1
|
Kumari A, Veena SM, Luha R, Tijore A. Mechanobiological Strategies to Augment Cancer Treatment. ACS OMEGA 2023; 8:42072-42085. [PMID: 38024751 PMCID: PMC10652740 DOI: 10.1021/acsomega.3c06451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Cancer cells exhibit aberrant extracellular matrix mechanosensing due to the altered expression of mechanosensory cytoskeletal proteins. Such aberrant mechanosensing of the tumor microenvironment (TME) by cancer cells is associated with disease development and progression. In addition, recent studies show that such mechanosensing changes the mechanobiological properties of cells, and in turn cells become susceptible to mechanical perturbations. Due to an increasing understanding of cell biomechanics and cellular machinery, several approaches have emerged to target the mechanobiological properties of cancer cells and cancer-associated cells to inhibit cancer growth and progression. In this Perspective, we summarize the progress in developing mechano-based approaches to target cancer by interfering with the cellular mechanosensing machinery and overall TME.
Collapse
Affiliation(s)
| | | | | | - Ajay Tijore
- Department of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
2
|
Segarra-Queralt M, Piella G, Noailly J. Network-based modelling of mechano-inflammatory chondrocyte regulation in early osteoarthritis. Front Bioeng Biotechnol 2023; 11:1006066. [PMID: 36815875 PMCID: PMC9936426 DOI: 10.3389/fbioe.2023.1006066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) is a debilitating joint disease characterized by articular cartilage degradation, inflammation and pain. An extensive range of in vivo and in vitro studies evidences that mechanical loads induce changes in chondrocyte gene expression, through a process known as mechanotransduction. It involves cascades of complex molecular interactions that convert physical signals into cellular response(s) that favor either chondroprotection or cartilage destruction. Systematic representations of those interactions can positively inform early strategies for OA management, and dynamic modelling allows semi-quantitative representations of the steady states of complex biological system according to imposed initial conditions. Yet, mechanotransduction is rarely integrated. Hence, a novel mechano-sensitive network-based model is proposed, in the form of a continuous dynamical system: an interactome of a set of 118 nodes, i.e., mechano-sensitive cellular receptors, second messengers, transcription factors and proteins, related among each other through a specific topology of 358 directed edges is developed. Results show that under physio-osmotic initial conditions, an anabolic state is reached, whereas initial perturbations caused by pro-inflammatory and injurious mechanical loads leads to a catabolic profile of node expression. More specifically, healthy chondrocyte markers (Sox9 and CITED2) are fully expressed under physio-osmotic conditions, and reduced under inflammation, or injurious loadings. In contrast, NF-κB and Runx2, characteristic of an osteoarthritic chondrocyte, become activated under inflammation or excessive loading regimes. A literature-based evaluation shows that the model can replicate 94% of the experiments tested. Sensitivity analysis based on a factorial design of a treatment shows that inflammation has the strongest influence on chondrocyte metabolism, along with a significant deleterious effect of static compressive loads. At the same time, anti-inflammatory therapies appear as the most promising ones, though the restoration of structural protein production seems to remain a major challenge even in beneficial mechanical environments. The newly developed mechano-sensitive network model for chondrocyte activity reveals a unique potential to reflect load-induced chondroprotection or articular cartilage degradation in different mechano-chemical-environments.
Collapse
|
3
|
Zhang J, Hu S, Ding R, Yuan J, Jia J, Wu T, Cheng X. CircSNHG5 Sponges Mir-495-3p and Modulates CITED2 to Protect Cartilage Endplate From Degradation. Front Cell Dev Biol 2021; 9:668715. [PMID: 34277611 PMCID: PMC8281349 DOI: 10.3389/fcell.2021.668715] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a highly prevalent degenerating disease that produces tremendous amount of low back and neck pain. The cartilage endplate (CEP) is vitally important to intervertebral discs in both physiological and pathological conditions. In addition, circular RNAs (circRNAs) have been shown to be involved in the regulation of various diseases, including IDD. However, the particular role of circRNAs in cervical vertebral CEP degeneration remains unclear. Here, we examined the unique role of circRNAs in CEP of patients with cervical fracture and degenerative cervical myelopathy (DCM). Methods Human competitive endogenous RNA (ceRNA) microarray was performed by previous research. Western blot (WB), immunofluorescence (IF), quantitative RT-PCR (qRT-PCR), luciferase assay, and fluorescence in situ hybridization (FISH) were employed to analyze the function of circSNHG5 and its downstream effectors, miR-495-3p, and CITED2. Results We demonstrated that circSNHG5 expression was substantially low in degenerative CEP tissues. Knockdown of circSNHG5 in chondrocytes resulted in a loss of cell proliferation and followed by degradation of extracellular matrix (ECM). In addition, circSNHG5 was shown to sponge miR-495-3p and modulate the expression of the downstream gene CITED2. This mechanism of action was further validated via overexpression and knockdown of CITED2. Conclusion Our findings identified a novel circSNHG5-miR-495-3p axis responsible for IDD progression. Future investigations into IDD therapy may benefit from targeting this axis.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Orthopedics of Jiangxi Province, Nanchang, China.,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, China
| | - Shen Hu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Orthopedics of Jiangxi Province, Nanchang, China.,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, China
| | - Rui Ding
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Orthopedics of Jiangxi Province, Nanchang, China.,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, China
| | - Jinghong Yuan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Orthopedics of Jiangxi Province, Nanchang, China.,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, China
| | - Jingyu Jia
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Orthopedics of Jiangxi Province, Nanchang, China.,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, China
| | - Tianlong Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Orthopedics of Jiangxi Province, Nanchang, China.,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, China
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Orthopedics of Jiangxi Province, Nanchang, China.,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Zhu H, Li J, Li Y, Zheng Z, Guan H, Wang H, Tao K, Liu J, Wang Y, Zhang W, Li C, Li J, Jia L, Bai W, Hu D. Glucocorticoid counteracts cellular mechanoresponses by LINC01569-dependent glucocorticoid receptor-mediated mRNA decay. SCIENCE ADVANCES 2021; 7:7/9/eabd9923. [PMID: 33627425 PMCID: PMC7904261 DOI: 10.1126/sciadv.abd9923] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/08/2021] [Indexed: 05/05/2023]
Abstract
Mechanical stimuli on cells and mechanotransduction are essential in many biological and pathological processes. Glucocorticoid is an important hormone, roles, and mechanisms of which in cellular mechanotransduction remain unknown. Here, we report that glucocorticoid counteracted cellular mechanoresponses dependently on a novel long noncoding RNA (lncRNA), LINC01569 Further, LINC01569 mediated glucocorticoid effects on mechanotransduction by destabilizing messenger RNA (mRNA) of mechanosensors including early growth response protein 1 (EGR1), Cbp/P300-interacting transactivator 2 (CITED2), and bone morphogenic protein 7 (BMP7) in glucocorticoid receptor-mediated mRNA decay (GMD) manner. Mechanistically, LINC01569 directly bound to the GMD factor Y-box-binding protein 1 (YBX1). Then, the LINC01569-YBX1 complex was guided to the mRNAs of EGR1, CITED2, and BMP7 through specific LINC01569-mRNA interaction, thereby contributing to the successful assembly of GMD complex and triggering GMD. Our results uncovered roles of glucocorticoid in cellular mechanotransduction and novel lncRNA-dependent GMD machinery and provided potential strategy for early intervention in mechanical disorder-associated diseases.
Collapse
Affiliation(s)
- Huayu Zhu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jun Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yize Li
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhao Zheng
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hao Guan
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hongtao Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ke Tao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jiaqi Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yunchuan Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wanfu Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Chao Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jie Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Lintao Jia
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Wendong Bai
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
- Department of Clinical Laboratory Center, Xinjiang Command General Hospital of Chinese People's Liberation Army, Urumqi, Xinjiang 830000, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
5
|
Blaha M, Nemcova L, Kepkova KV, Vodicka P, Prochazka R. Gene expression analysis of pig cumulus-oocyte complexes stimulated in vitro with follicle stimulating hormone or epidermal growth factor-like peptides. Reprod Biol Endocrinol 2015; 13:113. [PMID: 26445099 PMCID: PMC4596359 DOI: 10.1186/s12958-015-0112-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/02/2015] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The gonadotropin-induced resumption of oocyte meiosis in preovulatory follicles is preceded by expression of epidermal growth factor (EGF)-like peptides, amphiregulin (AREG) and epiregulin (EREG), in mural granulosa and cumulus cells. Both the gonadotropins and the EGF-like peptides possess the capacity to stimulate resumption of oocyte meiosis in vitro via activation of a broad signaling network in cumulus cells. To better understand the rapid genomic actions of gonadotropins (FSH) and EGF-like peptides, we analyzed transcriptomes of cumulus cells at 3 h after their stimulation. METHODS We hybridized aRNA from cumulus cells to a pig oligonucleotide microarray and compared the transcriptomes of FSH- and AREG/EREG-stimulated cumulus cells with untreated control cells and vice versa. The identified over- and underexpressed genes were subjected to functional genomic analysis according to their molecular and cellular functions. The expression pattern of 50 selected genes with a known or potential function in ovarian development was verified by real-time qRT-PCR. RESULTS Both FSH and AREG/EREG increased the expression of genes associated with regulation of cell proliferation, cell migration, blood coagulation and extracellular matrix remodeling. FSH alone induced the expression of genes involved in inflammatory response and in the response to reactive oxygen species. Moreover, FSH stimulated the expression of genes closely related to some ovulatory events either exclusively or significantly more than AREG/EREG (AREG, ADAMTS1, HAS2, TNFAIP6, PLAUR, PLAT, and HSD17B7). In contrast to AREG/EREG, FSH also increased the expression of genes coding for key transcription factors (CEBPB, FOS, ID1/3, and NR5A2), which may contribute to the differing expression profiles of FSH- and AREG/EREG-treated cumulus cells. CONCLUSIONS The impact of FSH on cumulus cell gene transcription was higher than the impact of EGF-like factors in terms of the number of cell functions affected as well as the number of over- and underexpressed genes. Both FSH and EGF-like factors overexpressed genes involved in the post-ovulatory switch in steroidogenesis and tissue remodelling. However, FSH was remarkably more efficient in the up-regulation of several specific genes essential for ovulation of matured oocytes and also genes that been reported to play an important role in maturation of cumulus-enclosed oocytes in vitro.
Collapse
Affiliation(s)
- Milan Blaha
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Lucie Nemcova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Katerina Vodickova Kepkova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Petr Vodicka
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Radek Prochazka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic.
| |
Collapse
|
6
|
Favila MA, Geraci NS, Zeng E, Harker B, Condon D, Cotton RN, Jayakumar A, Tripathi V, McDowell MA. Human dendritic cells exhibit a pronounced type I IFN signature following Leishmania major infection that is required for IL-12 induction. THE JOURNAL OF IMMUNOLOGY 2014; 192:5863-72. [PMID: 24808365 DOI: 10.4049/jimmunol.1203230] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Leishmania major-infected human dendritic cells (DCs) exhibit a marked induction of IL-12, ultimately promoting a robust Th1-mediated response associated with parasite killing and protective immunity. The host cell transcription machinery associated with the specific IL-12 induction observed during L. major infection remains to be thoroughly elucidated. In this study, we used Affymetrix GeneChip (Affymetrix) to globally assess the host cell genes and pathways associated with early L. major infection in human myeloid-derived DCs. Our data revealed 728 genes were significantly differentially expressed and molecular signaling pathway revealed that the type I IFN pathway was significantly enriched. Addition of a neutralizing type I IFN decoy receptor blocked the expression of IRF7 and IL-12p40 during DC infection, indicating the L. major-induced expression of IL-12p40 is dependent upon the type I IFN signaling pathway. In stark contrast, IL-12p40 expression is not elicited by L. donovani, the etiological agent of deadly visceral leishmaniasis. Therefore, we examined the gene expression profile for several IFN response genes in L. major versus L. donovani DC infections. Our data revealed that L. major, but not L. donovani, induces expression of IRF2, IRF7, and IFIT5, implicating the regulation of type I IFN-associated signaling pathways as mediating factors toward the production of IL-12.
Collapse
Affiliation(s)
- Michelle A Favila
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556; and
| | - Nicholas S Geraci
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556; and
| | - Erliang Zeng
- Genomics and Bioinformatics Core Facility, University of Notre Dame, Notre Dame, IN 46556
| | - Brent Harker
- Genomics and Bioinformatics Core Facility, University of Notre Dame, Notre Dame, IN 46556
| | - David Condon
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556; and
| | - Rachel N Cotton
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556; and
| | - Asha Jayakumar
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556; and
| | - Vinita Tripathi
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556; and
| | - Mary Ann McDowell
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556; and
| |
Collapse
|
7
|
Furumatsu T, Matsumoto-Ogawa E, Tanaka T, Lu Z, Ozaki T. ROCK inhibition enhances aggrecan deposition and suppresses matrix metalloproteinase-3 production in human articular chondrocytes. Connect Tissue Res 2014; 55:89-95. [PMID: 24111521 DOI: 10.3109/03008207.2013.852544] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Homeostasis of articular cartilage is maintained by a balance between catabolism and anabolism. Matrix metalloproteinase-3 (MMP-3) catabolism of cartilaginous extracellular matrix (ECM), including aggrecan (AGN), is an important factor in osteoarthritis progression. We previously reported that inhibition of Rho-associated coiled-coil forming kinase (ROCK), an effector of Rho family GTPases, activates the chondrogenic transcription factor SRY-type high-mobility-group box (SOX) 9 and prevents dedifferentiation of monolayer-cultured chondrocytes. We hypothesized that ROCK inhibition prevents chondrocyte dedifferentiation by altering the transcriptional balance between MMP-3 and AGN. Normal human articular chondrocytes were cultured in the presence or absence of ROCK inhibitor (ROCKi, Y-27632). Expression of MMP-3 and AGN during monolayer cultivation was assessed by quantitative real-time PCR and western blot analysis. Chondrogenic redifferentiation potential of ROCKi-treated chondrocytes was evaluated by immunohistological analysis of pellet cultures. ROCKi treatment suppressed MMP-3 expression in monolayer- and pellet-cultured chondrocytes but increased AGN expression. Chromatin immunoprecipitation revealed that the association between transcription factors E26 transformation specific (ETS)-1 and SOX9 and their target genes MMP-3 and AGN, respectively, was affected by ROCKi treatment. ROCKi decreased the association between ETS-1 and its binding sites on the MMP-3 promoter, whereas ROCKi promoted the interaction between SOX9 and the AGN promoter. Our results suggest that ROCK inhibition may have an important role in modulating the balance between degradation and synthesis of cartilaginous ECM, a finding that may facilitate development of techniques to prepare differentiated chondrocytes for cartilage regeneration therapy.
Collapse
Affiliation(s)
- Takayuki Furumatsu
- Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences , Kitaku, Okayama , Japan
| | | | | | | | | |
Collapse
|
8
|
Snelling S, Rout R, Davidson R, Clark I, Carr A, Hulley P, Price A. A gene expression study of normal and damaged cartilage in anteromedial gonarthrosis, a phenotype of osteoarthritis. Osteoarthritis Cartilage 2014; 22:334-43. [PMID: 24361742 PMCID: PMC3988961 DOI: 10.1016/j.joca.2013.12.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 11/27/2013] [Accepted: 12/10/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To identify osteoarthritis (OA) relevant genes and pathways in damaged and undamaged cartilage isolated from the knees of patients with anteromedial gonarthrosis (AMG) - a specific form of knee OA. DESIGN Cartilage was obtained from nine patients undergoing unicompartmental knee replacement (UKR) for AMG. AMG provides a spatial representation of OA progression; showing a reproducible and histologically validated pattern of cartilage destruction such that damaged and undamaged cartilage from within the same knee can be consistently isolated and examined. Gene expression was analysed by microarray and validated using real-time PCR. RESULTS Damaged and undamaged cartilage showed distinct gene expression profiles. 754 genes showed significant up- or down-regulation (non-False discovery rate (FDR) P < 0.05) with enrichment for genes involved in cell signalling, Extracellular Matrix (ECM) and inflammatory response. A number of genes previously unreported in OA showed strongly altered expression including RARRES3, ADAMTSL2 and DUSP10. Confirmation of genes previously identified as modulated in OA was also obtained e.g., SFRP3, MMP3 and IGF1. CONCLUSIONS This is the first study to examine a common and consistent phenotype of OA to allow direct comparison of damaged and undamaged cartilage from within the same joint compartment. We have identified specific gene expression profiles in damaged and undamaged cartilage and have determined relevant genes and pathways in OA progression. Importantly this work also highlights the necessity for phenotypic and microanatomical characterization of cartilage in future studies of OA pathogenesis and therapeutic development.
Collapse
Affiliation(s)
- S. Snelling
- The Botnar Research Centre, University of Oxford, UK,Address correspondence and reprint requests to: S. Snelling. The Botnar Research Centre, University of Oxford, UK.
| | - R. Rout
- The Botnar Research Centre, University of Oxford, UK
| | - R. Davidson
- Biomedical Research Unit, University of East Anglia, UK
| | - I. Clark
- Biomedical Research Unit, University of East Anglia, UK
| | - A. Carr
- The Botnar Research Centre, University of Oxford, UK
| | - P.A. Hulley
- The Botnar Research Centre, University of Oxford, UK
| | - A.J. Price
- The Botnar Research Centre, University of Oxford, UK
| |
Collapse
|
9
|
Hong E, Reddi AH. MicroRNAs in chondrogenesis, articular cartilage, and osteoarthritis: implications for tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:445-53. [PMID: 22670839 DOI: 10.1089/ten.teb.2012.0116] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Coordinated actions of various regulators, including morphogens are required for chondrogenesis and maintenance of articular cartilage function. Bone morphogenetic proteins, and related signaling molecules and transcription factors form a complex regulatory network. MicroRNAs (miRNAs) are noncoding small RNAs that negatively regulate the expression of downstream targets by repressing the translation or inducing the cleavage of messenger RNAs (mRNAs). Increasing evidence indicates that miRNAs are an integral part of the regulatory network in chondrocyte differentiation and cartilage function. The aim of this article is to review the progress in miRNA expression and target genes in cartilage differentiation, homeostasis, and in the pathobiology of osteoarthritis. The recent progress in miRNAs in cartilage has implications for tissue engineering.
Collapse
Affiliation(s)
- Eunmee Hong
- Department of Orthopedic Surgery, Lawrence Ellison Center for Tissue Regeneration and Repair, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA.
| | | |
Collapse
|
10
|
Abstract
Osteoarthritis (OA) is characterized by the breakdown of articular cartilage that is mediated in part by increased production of matrix metalloproteinases (MMPs) and aggrecanases (ADAMTS), enzymes that degrade components of the cartilage extracellular matrix. Efforts to design synthetic inhibitors of MMPs/ADAMTS have only led to limited clinical success. In addition to pharmacologic therapies, physiologic joint loading is widely recommended as a nonpharmacologic approach to improve joint function in osteoarthritis. Clinical trials report that moderate levels of exercise exert beneficial effects, such as improvements in pain and physical function. Experimental studies demonstrate that mechanical loading mitigates joint destruction through the downregulation of MMPs/ADAMTS. However, the molecular mechanisms underlying these effects of physiologic loading on arthritic joints are not well understood. We review here the recent progress on mechanotransduction in articular joints, highlighting the mediators and pathways in the maintenance of cartilage integrity, especially in the prevention of cartilage degradation in OA.
Collapse
Affiliation(s)
- Daniel J. Leong
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Department of Radation Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Oncophysics Research Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - John A. Hardin
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Neil J. Cobelli
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Hui B. Sun
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Department of Radation Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Oncophysics Research Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| |
Collapse
|
11
|
Zhou Z, Akinbiyi T, Xu L, Ramcharan M, Leong DJ, Ros SJ, Colvin AC, Schaffler MB, Majeska RJ, Flatow EL, Sun HB. Tendon-derived stem/progenitor cell aging: defective self-renewal and altered fate. Aging Cell 2010; 9:911-5. [PMID: 20569237 DOI: 10.1111/j.1474-9726.2010.00598.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aging is a major risk factor for tendon injury and impaired tendon healing, but the basis for these relationships remains poorly understood. Here we show that rat tendon- derived stem ⁄ progenitor cells (TSPCs) differ in both self-renewal and differentiation capability with age. The frequency of TSPCs in tendon tissues of aged animals is markedly reduced based on colony formation assays. Proliferation rate is decreased, cell cycle progression is delayed and cell fate patterns are also altered in aged TSPCs. In particular, expression of tendon lineage marker genes is reduced while adipocytic differentiation increased. Cited2, a multi-stimuli responsive transactivator involved in cell growth and senescence, is also downregulated in aged TSPCs while CD44, a matrix assembling and organizing protein implicated in tendon healing, is upregulated, suggesting that these genes participate in the control of TSPC function.
Collapse
Affiliation(s)
- Zuping Zhou
- Department of Orthopaedics, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Leong DJ, Li YH, Gu XI, Sun L, Zhou Z, Nasser P, Laudier DM, Iqbal J, Majeska RJ, Schaffler MB, Goldring MB, Cardoso L, Zaidi M, Sun HB. Physiological loading of joints prevents cartilage degradation through CITED2. FASEB J 2010; 25:182-91. [PMID: 20826544 DOI: 10.1096/fj.10-164277] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Both overuse and disuse of joints up-regulate matrix metalloproteinases (MMPs) in articular cartilage and cause tissue degradation; however, moderate (physiological) loading maintains cartilage integrity. Here, we test whether CBP/p300-interacting transactivator with ED-rich tail 2 (CITED2), a mechanosensitive transcriptional coregulator, mediates this chondroprotective effect of moderate mechanical loading. In vivo, hind-limb immobilization of Sprague-Dawley rats up-regulates MMP-1 and causes rapid, histologically detectable articular cartilage degradation. One hour of daily passive joint motion prevents these changes and up-regulates articular cartilage CITED2. In vitro, moderate (2.5 MPa, 1 Hz) intermittent hydrostatic pressure (IHP) treatment suppresses basal MMP-1 expression and up-regulates CITED2 in human chondrocytes, whereas high IHP (10 MPa) down-regulates CITED2 and increases MMP-1. Competitive binding and transcription assays demonstrate that CITED2 suppresses MMP-1 expression by competing with MMP transactivator, Ets-1 for its coactivator p300. Furthermore, CITED2 up-regulation in vitro requires the p38δ isoform, which is specifically phosphorylated by moderate IHP. Together, these studies identify a novel regulatory pathway involving CITED2 and p38δ, which may be critical for the maintenance of articular cartilage integrity under normal physical activity levels.
Collapse
Affiliation(s)
- Daniel J Leong
- Leni and Peter W. May Department of Orthopedics, Mount Sinai School of Medicine, One Gustave L. Levy Pl., New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|