-resorptive molecule that acts through a direct effect on osteoclasts and their precursor cells.
Collapse
Affiliation(s)
- Charlotte E Combs
- Department of Cellular Pathology, St George's, University of London, Cranmer Terrace, London SW17 ORE, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kinugawa S, Koide M, Kobayashi Y, Mizoguchi T, Ninomiya T, Muto A, Kawahara I, Nakamura M, Yasuda H, Takahashi N, Udagawa N. Tetracyclines convert the osteoclastic-differentiation pathway of progenitor cells to produce dendritic cell-like cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:1772-81. [PMID: 22250082 DOI: 10.4049/jimmunol.1101174] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tetracyclines, such as doxycycline and minocycline, are used to suppress the growth of bacteria in patients with inflammatory diseases. Tetracyclines have been shown to prevent bone loss, but the mechanism involved is unknown. Osteoclasts and dendritic cells (DCs) are derived from common progenitors, such as bone marrow-derived macrophages (BMMs). In this article, we show that tetracyclines convert the differentiation pathway, resulting in DC-like cells not osteoclasts. Doxycycline and minocycline inhibited the receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis of BMMs, but they had no effects on cell growth and phagocytic activity. They influenced neither the proliferation nor the differentiation of bone-forming osteoblasts. Surprisingly, doxycycline and minocycline induced the expression of DC markers, CD11c and CD86, in BMMs in the presence of RANKL. STAT5 is involved in DC differentiation induced by GM-CSF. Midostaurin, a STAT5-signaling inhibitor, and an anti-GM-CSF-neutralizing Ab suppressed the differentiation induced by GM-CSF but not by tetracyclines. In vivo, the injection of tetracyclines into RANKL-injected mice and RANKL-transgenic mice suppressed RANKL-induced osteoclastogenesis and promoted the concomitant appearance of CD11c(+) cells. These results suggested that tetracyclines prevent bone loss induced by local inflammation, including rheumatoid arthritis and periodontitis, through osteoclast-DC-like cell conversion.
Collapse
Affiliation(s)
- Saya Kinugawa
- Graduate School of Oral Medicine, Matsumoto Dental University, Nagano 399-0781, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
To TT, Witten PE, Renn J, Bhattacharya D, Huysseune A, Winkler C. Rankl-induced osteoclastogenesis leads to loss of mineralization in a medaka osteoporosis model. Development 2011; 139:141-50. [PMID: 22096076 DOI: 10.1242/dev.071035] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Osteoclasts are macrophage-related bone resorbing cells of hematopoietic origin. Factors that regulate osteoclastogenesis are of great interest for investigating the pathology and treatment of bone diseases such as osteoporosis. In mammals, receptor activator of NF-κB ligand (Rankl) is a regulator of osteoclast formation and activation: its misexpression causes osteoclast stimulation and osteoporotic bone loss. Here, we report an osteoporotic phenotype that is induced by overexpression of Rankl in the medaka model. We generated transgenic medaka lines that express GFP under control of the cathepsin K promoter in osteoclasts starting at 12 days post-fertilization (dpf), or Rankl together with CFP under control of a bi-directional heat-shock promoter. Using long-term confocal time-lapse imaging of double and triple transgenic larvae, we monitored in vivo formation and activation of osteoclasts, as well as their interaction with osteoblasts. Upon Rankl induction, GFP-positive osteoclasts are first observed in the intervertebral regions and then quickly migrate to the surface of mineralized neural and haemal arches, as well as to the centra of the vertebral bodies. These osteoclasts are TRAP (tartrate-resistant acid phosphatase) and cathepsin K positive, mononuclear and highly mobile with dynamically extending protrusions. They are exclusively found in tight contact with mineralized matrix. Rankl-induced osteoclast formation resulted in severe degradation of the mineralized matrix in vertebral bodies and arches. In conclusion, our in vivo imaging approach confirms a conserved role of Rankl in osteoclastogenesis in teleost fish and provides new insight into the cellular interactions during bone resorption in an animal model that is useful for genetic and chemical screening.
Collapse
Affiliation(s)
- Thuy Thanh To
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | | | | | | | | | | |
Collapse
|