1
|
Romanowicz GE, Zhang L, Bolger MW, Lynch M, Kohn DH. Beyond bone volume: Understanding tissue-level quality in healing of maxillary vs. femoral defects. Acta Biomater 2024; 187:409-421. [PMID: 39214162 DOI: 10.1016/j.actbio.2024.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Currently, principles of tissue engineering and implantology are uniformly applied to all bone sites, disregarding inherent differences in collagen, mineral composition, and healing rates between craniofacial and long bones. These differences could potentially influence bone quality during the healing process. Evaluating bone quality during healing is crucial for understanding local mechanical properties in regeneration and implant osseointegration. However, site-specific changes in bone quality during healing remain poorly understood. In this study, we assessed newly formed bone quality in sub-critical defects in the maxilla and femur, while impairing collagen cross-linking using β-aminopropionitrile (BAPN). Our findings revealed that femoral healing bone exhibited a 73 % increase in bone volume but showed significantly greater viscoelastic and collagen changes compared to surrounding bone, leading to increased deformation during long-term loading and poorer bone quality in early healing. In contrast, the healing maxilla maintained equivalent hardness and viscoelastic constants compared to surrounding bone, with minimal new bone formation and consistent bone quality. However, BAPN-impaired collagen cross-linking induced viscoelastic changes in the healing maxilla, with no further changes observed in the femur. These results challenge the conventional belief that increased bone volume correlates with enhanced tissue-level bone quality, providing crucial insights for tissue engineering and site-specific implant strategies. The observed differences in bone quality between sites underscore the need for a nuanced approach in assessing the success of regeneration and implant designs and emphasize the importance of exploring site-specific tissue engineering interventions. STATEMENT OF SIGNIFICANCE: Accurate measurement of bone quality is crucial for tissue engineering and implant therapies. Bone quality varies between craniofacial and long bones, yet it's often overlooked in the healing process. Our study is the first to comprehensively analyze bone quality during healing in both the maxilla and femur. Surprisingly, despite significant volume increase, femur healing bone had poorer quality compared to the surrounding bone. Conversely, maxilla healing bone maintained consistent quality despite minimal bone formation. Impaired collagen diminished maxillary healing bone quality, but had no further effect on femur bone quality. These findings challenge the notion that more bone volume equals better quality, offering insights for improving tissue engineering and implant strategies for different bone sites.
Collapse
Affiliation(s)
- Genevieve E Romanowicz
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Lizhong Zhang
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Morgan W Bolger
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Michelle Lynch
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - David H Kohn
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA.
| |
Collapse
|
2
|
Gao Q, Jiang Y, Zhou D, Li G, Han Y, Yang J, Xu K, Jing Y, Bai L, Geng Z, Zhang H, Zhou G, Zhu M, Ji N, Han R, Zhang Y, Li Z, Wang C, Hu Y, Shen H, Wang G, Shi Z, Han Q, Chen X, Su J. Advanced glycation end products mediate biomineralization disorder in diabetic bone disease. Cell Rep Med 2024; 5:101694. [PMID: 39173634 PMCID: PMC11524989 DOI: 10.1016/j.xcrm.2024.101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 06/04/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024]
Abstract
Patients with diabetes often experience fragile fractures despite normal or higher bone mineral density (BMD), a phenomenon termed the diabetic bone paradox (DBP). The pathogenesis and therapeutics opinions for diabetic bone disease (DBD) are not fully explored. In this study, we utilize two preclinical diabetic models, the leptin receptor-deficient db/db mice (DB) mouse model and the streptozotocin-induced diabetes (STZ) mouse model. These models demonstrate higher BMD and lower mechanical strength, mirroring clinical observations in diabetic patients. Advanced glycation end products (AGEs) accumulate in diabetic bones, causing higher non-enzymatic crosslinking within collagen fibrils. This inhibits intrafibrillar mineralization and leads to disordered mineral deposition on collagen fibrils, ultimately reducing bone strength. Guanidines, inhibiting AGE formation, significantly improve the microstructure and biomechanical strength of diabetic bone and enhance bone fracture healing. Therefore, targeting AGEs may offer a strategy to regulate bone mineralization and microstructure, potentially preventing the onset of DBD.
Collapse
Affiliation(s)
- Qianmin Gao
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Yingying Jiang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China.
| | - Dongyang Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Guangfeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Yafei Han
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Jingzhi Yang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China; Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Guangyin Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Mengru Zhu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Ning Ji
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Ruina Han
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Yuanwei Zhang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Zuhao Li
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Chuandong Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Yan Hu
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Hao Shen
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Guangchao Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Zhongmin Shi
- Department of Orthopedics, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Qinglin Han
- Orthopaedic Department, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China.
| | - Xiao Chen
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China; Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China.
| |
Collapse
|
3
|
Vári B, Győri F, Katona Z, Berki T. The Impact of Age and Body Composition on Bone Density among Office Worker Women in Hungary. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5976. [PMID: 37297580 PMCID: PMC10252181 DOI: 10.3390/ijerph20115976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
The study's aim was to investigate bone condition and see its associations with body composition and age among office worker women in Hungary. In total, 316 individuals participated in this study from Csongrad-Csanad county in 2019. Participants' ages ranged from 18 to 62, with a mean of 41 years. A questionnaire was used to gather sociodemographic information, whereas body composition was measured using the Inbody 230, and bone density and bone quality were measured with the SONOST 3000 ultrasound device. Results were analyzed using descriptive statistics, ANOVA with Tukey's post hoc test, correlation analysis, and an independent sample t-test. The results show that Body Fat Mass, Body Mass Index, Obesity Degree, and Percent Body Fat increase significantly as age increases, and Bone Quality Index and t-score decrease substantially. Furthermore, Bone Density and Bone Quality Index were positively influenced by most components of body composition. The differences between normal and osteopenia bone quality showed that Basal Metabolic Rate, Bone Mineral Content, Fat-Free Mass, Mineral Mass, Skeletal Lean Mass, and Skeletal Muscle Mass were lower in participants with osteopenia. Our results provide more evidence of the effects of body composition and age on bone density and quality. It was the first study in Hungary investigating this phenomenon, which could be useful for professionals and researchers who intend to understand the associations of bone density.
Collapse
Affiliation(s)
- Beáta Vári
- Institute of Physical Education and Sports Science, Faculty of Education, University of Szeged, 6720 Szeged, Hungary; (B.V.)
- Doctoral School of Health Science, Faculty of Health Science, University of Pécs, 7621 Pécs, Hungary
| | - Ferenc Győri
- Institute of Physiotherapy and Sports Science, Faculty of Health Science, University of Pécs, 7621 Pécs, Hungary
- Sports Science Research Group, Research Institute, Gál Ferenc University, 6720 Szeged, Hungary
| | - Zoltán Katona
- Institute of Physical Education and Sports Science, Faculty of Education, University of Szeged, 6720 Szeged, Hungary; (B.V.)
| | - Tamás Berki
- Institute of Physical Education and Sports Science, Faculty of Education, University of Szeged, 6720 Szeged, Hungary; (B.V.)
| |
Collapse
|
4
|
Identification of Bone Mineral Density Deficit Using L1 Trabecular Attenuation by Opportunistic Multidetector CT Scan in Adult Patients. Tomography 2023; 9:150-161. [PMID: 36649000 PMCID: PMC9844499 DOI: 10.3390/tomography9010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Multidetector computer tomography (CT) has been used to diagnose pathologies such as osteoporosis via opportunistic screening, where the assessment of the bone structure and the measurement of bone mineral density (BMD) are of great relevance. PURPOSE To construct reference BMD values based on the measurement of the attenuation of the L1 vertebral body by multidetector CT scan (in the soft tissue and bone windows) in adult patients and to establish normative ranges by sex and age of BMD values. MATERIALS AND METHODS A retrospective cross-sectional study of 5080 patients who underwent multidetector CT scan between January and December 2021. Adult patients (≥18 years) with non-contrast multidetector CT scan of the abdomen or thorax-abdomen at a voltage 120 kV. The attenuation of the L1 vertebral body in Hounsfield units (HU) in both windows were compared using the Mann-Whitney U-test with α = 0.05. Additionally, the quartiles of the BMD were constructed (in both windows) grouped by sex and age. RESULTS Only 454 (51.30 ± 15.89 years, 243 women) patients met the inclusion criteria. There is no difference in BMD values between windows (soft tissue: 163.90 ± 57.13, bone: 161.86 ± 55.80, p = 0.625), mean L1 attenuation decreased linearly with age at a rate of 2 HU per year, and the presence of BMD deficit among patients was high; 152 of 454 (33.48%) patients presented BMD values suggestive of osteoporosis, and of these, approximately half 70 of 454 (15.42%) corresponded to patients with BMD values suggestive of a high risk of osteoporotic fracture. CONCLUSIONS From clinical practice, the bone mineral density (BMD) of a patient in either window below the first quartile for age- and sex-matched peers suggests a deficit in BMD that cannot be ignored and requires clinical management that enables identification of the etiology, its evolution, and the consequences of this alteration.
Collapse
|
5
|
Nunes FAP, de Farias MLF, Oliveira FP, Vieira L, Lima LFC, de Paula Paranhos F, de Mendonça LMC, Madeira M. Use of aromatase inhibitors in patients with breast cancer is associated with deterioration of bone microarchitecture and density. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2021; 65:505-511. [PMID: 34283901 PMCID: PMC10522186 DOI: 10.20945/2359-3997000000385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 02/16/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To evaluate changes in bone density and architecture in postmenopausal women with breast cancer (BC) and use of aromatase inhibitor (AI). METHODS Thirty-four postmenopausal women with BC, without bone metastasis, renal function impairment and who were not receiving bone-active drugs were selected from a population of 523 outpatients treated for BC. According to the presence of hormonal receptors, HER2 and Ki67, seventeen had positive hormonal receptors and received anastrozole (AI group), and seventeen were triple-negative receptors (non-AI group), previously treated with chemotherapy. Areal bone mineral density (aBMD) and vertebral fracture assessment (VFA) analyses were performed by DXA; vBMD and bone microarchitecture were evaluated by HR-pQCT. Fracture risk was estimated using the FRAX tool. RESULTS No patient referred previous low-impact fracture, and VFA detected one moderate vertebral fracture in a non-AI patient. AI patients showed lower aBMD and BMD T-scores at the hip and 33% radius and a higher proportion of osteoporosis diagnosis on DXA (47%) vs non-AI (17.6%). AI group had significantly lower values for vBMD at the entire, cortical and trabecular bone compartments, cortical and trabecular thickness and BV/TV. They also had a higher risk for major fractures and for hip fractures estimated by FRAX. Several HR-pQCT parameters evaluated at distal radius and distal tibia were significantly associated with fracture risk. CONCLUSION AI is associated with alterations in bone density and microarchitecture of both the cortical and trabecular compartments. These findings explain the overall increase in fracture risk in this specific population.
Collapse
Affiliation(s)
- Frederico Arthur Pereira Nunes
- Divisão de Endocrinologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Departamento de Oncologia, Hospital Federal Cardoso Fontes, Rio de Janeiro, RJ, Brasil
| | | | - Felipe Peres Oliveira
- Divisão de Endocrinologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil,
| | - Leonardo Vieira
- Divisão de Endocrinologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Luis Felipe Cardoso Lima
- Programa de Engenharia Nuclear, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | | | - Miguel Madeira
- Divisão de Endocrinologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil,
| |
Collapse
|
6
|
Sun S, Tang L, Zhao T, Kang Y, Sun L, Liu C, Li Y, Xu F, Qin YX, Ta D. Longitudinal effects of low-intensity pulsed ultrasound on osteoporosis and osteoporotic bone defect in ovariectomized rats. ULTRASONICS 2021; 113:106360. [PMID: 33561635 DOI: 10.1016/j.ultras.2021.106360] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Low-intensity pulsed ultrasound (LIPUS) with an intensity (spatial average temporal average, ISATA) of 30 mW/cm2 has been widely proved to be effective on impaired bone healing, but showing little effectiveness in the treatment of osteoporosis. We hypothesized that the intensity of LIPUS may be a key factor in explaining this difference, thus two intensity levels, the widely used 30 mW/cm2 and a higher 150 mW/cm2, were used to simultaneously treat osteoporosis and osteoporotic bone defect in ovariectomized (OVX) rats with a 1-mm drill hole on their left femurs.Results showed that 150 mW/cm2 LIPUS augmented the healing rate of the drill hole than 30 mW/cm2 after 3-week LIPUS treatment, although did not further enhance the healing rate after 6-week LIPUS treatment. For ameliorating osteoporosis, 150 mW/cm2 LIPUS achieved more advantages over 30 mW/cm2 in improving bone density, microstructure and biomechanics 6 weeks after LIPUS intervention. In conclusion, LIPUS with an intensity of 30 mW/cm2 was sufficient to facilitate bone defect healing, but a higher intensity can be considered as a rapid trigger for osteoporotic bone repair. In addition, improving the intensity of LIPUS may be a potentially effective consideration for alleviation of osteoporosis, and the LIPUS regimen in the treatment of osteoporosis remains to be optimized.
Collapse
Affiliation(s)
- Shuxin Sun
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| | - Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Tingting Zhao
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Yiting Kang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Chengcheng Liu
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Ying Li
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| | - Feng Xu
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, United States
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China; Academy for Engineering and Technology, Fudan University, Shanghai 200433, China.
| |
Collapse
|
7
|
Bagherzadeh M, Sajjadi-Jazi SM, Sharifi F, Ebrahimpur M, Amininezhad F, Ostovar A, Shafiee G, Heshmat R, Mehrdad N, Razi F, Nabipour I, Larijani B. Effects of metabolic syndrome on bone health in older adults: the Bushehr Elderly Health (BEH) program. Osteoporos Int 2020; 31:1975-1984. [PMID: 32440891 DOI: 10.1007/s00198-020-05455-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 05/05/2020] [Indexed: 12/24/2022]
Abstract
UNLABELLED Based on the clinical, BMD, and TBS data of 2380 participants aged ≥ 60 which was gathered during the BEH program, stage II, we showed that MetS was positively associated with BMD, while a negative or no association was observed between MetS and TBS depending on the sex and the adjustment model. INTRODUCTION The results of previous reports in regard to the effect of metabolic syndrome (MetS) on bone health are not conclusive. This study aimed to evaluate the association between MetS with bone mineral density (BMD) and trabecular bone score (TBS) as an indicator of bone quantity and quality, respectively. METHODS Using a cross-sectional design, this study was carried out based on the data collected during the BEH Program, stage II. MetS was defined according to NCEP-ATP III criteria. BMD (at the lumbar spine and the hip) and lumbar spine TBS were assessed by dual-energy X-ray absorptiometry device. RESULTS The data of 2380 participants (women = 1228, men = 1152) aged ≥ 60 were analyzed. In the fully adjusted regression models (including BMI), significant associations between MetS and mean BMD were observed across all locations in men (P values ≤ 0.001) and in the lumbar spine in women (P value = 0.003). In addition, the prevalence of osteoporosis (based on BMD) was significantly lower in those with MetS than those without MetS in both sexes, even after full adjustments (women, OR = 0.707, P value = 0.013; men, OR = 0.563, P value = 0.001). In contrast, in age-adjusted regression analyses, the prevalence of degraded bone microarchitecture (TBS ≤ 1.2) was significantly increased in those with MetS than those without, irrespective of the participants' sex (P values < 0.05). The mean TBS was also negatively associated with MetS in women (β = - 0.075, P value = 0.007) but not in men (β = - 0.052, P value = 0.077), in age-adjusted regression models. However, after including BMI in the adjusted models, all significant associations between TBS values and MetS disappeared. CONCLUSION It seems that a positive association exists between MetS and BMD, while MetS is either not associated or negatively correlated with bone quality as measured by TBS.
Collapse
Affiliation(s)
- M Bagherzadeh
- Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
| | - S M Sajjadi-Jazi
- Cell therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - F Sharifi
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - M Ebrahimpur
- Endocrinology and Metabolism Research center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - F Amininezhad
- Endocrinology and Metabolism Research center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - A Ostovar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - G Shafiee
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - R Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - N Mehrdad
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - F Razi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - I Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - B Larijani
- Endocrinology and Metabolism Research center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Abstract
Although advanced quantitative imaging may not be currently used to any degree in the routine reporting of spinal examinations, this situation will change in the not too distant future. Advanced quantitative imaging has already allowed us to understand a great deal more regarding spinal development, marrow physiology, and disease pathogenesis. Radiologists are ideally suited to drive this research forward. To speed up this process and optimize the impact of studies reporting spine quantitative data, we should work toward universal standards on the acquisition of spine data that will allow quantitative studies to be more easily compared, contrasted, and amalgamated.
Collapse
|
9
|
Du H, Yousefian O, Horn T, Muller M. Evaluation of Structural Anisotropy in a Porous Titanium Medium Mimicking Trabecular Bone Structure Using Mode-Converted Ultrasonic Scattering. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:1017-1024. [PMID: 31940527 PMCID: PMC7301879 DOI: 10.1109/tuffc.2019.2963162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The mode-converted (longitudinal to transverse, L-T) ultrasonic scattering method was utilized to characterize the structural anisotropy of a phantom mimicking the structural properties of trabecular bone. The sample was fabricated using metal additive manufacturing from high-resolution computed tomography (CT) images of a sample of trabecular horse bone with strong anisotropy. Two focused transducers were used to perform the L-T ultrasonic measurements. A normal incidence transducer was used to transmit longitudinal ultrasonic waves into the sample, while the scattered transverse signals were received by an oblique incidence transducer. At multiple locations on the sample, four L-T measurements were performed by collecting ultrasonic scattering from four directions. The amplitude of the root mean square (rms) of the collected ultrasonic scattering signals was calculated for each L-T measurement. The ratios of rms amplitudes for L-T measurements in different directions were calculated to characterize the anisotropy of sample. The results show that the amplitude of L-T converted scattering is highly dependent on the direction of microstructural anisotropy. A strong anisotropy of the microstructure was observed, which coincides with simulation results previously published on the same structure as well as with the anisotropy estimated from the CT images. These results suggest the potential of mode-converted ultrasonic scattering methods to assess the anisotropy of materials with porous, complex structures, including trabecular bone.
Collapse
Affiliation(s)
- Hualong Du
- Applied Research Associates, Inc. Littleton, CO, USA
| | - Omid Yousefian
- Center for Additive Manufacturing and Logistics, North Carolina State University, Raleigh, NC, USA
| | - Timothy Horn
- Industrial Engineering, North Carolina State University, Raleigh, NC, USA
- Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Marie Muller
- Center for Additive Manufacturing and Logistics, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
10
|
Trabecular bone score and bone quantitative ultrasound in Spanish postmenopausal women. The Camargo Cohort Study. Maturitas 2020; 132:24-29. [DOI: 10.1016/j.maturitas.2019.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 11/26/2019] [Indexed: 11/18/2022]
|
11
|
Abstract
Members of the International Skeletal Society compiled a glossary of terms for musculoskeletal radiology. The authors also represent national radiology or pathology societies in Asia, Australia, Europe, and the USA. We provide brief descriptions of musculoskeletal structures, disease processes, and syndromes and address their imaging features. Given the abundance of musculoskeletal disorders and derangements, we chose to omit most terms relating to neoplasm, spine, intervention, and pediatrics. Consensus agreement was obtained from 19 musculoskeletal radiology societies worldwide.
Collapse
|
12
|
Li Y, Li B, Li Y, Liu C, Xu F, Zhang R, Ta D, Wang W. The Ability of Ultrasonic Backscatter Parametric Imaging to Characterize Bovine Trabecular Bone. ULTRASONIC IMAGING 2019; 41:271-289. [PMID: 31307317 DOI: 10.1177/0161734619862190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ultrasonic backscatter technique holds the promise of characterizing bone density and microstructure. This paper conducts ultrasonic backscatter parametric imaging based on measurements of apparent integrated backscatter (AIB), spectral centroid shift (SCS), frequency slope of apparent backscatter (FSAB), and frequency intercept of apparent backscatter (FIAB) for representing trabecular bone mass and microstructure. We scanned 33 bovine trabecular bone samples using a 7.5 MHz focused transducer in a 20 mm × 20 mm region of interest (ROI) with a step interval of 0.05 mm. Images based on the ultrasonic backscatter parameters (i.e., AIB, SCS, FSAB, and FIAB) were constructed to compare with photographic images of the specimens as well as two-dimensional (2D) μ-CT images from approximately the same depth and location of the specimen. Similar structures and trabecular alignments can be observed among these images. Statistical analyses demonstrated that the means and standard deviations of the ultrasonic backscatter parameters exhibited significant correlations with bone density (|R| = 0.45-0.78, p < 0.01) and bone microstructure (|R| = 0.44-0.87, p < 0.001). Some bovine trabecular bone microstructure parameters were independently associated with the ultrasonic backscatter parameters (ΔR2 = 4.18%-44.45%, p < 0.05) after adjustment for bone apparent density (BAD). The results show that ultrasonic backscatter parametric imaging can provide a direct view of the trabecular microstructure and can reflect information about the density and microstructure of trabecular bone.
Collapse
Affiliation(s)
- Ying Li
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Boyi Li
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Yifang Li
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Chengcheng Liu
- 2 Institute of Acoustics, Tongji University, Shanghai, China
| | - Feng Xu
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Rong Zhang
- 3 Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Dean Ta
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
- 4 Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai, China
- 5 Human Phenome Institute, Fudan University, Shanghai, China
| | - Weiqi Wang
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Chang G, Rajapakse CS, Chen C, Welbeck A, Egol K, Regatte RR, Saha PK, Honig S. 3-T MR Imaging of Proximal Femur Microarchitecture in Subjects with and without Fragility Fracture and Nonosteoporotic Proximal Femur Bone Mineral Density. Radiology 2018; 287:608-619. [PMID: 29457963 DOI: 10.1148/radiol.2017170138] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose To determine if 3-T magnetic resonance (MR) imaging of proximal femur microarchitecture can allow discrimination of subjects with and without fragility fracture who do not have osteoporotic proximal femur bone mineral density (BMD). Materials and Methods Sixty postmenopausal women (30 with and 30 without fragility fracture) who had BMD T scores of greater than -2.5 in the hip were recruited. All subjects underwent dual-energy x-ray absorptiometry to assess BMD and 3-T MR imaging of the same hip to assess bone microarchitecture. World Health Organization Fracture Risk Assessment Tool (FRAX) scores were also computed. We used the Mann-Whitney test, receiver operating characteristics analyses, and Spearman correlation estimates to assess differences between groups, discriminatory ability with parameters, and correlations among BMD, microarchitecture, and FRAX scores. Results Patients with versus without fracture showed a lower trabecular plate-to-rod ratio (median, 2.41 vs 4.53, respectively), lower trabecular plate width (0.556 mm vs 0.630 mm, respectively), and lower trabecular thickness (0.114 mm vs 0.126 mm) within the femoral neck, and higher trabecular rod disruption (43.5 vs 19.0, respectively), higher trabecular separation (0.378 mm vs 0.323 mm, respectively), and lower trabecular number (0.158 vs 0.192, respectively), lower trabecular connectivity (0.015 vs 0.027, respectively) and lower trabecular plate-to-rod ratio (6.38 vs 8.09, respectively) in the greater trochanter (P < .05 for all). Trabecular plate-to-rod ratio, plate width, and thickness within the femoral neck (areas under the curve [AUCs], 0.654-0.683) and trabecular rod disruption, number, connectivity, plate-to-rod ratio, and separation within the greater trochanter (AUCs, 0.662-0.694) allowed discrimination of patients with fracture from control subjects. Femoral neck, total hip, and spine BMD did not differ between and did not allow discrimination between groups. FRAX scores including and not including BMD allowed discrimination between groups (AUCs, 0.681-0.773). Two-factor models (one MR imaging microarchitectural parameter plus a FRAX score without BMD) allowed discrimination between groups (AUCs, 0.702-0.806). There were no linear correlations between BMD and microarchitectural parameters (Spearman ρ, -0.198 to 0.196). Conclusion 3-T MR imaging of proximal femur microarchitecture allows discrimination between subjects with and without fragility fracture who have BMD T scores of greater than -2.5 and may provide different information about bone quality than that provided by dual-energy x-ray absorptiometry. © RSNA, 2018.
Collapse
Affiliation(s)
- Gregory Chang
- From the Department of Radiology, Center for Biomedical Imaging (G.C., A.W., R.R.R.), Department of Orthopaedic Surgery, Hospital for Joint Diseases (K.E.), and Division of Rheumatology, Osteoporosis Center, Hospital for Joint Diseases (S.H.), NYU Langone Medical Center, 660 First Ave, New York, NY 10016; Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pa (C.S.R.); and College of Engineering, University of Iowa, Iowa City, Iowa (C.C., P.K.S.)
| | - Chamith S Rajapakse
- From the Department of Radiology, Center for Biomedical Imaging (G.C., A.W., R.R.R.), Department of Orthopaedic Surgery, Hospital for Joint Diseases (K.E.), and Division of Rheumatology, Osteoporosis Center, Hospital for Joint Diseases (S.H.), NYU Langone Medical Center, 660 First Ave, New York, NY 10016; Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pa (C.S.R.); and College of Engineering, University of Iowa, Iowa City, Iowa (C.C., P.K.S.)
| | - Cheng Chen
- From the Department of Radiology, Center for Biomedical Imaging (G.C., A.W., R.R.R.), Department of Orthopaedic Surgery, Hospital for Joint Diseases (K.E.), and Division of Rheumatology, Osteoporosis Center, Hospital for Joint Diseases (S.H.), NYU Langone Medical Center, 660 First Ave, New York, NY 10016; Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pa (C.S.R.); and College of Engineering, University of Iowa, Iowa City, Iowa (C.C., P.K.S.)
| | - Arakua Welbeck
- From the Department of Radiology, Center for Biomedical Imaging (G.C., A.W., R.R.R.), Department of Orthopaedic Surgery, Hospital for Joint Diseases (K.E.), and Division of Rheumatology, Osteoporosis Center, Hospital for Joint Diseases (S.H.), NYU Langone Medical Center, 660 First Ave, New York, NY 10016; Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pa (C.S.R.); and College of Engineering, University of Iowa, Iowa City, Iowa (C.C., P.K.S.)
| | - Kenneth Egol
- From the Department of Radiology, Center for Biomedical Imaging (G.C., A.W., R.R.R.), Department of Orthopaedic Surgery, Hospital for Joint Diseases (K.E.), and Division of Rheumatology, Osteoporosis Center, Hospital for Joint Diseases (S.H.), NYU Langone Medical Center, 660 First Ave, New York, NY 10016; Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pa (C.S.R.); and College of Engineering, University of Iowa, Iowa City, Iowa (C.C., P.K.S.)
| | - Ravinder R Regatte
- From the Department of Radiology, Center for Biomedical Imaging (G.C., A.W., R.R.R.), Department of Orthopaedic Surgery, Hospital for Joint Diseases (K.E.), and Division of Rheumatology, Osteoporosis Center, Hospital for Joint Diseases (S.H.), NYU Langone Medical Center, 660 First Ave, New York, NY 10016; Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pa (C.S.R.); and College of Engineering, University of Iowa, Iowa City, Iowa (C.C., P.K.S.)
| | - Punam K Saha
- From the Department of Radiology, Center for Biomedical Imaging (G.C., A.W., R.R.R.), Department of Orthopaedic Surgery, Hospital for Joint Diseases (K.E.), and Division of Rheumatology, Osteoporosis Center, Hospital for Joint Diseases (S.H.), NYU Langone Medical Center, 660 First Ave, New York, NY 10016; Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pa (C.S.R.); and College of Engineering, University of Iowa, Iowa City, Iowa (C.C., P.K.S.)
| | - Stephen Honig
- From the Department of Radiology, Center for Biomedical Imaging (G.C., A.W., R.R.R.), Department of Orthopaedic Surgery, Hospital for Joint Diseases (K.E.), and Division of Rheumatology, Osteoporosis Center, Hospital for Joint Diseases (S.H.), NYU Langone Medical Center, 660 First Ave, New York, NY 10016; Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pa (C.S.R.); and College of Engineering, University of Iowa, Iowa City, Iowa (C.C., P.K.S.)
| |
Collapse
|
14
|
Du H, Mohanty K, Muller M. Microstructural characterization of trabecular bone using ultrasonic backscattering and diffusion parameters. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:EL445. [PMID: 28599551 PMCID: PMC6909975 DOI: 10.1121/1.4982824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 05/28/2023]
Abstract
Finite differences time domain methods were utilized to simulate ultrasound propagation and scattering in anisotropic trabecular bone structures obtained from high resolution Computed Tomography (CT). The backscattered signals were collected and the incoherent contribution was extracted. The diffusion constant was calculated for propagations along and across the main direction of anisotropy, and was used to characterize the anisotropy of the trabecular microstructures. In anisotropic structures, the diffusion constant was significantly different in both directions, and the anisotropy of the diffusion constant was strongly correlated to the structural anisotropy measured on the CT images. These results indicate that metrics based on diffusion can be used to quantify the anisotropy of complex structures such as trabecular bone.
Collapse
Affiliation(s)
- Hualong Du
- Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA , ,
| | - Kaustav Mohanty
- Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA , ,
| | - Marie Muller
- Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA , ,
| |
Collapse
|
15
|
Gauthier R, Follet H, Langer M, Meille S, Chevalier J, Rongiéras F, Peyrin F, Mitton D. Strain rate influence on human cortical bone toughness: A comparative study of four paired anatomical sites. J Mech Behav Biomed Mater 2017; 71:223-230. [PMID: 28360020 DOI: 10.1016/j.jmbbm.2017.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 01/20/2023]
Abstract
Bone fracture is a major health issue worldwide and consequently there have been extensive investigations into the fracture behavior of human cortical bone. However, the fracture properties of human cortical bone under fall-like loading conditions remains poorly documented. Further, most published research has been performed on femoral diaphyseal bone, whereas it is known that the femoral neck and the radius are the most vulnerable sites to fracture. Hence, the aim of this study is to provide information on human cortical bone fracture behavior by comparing different anatomical sites including the radius and the femoral neck acquired from 32 elderly subjects (50 - 98 y.o.). In order to investigate the intrinsic fracture behavior of human cortical bone, toughness experiments were performed at two different strain rates: standard quasi-static conditions, and a higher strain rate representative of a fall from a standing position. The tests were performed on paired femoral neck, femoral, tibial and radius diaphyseal samples. Linear elastic fracture toughness and the non-linear J-integral method were used to take into account both the elastic and non-elastic behavior of cortical bone. Under quasi-static conditions, the radius presents a significantly higher toughness than the other sites. At the higher strain rate, all sites showed a significantly lower toughness. Also, at the high strain rate, there is no significant difference in fracture properties between the four anatomical sites. These results suggest that regardless of the anatomical site (femur, femoral neck, tibia and radius), the bone has the same fracture properties under fall loading conditions. This should be considered in biomechanical models under fall-like loading conditions.
Collapse
Affiliation(s)
- Rémy Gauthier
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, F69622 Lyon, France
| | - Hélène Follet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, LYOS UMR1033, F69008 Lyon, France
| | - Max Langer
- Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, Creatis, F69621 Villeurbanne Cedex, France
| | - Sylvain Meille
- Univ Lyon, INSA-LYON, MATEIS, UMR CNRS 5510, F69621 Villeurbanne, France
| | - Jérôme Chevalier
- Univ Lyon, INSA-LYON, MATEIS, UMR CNRS 5510, F69621 Villeurbanne, France
| | - Frédéric Rongiéras
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, F69622 Lyon, France; Service Chirurgie Orthopédique et Traumatologie - Hôpital Desgenettes, 69003 Lyon, France
| | - Françoise Peyrin
- Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, Creatis, F69621 Villeurbanne Cedex, France
| | - David Mitton
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, F69622 Lyon, France.
| |
Collapse
|
16
|
Herrera S, Diez-Perez A. Clinical experience with microindentation in vivo in humans. Bone 2017; 95:175-182. [PMID: 27840302 DOI: 10.1016/j.bone.2016.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 12/28/2022]
Abstract
Densitometry and imaging techniques are currently used in clinical settings to measure bone quantity and spatial structure. Recently, Reference Point Indentation has opened the possibility of directly assessing the mechanical characteristics of cortical bone in living individuals, adding a new dimension to the assessment of bone strength. Impact microindentation was specifically developed for clinical studies and has been tested in several populations where there are discrepancies between bone density and fracture propensity, such as type 2 diabetes, atypical femoral fracture, stress fractures, glucocorticoid treatment, patients with osteopenia and fragility fractures, and individuals infected with HIV, among others. Microindentation will complement, not replace, existing bone analysis methods, particularly where bone mineral density does not fully explain fracture propensity. The available evidence provides solid proof of concept; future studies will fully define the role of microindentation for the assessment of bone health both in clinics and in research.
Collapse
Affiliation(s)
- Sabina Herrera
- Department of Internal Medicine, Hospital del Mar Institute of Medical Investigation, Autonomous University of Barcelona, Barcelona, Spain
| | - Adolfo Diez-Perez
- Department of Internal Medicine, Hospital del Mar Institute of Medical Investigation, Autonomous University of Barcelona, Barcelona, Spain.
| |
Collapse
|
17
|
Carballido-Gamio J, Bonaretti S, Kazakia GJ, Khosla S, Majumdar S, Lang TF, Burghardt AJ. Statistical Parametric Mapping of HR-pQCT Images: A Tool for Population-Based Local Comparisons of Micro-Scale Bone Features. Ann Biomed Eng 2016; 45:949-962. [PMID: 27830488 DOI: 10.1007/s10439-016-1754-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/26/2016] [Indexed: 12/26/2022]
Abstract
HR-pQCT enables in vivo multi-parametric assessments of bone microstructure in the distal radius and distal tibia. Conventional HR-pQCT image analysis approaches summarize bone parameters into global scalars, discarding relevant spatial information. In this work, we demonstrate the feasibility and reliability of statistical parametric mapping (SPM) techniques for HR-pQCT studies, which enable population-based local comparisons of bone properties. We present voxel-based morphometry (VBM) to assess trabecular and cortical bone voxel-based features, and a surface-based framework to assess cortical bone features both in cross-sectional and longitudinal studies. In addition, we present tensor-based morphometry (TBM) to assess trabecular and cortical bone structural changes. The SPM techniques were evaluated based on scan-rescan HR-pQCT acquisitions with repositioning of the distal radius and distal tibia of 30 subjects. For VBM and surface-based SPM purposes, all scans were spatially normalized to common radial and tibial templates, while for TBM purposes, rescans (follow-up) were spatially normalized to their corresponding scans (baseline). VBM was evaluated based on maps of local bone volume fraction (BV/TV), homogenized volumetric bone mineral density (vBMD), and homogenized strain energy density (SED) derived from micro-finite element analysis; while the cortical bone framework was evaluated based on surface maps of cortical bone thickness, vBMD, and SED. Voxel-wise and vertex-wise comparisons of bone features were done between the groups of baseline and follow-up scans. TBM was evaluated based on mean square errors of determinants of Jacobians at baseline bone voxels. In both anatomical sites, voxel- and vertex-wise uni- and multi-parametric comparisons yielded non-significant differences, and TBM showed no artefactual bone loss or apposition. The presented SPM techniques demonstrated robust specificity thus warranting their application in future clinical HR-pQCT studies.
Collapse
Affiliation(s)
| | - Serena Bonaretti
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Galateia J Kazakia
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Sundeep Khosla
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Department of Internal Medicine, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sharmila Majumdar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Thomas F Lang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew J Burghardt
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
18
|
Erlandson M, Lorbergs A, Mathur S, Cheung A. Muscle analysis using pQCT, DXA and MRI. Eur J Radiol 2016; 85:1505-11. [DOI: 10.1016/j.ejrad.2016.03.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 12/22/2022]
|
19
|
Sudjaritruk T, Puthanakit T. Adverse bone health among children and adolescents growing up with HIV. J Virus Erad 2015. [DOI: 10.1016/s2055-6640(20)30506-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
20
|
Chang G, Honig S, Liu Y, Chen C, Chu KK, Rajapakse CS, Egol K, Xia D, Saha PK, Regatte RR. 7 Tesla MRI of bone microarchitecture discriminates between women without and with fragility fractures who do not differ by bone mineral density. J Bone Miner Metab 2015; 33:285-93. [PMID: 24752823 PMCID: PMC4363287 DOI: 10.1007/s00774-014-0588-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 03/17/2014] [Indexed: 01/23/2023]
Abstract
Osteoporosis is a disease of poor bone quality. Bone mineral density (BMD) has limited ability to discriminate between subjects without and with poor bone quality, and assessment of bone microarchitecture may have added value in this regard. Our goals were to use 7 T MRI to: (1) quantify and compare distal femur bone microarchitecture in women without and with poor bone quality (defined clinically by presence of fragility fractures); and (2) determine whether microarchitectural parameters could be used to discriminate between these two groups. This study had institutional review board approval, and we obtained written informed consent from all subjects. We used a 28-channel knee coil to image the distal femur of 31 subjects with fragility fractures and 25 controls without fracture on a 7 T MRI scanner using a 3-D fast low angle shot sequence (0.234 mm × 0.234 mm × 1 mm, parallel imaging factor = 2, acquisition time = 7 min 9 s). We applied digital topological analysis to quantify parameters of bone microarchitecture. All subjects also underwent standard clinical BMD assessment in the hip and spine. Compared to controls, fracture cases demonstrated lower bone volume fraction and markers of trabecular number, plate-like structure, and plate-to-rod ratio, and higher markers of trabecular isolation, rod disruption, and network resorption (p < 0.05 for all). There were no differences in hip or spine BMD T-scores between groups (p > 0.05). In receiver-operating-characteristics analyses, microarchitectural parameters could discriminate cases and controls (AUC = 0.66-0.73, p < 0.05). Hip and spine BMD T-scores could not discriminate cases and controls (AUC = 0.58-0.64, p ≥ 0.08). We conclude that 7 T MRI can detect bone microarchitectural deterioration in women with fragility fractures who do not differ by BMD. Microarchitectural parameters might some day be used as an additional tool to detect patients with poor bone quality who cannot be detected by dual-energy X-ray absorptiometry (DXA).
Collapse
Affiliation(s)
- Gregory Chang
- Department of Radiology, NYU Langone Medical Center, Center for Musculoskeletal Care, 333 E. 38th Street, 6th Floor, Room 6-210, New York, NY, 10016, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Impact of Obesity on Osteoporosis: Limitations of the Current Modalities of Assessing Osteoporosis in Obese Subjects. Clin Rev Bone Miner Metab 2015. [DOI: 10.1007/s12018-015-9179-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
22
|
Iki M, Tamaki J, Kadowaki E, Sato Y, Dongmei N, Winzenrieth R, Kagamimori S, Kagawa Y, Yoneshima H. Trabecular bone score (TBS) predicts vertebral fractures in Japanese women over 10 years independently of bone density and prevalent vertebral deformity: the Japanese Population-Based Osteoporosis (JPOS) cohort study. J Bone Miner Res 2014; 29:399-407. [PMID: 23873699 DOI: 10.1002/jbmr.2048] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/26/2013] [Accepted: 07/11/2013] [Indexed: 11/06/2022]
Abstract
Bone strength is predominantly determined by bone density, but bone microarchitecture also plays an important role. We examined whether trabecular bone score (TBS) predicts the risk of vertebral fractures in a Japanese female cohort. Of 1950 randomly selected women aged 15 to 79 years, we analyzed data from 665 women aged 50 years and older, who completed the baseline study and at least one follow-up survey over 10 years, and who had no conditions affecting bone metabolism. Each survey included spinal imaging by dual-energy X-ray absorptiometry (DXA) for vertebral fracture assessment and spine areal bone mineral density (aBMD) measurement. TBS was obtained from spine DXA scans archived in the baseline study. Incident vertebral fracture was determined when vertebral height was reduced by 20% or more and satisfied McCloskey-Kanis criteria or Genant's grade 2 fracture at follow-up. Among eligible women (mean age 64.1 ± 8.1 years), 92 suffered incident vertebral fractures (16.7/10(3) person-years). These women were older with lower aBMD and TBS values relative to those without fractures. The unadjusted odds ratio of vertebral fractures for one standard deviation decrease in TBS was 1.98 (95% confidence interval [CI] 1.56, 2.51) and remained significant (1.64, 95% CI 1.25, 2.15) after adjusting for aBMD. The area under the receiver operating characteristic curve of TBS and aBMD combined was 0.700 for vertebral fracture prediction and was not significantly greater than that of aBMD alone (0.673). However, reclassification improvement measures indicated that TBS and aBMD combined significantly improved risk prediction accuracy compared with aBMD alone. Further inclusion of age and prevalent vertebral deformity in the model improved vertebral fracture prediction, and TBS remained significant in the model. Thus, lower TBS was associated with higher risk of vertebral fracture over 10 years independently of aBMD and clinical risk factors including prevalent vertebral deformity. TBS could effectively improve fracture risk assessment in clinical settings.
Collapse
Affiliation(s)
- Masayuki Iki
- Department of Public Health, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lucisano MP, Nelson-Filho P, Morse L, Battaglino R, Watanabe PCA, Silva RABD, Silva LABD. Radiodensitometric and DXA analyses for the measurement of bone mineral density after systemic alendronate therapy. Braz Oral Res 2014; 27:252-7. [PMID: 23739782 DOI: 10.1590/s1806-83242013000300005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/04/2013] [Indexed: 11/22/2022] Open
Abstract
Precise techniques for the measurement of maxillary bone mineral density (BMD) are useful for the early diagnosis of systemic diseases. The aim of this study was to compare in vivo the efficacy of dual-energy x-ray absorptiometry (DXA) and radiographic densitometry for the measurement of BMD after systemic administration of sodium alendronate. Wistar rats were randomly allocated to a control group (n = 5), which received distilled water, and a sodium alendronate group (n = 8), which received two doses of chemically pure sodium alendronate (1 mg/kg) per week. After 8 weeks, the animals were euthanized, the tibias were removed, and the BMD of the proximal tibial metaphysis was analyzed radiographically and by DXA. The data were subjected to statistical analysis by the Kruskal-Wallis test at a significance level of 5%. Both of the techniques revealed that the alendronate-treated group had a significantly higher BMD (p < 0.05) than the control group after 8 weeks of treatment. Comparing the groups with and without alendronate therapy revealed increases of 14.9% and 29.6% in BMD, as detected radiographically and by DXA, respectively. In conclusion, both of the methods were able to detect an increase in BMD of the proximal tibial metaphysis after alendronate therapy.
Collapse
Affiliation(s)
- Marília Pacífico Lucisano
- Department of Pediatric Clinics, Preventive and Community Dentistry, School of Dentistry of Ribeirão Preto, Univ de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
24
|
Briot K, Paternotte S, Kolta S, Eastell R, Reid DM, Felsenberg D, Glüer CC, Roux C. Added value of trabecular bone score to bone mineral density for prediction of osteoporotic fractures in postmenopausal women: the OPUS study. Bone 2013; 57:232-6. [PMID: 23948677 DOI: 10.1016/j.bone.2013.07.040] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/28/2013] [Accepted: 07/30/2013] [Indexed: 11/28/2022]
Abstract
UNLABELLED The objective of this study was to consider whether trabecular bone score (TBS) improves on areal bone mineral density (aBMD) measurement alone for the prediction of incident fractures in postmenopausal women. PATIENTS AND METHODS The OPUS study was conducted in ambulatory European women aged above 55years, recruited in 5 centers followed over 6years. For the assessment of the performance of TBS, baseline Hologic scans from 3 centers (Kiel, Paris and Sheffield) were available. Follow-up for incident fractures was available for 1007 women (mean age 65.9±6.9years). We compared the performance of TBS, aBMD, and their combination, by using net reclassification improvement (NRI, primary analysis) and receiver operator characteristic (ROC) c-statistical analysis with ORs and areas under the curves (AUCs) (secondary analyses). RESULTS 82 (8.1%) subjects with incident clinical osteoporotic fractures, and 46 (4.6%) with incident radiographic vertebral fractures were recorded over 6years. Performance of TBS was significantly better than lumbar spine (LS) aBMD for the prediction of incident clinical osteoporotic fractures (NRI=16.3%, p=0.007). For radiographic vertebral fractures, TBS and LS aBMD had similar predictive power but the combination of TBS and LS aBMD increased the performance over LS aBMD alone (NRI=8.6%, p=0.046) but the prediction is similar to hip and femoral neck aBMD. In non osteoporotic women, TBS predicted incident fragility fractures similarly to LS aBMD. CONCLUSIONS This prospective study shows that in general population, TBS is a useful tool to improve the performance of lumbar spine aBMD for vertebral osteoporotic fractures.
Collapse
Affiliation(s)
- Karine Briot
- Paris-Descartes University, Rheumatology Department, Cochin Hospital, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Williams DS, McCracken PJ, Purcell M, Pickarski M, Mathers PD, Savitz AT, Szumiloski J, Jayakar RY, Somayajula S, Krause S, Brown K, Winkelmann CT, Scott BB, Cook L, Motzel SL, Hargreaves R, Evelhoch JL, Cabal A, Dardzinski BJ, Hangartner TN, Duong LT. Effect of odanacatib on bone turnover markers, bone density and geometry of the spine and hip of ovariectomized monkeys: a head-to-head comparison with alendronate. Bone 2013; 56:489-96. [PMID: 23806798 DOI: 10.1016/j.bone.2013.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 06/05/2013] [Accepted: 06/10/2013] [Indexed: 11/19/2022]
Abstract
Odanacatib (ODN) is a selective and reversible Cathepsin K (CatK) inhibitor currently being developed as a once weekly treatment for osteoporosis. Here, effects of ODN compared to alendronate (ALN) on bone turnover, DXA-based areal bone mineral density (aBMD), QCT-based volumetric BMD (vBMD) and geometric parameters were studied in ovariectomized (OVX) rhesus monkeys. Treatment was initiated 10 days after ovariectomy and continued for 20 months. The study consisted of four groups: L-ODN (2 mg/kg, daily p.o.), H-ODN (8/4 mg/kg daily p.o.), ALN (15 μg/kg, twice weekly, s.c.), and VEH (vehicle, daily, p.o.). L-ODN and ALN doses were selected to approximate the clinical exposures of the ODN 50-mg and ALN 70-mg once-weekly, respectively. L-ODN and ALN effectively reduced bone resorption markers uNTx and sCTx compared to VEH. There was no additional efficacy with these markers achieved with H-ODN. Conversely, ODN displayed inversely dose-dependent reduction of bone formation markers, sP1NP and sBSAP, and L-ODN reduced formation to a lesser degree than ALN. At month 18 post-OVX, L-ODN showed robust increases in lumbar spine aBMD (11.4%, p<0.001), spine trabecular vBMD (13.7%, p<0.001), femoral neck (FN) integral (int) vBMD (9.0%, p<0.001) and sub-trochanteric proximal femur (SubTrPF) int vBMD, (6.4%, p<0.001) compared to baseline. L-ODN significantly increased FN cortical thickness (Ct.Th) and cortical bone mineral content (Ct.BMC) by 22.5% (p<0.001) and 21.8% (p<0.001), respectively, and SubTrPF Ct.Th and Ct.BMC by 10.9% (p<0.001) and 11.3% (p<0.001) respectively. Compared to ALN, L-ODN significantly increased FN Ct. BMC by 8.7% (p<0.05), and SubTrPF Ct.Th by 7.6% (p<0.05) and Ct.BMC by 6.2% (p<0.05). H-ODN showed no additional efficacy compared to L-ODN in OVX-monkeys in prevention mode. Taken together, the results from this study have demonstrated that administration of ODN at levels which approximate clinical exposure in OVX-monkeys had comparable efficacy to ALN in DXA-based aBMD and QCT-based vBMD. However, FN cortical mineral content clearly demonstrated superior efficacy of ODN versus ALN in this model of estrogen-deficient non-human primates.
Collapse
|
26
|
Tóth M, Grossman A. Glucocorticoid-induced osteoporosis: lessons from Cushing's syndrome. Clin Endocrinol (Oxf) 2013; 79:1-11. [PMID: 23452135 DOI: 10.1111/cen.12189] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/24/2012] [Accepted: 02/12/2013] [Indexed: 01/06/2023]
Abstract
Glucocorticoid-induced osteoporosis (GIO) is the most frequent form of secondary bone disorders. Most of our knowledge on its pathogenesis and treatment has been obtained by investigating patients treated with exogenous glucocorticoids. This review will focus on the bone disorder in endogenous Cushing's syndrome, updating recent advances in its pathophysiology, diagnostic aspects and the various predictors which are important in determining bone mineral density (BMD) and fracture risk. We now know strong evidence that beside BMD, bone microarchitecture, one of the most important elements of bone quality, is a key factor in determining fracture risk. Recently, two new methods (spinal deformity index and trabecular bone score) have been shown to be useful markers of bone microarchitecture in GIO. Investigations of GIO in endogenous Cushing's syndrome have also contributed to our understanding on its natural history and reversibility. Relying on recently published guidelines for management of exogenous GIO, a short list of suggestions is provided regarding the optimal diagnostic and therapeutic approach to patients with endogenous GIO.
Collapse
Affiliation(s)
- Miklós Tóth
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
| | | |
Collapse
|
27
|
Abstract
The diagnosis and management of osteoporosis have been improved by the development of new quantitative methods of skeletal assessment and by the availability of an increasing number of therapeutic options, respectively. A number of imaging methods exist and all have advantages and disadvantages. Dual-energy X-ray absorptiometry (DXA) is the most widely available and commonly utilized method for clinical diagnosis of osteoporosis and will remain so for the foreseeable future. The WHO 10-year fracture risk assessment tool (FRAX(®)) will improve clinical use of DXA and the cost-effectiveness of therapeutic intervention. Improved reporting of radiographic features that suggest osteoporosis and the presence of vertebral fracture, which are powerful predictors of future fractures, could increase the frequency of appropriate DXA referrals. Quantitative CT remains predominantly a research tool, but has advantages over DXA--allowing measurement of volumetric density, separate measures of cortical and trabecular bone density, and evaluation of bone shape and size. High resolution imaging, using both CT and MRI, has been introduced to measure trabecular and cortical bone microstructure. Although these methods provide detailed insights into the effects of disease and therapies on bone, they are technically challenging and not widely available, so they are unlikely to be used in clinical practice.
Collapse
Affiliation(s)
- Judith E Adams
- Manchester Academic Health Science Centre, The Royal Infirmary and University of Manchester, Department of Radiology, The Royal Infirmary, Manchester M13 9WL, UK.
| |
Collapse
|
28
|
Affiliation(s)
- Paul D Miller
- Colorado Center for Bone Research, University of Colorado Medical School, Lakewood, CO 80227, USA.
| |
Collapse
|
29
|
Meaney PM, Goodwin D, Golnabi AH, Zhou T, Pallone M, Geimer SD, Burke G, Paulsen KD. Clinical microwave tomographic imaging of the calcaneus: a first-in-human case study of two subjects. IEEE Trans Biomed Eng 2012; 59:3304-13. [PMID: 22829363 DOI: 10.1109/tbme.2012.2209202] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have acquired 2-D and 3-D microwave tomographic images of the calcaneus bones of two patients to assess correlation of the microwave properties with X-ray density measures. The two volunteers were selected because each had one leg immobilized for at least six weeks during recovery from a lower leg injury. A soft-prior regularization technique was incorporated with the microwave imaging to quantitatively assess the bulk dielectric properties within the bone region. Good correlation was observed between both permittivity and conductivity and the computed tomography-derived density measures. These results represent the first clinical examples of microwave images of the calcaneus and some of the first 3-D tomographic images of any anatomical site in the living human.
Collapse
Affiliation(s)
- Paul M Meaney
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hoff BA, Kozloff KM, Boes JL, Brisset JC, Galbán S, Van Poznak CH, Jacobson JA, Johnson TD, Meyer CR, Rehemtulla A, Ross BD, Galbán CJ. Parametric response mapping of CT images provides early detection of local bone loss in a rat model of osteoporosis. Bone 2012; 51:78-84. [PMID: 22542461 PMCID: PMC3371150 DOI: 10.1016/j.bone.2012.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 03/09/2012] [Accepted: 04/09/2012] [Indexed: 01/18/2023]
Abstract
Loss of bone mass due to disease, such as osteoporosis and metastatic cancer to the bone, is a leading cause of orthopedic complications and hospitalization. Onset of bone loss resulting from disease increases the risk of incurring fractures and subsequent pain, increasing medical expenses while reducing quality of life. Although current standard CT-based protocols provide adequate prognostic information for assessing bone loss, many of the techniques for evaluating CT scans rely on measures based on whole-bone summary statistics. This reduces the sensitivity at identifying local regions of bone resorption, as well as formation. In this study, we evaluate the effectiveness of a voxel-based image post-processing technique, called the Parametric Response Map (PRM), for identifying local changes in bone mass in weight-bearing bones on CT scans using an established animal model of osteoporosis. Serial CT scans were evaluated weekly using PRM subsequent to ovariectomy or sham surgeries over the period of one month. For comparison, bone volume fraction and mineral density measurements were acquired and found to significantly differ between groups starting 3 weeks post-surgery. High resolution ex vivo measurements acquired four weeks post-surgery validated the extent of bone loss in the surgical groups. In contrast to standard methodologies for assessing bone loss, PRM results were capable of identifying local decreases in bone mineral by week 2, which were found to be significant between groups. This study concludes that PRM is able to detect changes in bone mineral with higher sensitivity and spatial differentiation than conventional techniques for evaluating CT scans, which may aid in clinical decision making for patients suffering from bone loss.
Collapse
Affiliation(s)
- Benjamin A. Hoff
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Kenneth M. Kozloff
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Jennifer L. Boes
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | | | - Stefanie Galbán
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | | | - Jon A. Jacobson
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Timothy D. Johnson
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Charles R. Meyer
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Brian D. Ross
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Craig J. Galbán
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
31
|
Bouvard B, Hoppé E, Soulié P, Georgin-Mege M, Jadaud E, Abadie-Lacourtoisie S, Petit Le Manac'h A, Laffitte A, Levasseur R, Audran M, Chappard D, Legrand E. High prevalence of vertebral fractures in women with breast cancer starting aromatase inhibitor therapy. Ann Oncol 2012; 23:1151-1156. [PMID: 21903604 DOI: 10.1093/annonc/mdr356] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The purpose of this study was to describe bone status in a large cohort of postmenopausal women with nonmetastatic breast cancer, at the initiation of aromatase inhibitor therapy. PATIENTS AND METHODS A prospective, transversal and clinical study was conducted. Each woman had an extensive medical history, a biological evaluation, a bone mineral density (BMD) measurement and spinal X-rays. RESULTS Four hundred and ninety-seven women aged 63.8 ± 9.6 years were included in this study. Eighty-five percent of these women had a 25-OH vitamin D concentration <75 nmol/l. One hundred and fifty-six women (31.4%) had a T-score < -2 at one of the three site measurements. Ninety-five women (19.1%) had a history of nonvertebral fracture with a total of 120 fractures. Spine X-rays evaluation revealed that 20% of the women had at least one vertebral fracture. The presence of vertebral fracture was associated with nonvertebral fracture history [odds ratio (OR) 1.6, 95% confidence interval (CI) 1.1-2.4] and with spine BMD (OR 1.4, 95% CI 1.1-1.7). The prevalence of vertebral fracture reached 62.9% in women with age above 70 years and femoral T-score < -2.5. CONCLUSION Before starting aromatase inhibitor therapy for breast cancer, a large proportion of women had a vitamin D insufficiency and vertebral fractures.
Collapse
Affiliation(s)
- B Bouvard
- Department of Rheumatology, University Hospital of Angers, Angers; INSERM, U922, University Hospital of Angers, Angers.
| | - E Hoppé
- Department of Rheumatology, University Hospital of Angers, Angers; INSERM, U922, University Hospital of Angers, Angers
| | - P Soulié
- Paul Papin Cancer Institute, ICO, Angers, France
| | | | - E Jadaud
- Paul Papin Cancer Institute, ICO, Angers, France
| | | | | | - A Laffitte
- Department of Rheumatology, University Hospital of Angers, Angers
| | - R Levasseur
- Department of Rheumatology, University Hospital of Angers, Angers; INSERM, U922, University Hospital of Angers, Angers
| | - M Audran
- Department of Rheumatology, University Hospital of Angers, Angers; INSERM, U922, University Hospital of Angers, Angers
| | - D Chappard
- INSERM, U922, University Hospital of Angers, Angers
| | - E Legrand
- Department of Rheumatology, University Hospital of Angers, Angers; INSERM, U922, University Hospital of Angers, Angers
| |
Collapse
|
32
|
The Hounsfield value for cortical bone geometry in the proximal humerus--an in vitro study. Skeletal Radiol 2012; 41:557-68. [PMID: 21932054 DOI: 10.1007/s00256-011-1255-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/23/2011] [Accepted: 08/08/2011] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Fractures of the proximal humerus represent a major osteoporotic burden. Recent developments in CT imaging have emphasized the importance of cortical bone thickness distribution in the prevention and management of fragility fractures. We aimed to experimentally define the CT density of cortical bone in the proximal humerus for building cortical geometry maps. METHODS With ethical approval, we used ten fresh-frozen human proximal humeri. These were stripped of all soft tissue and high-resolution CT images were then taken. The humeral heads were then subsequently resected to allow access to the metaphyseal area. Using curettes, cancellous bone was removed down to hard cortical bone. Another set of CT images of the reamed specimen was then taken. Using CT imaging software and a CAD interface, we then compared cortical contours at different CT density thresholds to the reference inner cortical contour of our reamed specimens. Working with 3D model representations of these cortical maps, we were able to accurately make distance comparison analyses based on different CT thresholds. RESULTS We could compute a single closest value at 700 HU. No difference was found in the HU-based contours generated along the 500-900 HU pixels (p = 1.000). The contours were significantly different from those generated at 300, 400, 1,000, and 1,100 HU. CONCLUSIONS A Hounsfield range of 500-900 HU can accurately depict cortical bone geometry in the proximal humerus. Thresholding outside this range leads to statistically significant inaccuracies. Our results concur with a similar range reported in the literature for the proximal femur. Knowledge of regional variations in cortical bone thickness has direct implications for basic science studies on osteoporosis and its treatment, but is also important for the orthopedic surgeon since our decision for treatment options is often guided by local bone quality.
Collapse
|
33
|
Chang G, Rajapakse CS, Babb JS, Honig SP, Recht MP, Regatte RR. In vivo estimation of bone stiffness at the distal femur and proximal tibia using ultra-high-field 7-Tesla magnetic resonance imaging and micro-finite element analysis. J Bone Miner Metab 2012; 30:243-51. [PMID: 22124539 PMCID: PMC3723134 DOI: 10.1007/s00774-011-0333-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 10/26/2011] [Indexed: 01/13/2023]
Abstract
The goal of this study was to demonstrate the feasibility of using 7-Tesla (7T) magnetic resonance imaging (MRI) and micro-finite element analysis (µFEA) to evaluate mechanical and structural properties of whole, cortical, and trabecular bone at the distal femur and proximal tibia in vivo. 14 healthy subjects were recruited (age 40.7 ± 15.7 years). The right knee was scanned on a 7T MRI scanner using a 28 channel-receive knee coil and a three-dimensional fast low-angle shot sequence (TR/TE 20 ms/5.02 ms, 0.234 mm × 0.234 mm × 1 mm, 80 axial images, 7 min 9 s). Bone was analyzed at the distal femoral metaphysis, femoral condyles, and tibial plateau. Whole, cortical, and trabecular bone stiffness was computed using µFEA. Bone volume fraction (BVF), bone areas, and cortical thickness were measured. Trabecular bone stiffness (933.7 ± 433.3 MPa) was greater than cortical bone stiffness (216 ± 152 MPa) at all three locations (P < 0.05). Across locations, there were no differences in bone stiffness (whole, cortical, or trabecular). Whole, cortical, and trabecular bone stiffness correlated with BVF (R ≥ 0.69, P < 0.05) and inversely correlated with corresponding whole, cortical, and trabecular areas (R ≤ -0.54, P < 0.05), but not with cortical thickness (R < -0.11, P > 0.05). Whole, cortical, and trabecular stiffness correlated with body mass index (R ≥ 0.62, P < 0.05). In conclusion, at the distal femur and proximal tibia, trabecular bone contributes 66-74% of whole bone stiffness. 7T MRI and µFEA may be used as a method to provide insight into how structural properties of cortical or trabecular bone affect bone mechanical competence in vivo.
Collapse
Affiliation(s)
- Gregory Chang
- Quantitative Multinuclear Musculoskeletal Imaging Group, Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, 660 First Avenue, Room 231, New York, NY 10016, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Dall'Ara E, Pahr D, Varga P, Kainberger F, Zysset P. QCT-based finite element models predict human vertebral strength in vitro significantly better than simulated DEXA. Osteoporos Int 2012; 23:563-72. [PMID: 21344244 DOI: 10.1007/s00198-011-1568-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 02/01/2011] [Indexed: 11/26/2022]
Abstract
SUMMARY While dual energy X-ray absorptiometry (DXA) is considered the gold standard to evaluate fracture risk in vivo, in the present study, the quantitative computed tomography (QCT)-based finite element modeling has been found to provide a quantitative and significantly improved prediction of vertebral strength in vitro. This technique might be used in vivo considering however the much larger doses of radiation needed for QCT. INTRODUCTION Vertebral fracture is a common medical problem in osteoporotic individuals. Bone mineral density (BMD) is the gold standard measure to evaluate fracture risk in vivo. QCT-based finite element (FE) modeling is an engineering method to predict vertebral strength. The aim of this study was to compare the ability of FE and clinical diagnostic tools to predict vertebral strength in vitro using an improved testing protocol. METHODS Thirty-seven vertebral sections were scanned with QCT and high resolution peripheral QCT (HR-pQCT). Bone mineral content (BMC), total BMD (tBMD), areal BMD from lateral (aBMD-lat), and anterior-posterior (aBMD-ap) projections were evaluated for both resolutions. Wedge-shaped fractures were then induced in each specimen with a novel testing setup. Nonlinear homogenized FE models (hFE) and linear micro-FE (μFE) were generated from QCT and HR-pQCT images, respectively. For experiments and models, both structural properties (stiffness, ultimate load) and material properties (apparent modulus and strength) were computed and compared. RESULTS Both hFE and μFE models predicted material properties better than structural ones and predicted strength significantly better than aBMD computed from QCT and HR-pQCT (hFE: R² = 0.79, μFE: R² = 0.88, aBMD-ap: R² = 0.48-0.47, aBMD-lat: R² = 0.41-0.43). Moreover, the hFE provided reasonable quantitative estimations of the experimental mechanical properties without fitting the model parameters. CONCLUSIONS The QCT-based hFE method provides a quantitative and significantly improved prediction of vertebral strength in vitro when compared to simulated DXA. This superior predictive power needs to be verified for loading conditions that simulate even more the in vivo case for human vertebrae.
Collapse
Affiliation(s)
- E Dall'Ara
- Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Gußhausstrasse 27-29, 1040 Vienna, Austria.
| | | | | | | | | |
Collapse
|
35
|
Perez-Rossello JM, Feldman HA, Kleinman PK, Connolly SA, Fair RA, Myers RM, Gordon CM. Rachitic changes, demineralization, and fracture risk in healthy infants and toddlers with vitamin D deficiency. Radiology 2011; 262:234-41. [PMID: 22106354 DOI: 10.1148/radiol.11110358] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To examine radiographic findings in children with vitamin D deficiency in comparison with biochemical marker levels and prevalence of fractures. MATERIALS AND METHODS The parents or guardians of all participants provided written informed consent at the time of enrollment. The institutional review board approved the protocol, and HIPAA guidelines were followed. From a prospective sample of children seen for routine clinical care, 40 children with vitamin D deficiency (25-hydroxyvitamin D [25-OHD] level, ≤ 20 ng/mL) were identified, and high-detail computed radiographs of the wrists and knees were obtained. The children ranged in age from 8 to 24 months. Radiographs were scored by three readers with use of the 10-point Thacher score for rachitic changes and a five-point scale for demineralization. Serum calcium, phosphorus, alkaline phosphatase, and parathyroid hormone levels were determined. Fracture history was obtained for 35 of the 40 patients (88%). RESULTS All readers identified rachitic changes at both readings in two patients (5%) and demineralization in two patients (5%). Interrater agreement was 65% for rachitic changes (κ = 0.33) and 70% for demineralization (κ = 0.37). When the majority of the raters determined that rachitic changes were absent at both readings, alkaline phosphatase levels were lower than those with other assessments (median, 267 vs 515 U/L [4.4589 vs 8.6005 μkat/L]; P = .01). When most raters determined that demineralization was present at both readings, serum 25-OHD levels were lower than those at other assessments (median, 9.0 vs 17.5 ng/mL [22.464 vs 43.68 nmol/L]; P = .02). No fractures were reported or identified radiographically. CONCLUSION In infants and toddlers with vitamin D deficiency, rachitic changes and definite demineralization are uncommon and fracture risk is low.
Collapse
|
36
|
Hans D, Goertzen AL, Krieg MA, Leslie WD. Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J Bone Miner Res 2011; 26:2762-9. [PMID: 21887701 DOI: 10.1002/jbmr.499] [Citation(s) in RCA: 413] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The measurement of BMD by dual-energy X-ray absorptiometry (DXA) is the "gold standard" for diagnosing osteoporosis but does not directly reflect deterioration in bone microarchitecture. The trabecular bone score (TBS), a novel gray-level texture measurement that can be extracted from DXA images, correlates with 3D parameters of bone microarchitecture. Our aim was to evaluate the ability of lumbar spine TBS to predict future clinical osteoporotic fractures. A total of 29,407 women 50 years of age or older at the time of baseline hip and spine DXA were identified from a database containing all clinical results for the Province of Manitoba, Canada. Health service records were assessed for the incidence of nontraumatic osteoporotic fracture codes subsequent to BMD testing (mean follow-up 4.7 years). Lumbar spine TBS was derived for each spine DXA examination blinded to clinical parameters and outcomes. Osteoporotic fractures were identified in 1668 (5.7%) women, including 439 (1.5%) spine and 293 (1.0%) hip fractures. Significantly lower spine TBS and BMD were identified in women with major osteoporotic, spine, and hip fractures (all p < 0.0001). Spine TBS and BMD predicted fractures equally well, and the combination was superior to either measurement alone (p < 0.001). Spine TBS predicts osteoporotic fractures and provides information that is independent of spine and hip BMD. Combining the TBS trabecular texture index with BMD incrementally improves fracture prediction in postmenopausal women.
Collapse
Affiliation(s)
- Didier Hans
- Bone Disease Unit, University of Lausanne, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
37
|
Warensjö E, Byberg L, Melhus H, Gedeborg R, Mallmin H, Wolk A, Michaëlsson K. Dietary calcium intake and risk of fracture and osteoporosis: prospective longitudinal cohort study. BMJ 2011; 342:d1473. [PMID: 21610048 PMCID: PMC3101331 DOI: 10.1136/bmj.d1473] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2011] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To investigate associations between long term dietary intake of calcium and risk of fracture of any type, hip fractures, and osteoporosis. DESIGN A longitudinal and prospective cohort study, based on the Swedish Mammography Cohort, including a subcohort, the Swedish Mammography Cohort Clinical. SETTING A population based cohort in Sweden established in 1987. PARTICIPANTS 61,433 women (born between 1914 and 1948) were followed up for 19 years. 5022 of these women participated in the subcohort. MAIN OUTCOME MEASURES Primary outcome measures were incident fractures of any type and hip fractures, which were identified from registry data. Secondary outcome was osteoporosis diagnosed by dual energy x ray absorptiometry in the subcohort. Diet was assessed by repeated food frequency questionnaires. RESULTS During follow-up, 14,738 women (24%) experienced a first fracture of any type and among them 3871 (6%) a first hip fracture. Of the 5022 women in the subcohort, 1012 (20%) were measured as osteoporotic. The risk patterns with dietary calcium were non-linear. The crude rate of a first fracture of any type was 17.2/1000 person years at risk in the lowest quintile of calcium intake, and 14.0/1000 person years at risk in the third quintile, corresponding to a multivariable adjusted hazard ratio of 1.18 (95% confidence interval 1.12 to 1.25). The hazard ratio for a first hip fracture was 1.29 (1.17 to 1.43) and the odds ratio for osteoporosis was 1.47 (1.09 to 2.00). With a low vitamin D intake, the rate of fracture in the first calcium quintile was more pronounced. The highest quintile of calcium intake did not further reduce the risk of fractures of any type, or of osteoporosis, but was associated with a higher rate of hip fracture, hazard ratio 1.19 (1.06 to 1.32). CONCLUSION Gradual increases in dietary calcium intake above the first quintile in our female population were not associated with further reductions in fracture risk or osteoporosis.
Collapse
Affiliation(s)
- Eva Warensjö
- Department of Surgical Sciences, Section of Orthopaedics, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
38
|
Bhagat YA, Rajapakse CS, Magland JF, Love JH, Wright AC, Wald MJ, Song HK, Wehrli FW. Performance of μMRI-Based virtual bone biopsy for structural and mechanical analysis at the distal tibia at 7T field strength. J Magn Reson Imaging 2011; 33:372-81. [PMID: 21274979 DOI: 10.1002/jmri.22439] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To assess the performance of a 3D fast spin echo (FSE) pulse sequence utilizing out-of-slab cancellation through phase alternation and micro-magnetic resonance imaging (μMRI)-based virtual bone biopsy processing methods to probe the serial reproducibility and sensitivity of structural and mechanical parameters of the distal tibia at 7.0T. MATERIALS AND METHODS The distal tibia of five healthy subjects was imaged at three timepoints with a 3D FSE sequence at 137 × 137 × 410 μm(3) voxel size. Follow-up images were retrospectively 3D registered to baseline images. Coefficients of variation (CV) and intraclass correlation coefficients (ICCs) for measures of scale and topology of the whole tibial trabecular bone (TB) cross-section as well as finite-element-derived Young's and shear moduli of central cuboidal TB subvolumes (8 × 8 × 5 mm(3) ) were evaluated as measures of reproducibility and reliability. Four additional cubic TB subregions (anterior, medial, lateral, and posterior) of similar dimensions were extracted and analyzed to determine associations between whole cross-section and subregional structural parameters. RESULTS The mean signal-to-noise ratio (SNR) over the 15 image acquisitions was 27.5 ± 2.1. Retrospective registration yielded an average common analysis volume of 67% across the three exams per subject. Reproducibility (mean CV = 3.6%; range, 1.5%-5%) and reliability (ICCs, 0.95-0.99) of all parameters permitted parameter-based discrimination of the five subjects in spite of the narrow age range (26-36 years) covered. Parameters characterizing topology were better able to distinguish two individuals who demonstrated similar values for scalar measurements (≈ 34% difference, P < 0.001). Whole-section axial stiffness encompassing the cortex was superior at distinguishing two individuals relative to its central subregional TB counterpart (≈ 8% difference; P < 0.05). Interregion comparisons showed that although all parameters were correlated (mean R(2) = 0.78; range 0.57-0.99), the strongest associations observed were those for the erosion index (mean R(2) = 0.95, P ≤ 0.01). CONCLUSION The reproducibility and structural and mechanical parameter-based discriminative ability achieved in five healthy subjects suggests that 7T-derived μMRI of TB can be applied towards serial patient studies of osteoporosis and may enable earlier detection of disease or treatment-based effects.
Collapse
Affiliation(s)
- Yusuf A Bhagat
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania, MRI Education Center, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Development of a novel method for surgical implant design optimization through noninvasive assessment of local bone properties. Med Eng Phys 2010; 33:256-62. [PMID: 20980189 DOI: 10.1016/j.medengphy.2010.09.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/27/2010] [Accepted: 09/30/2010] [Indexed: 11/22/2022]
Abstract
A method was developed to improve the design of locking implants by finding the optimal paths for the anchoring elements, based on a high resolution pQCT assessment of local bone mineral density (BMD) distribution and bone micro-architecture (BMA). The method consists of three steps: (1) partial fixation of the implant to the bone and creation of a reference system, (2) implant removal and pQCT scan of the bone, and (3) determination of BMD and BMA of all implant-anchoring locations along the actual and alternative directions. Using a PHILOS plate, the method uncertainty was tested on an artificial humerus bone model. A cadaveric humerus was used to quantify how the uncertainty of the method affects the assessment of bone parameters. BMD and BMA were determined along four possible alternative screw paths as possible criteria for implant optimization. The method is biased by a 0.87 ± 0.12 mm systematic uncertainty and by a 0.44 ± 0.09 mm random uncertainty in locating the virtual screw position. This study shows that this method can be used to find alternative directions for the anchoring elements, which may possess better bone properties. This modification will thus produce an optimized implant design.
Collapse
|
40
|
Bone mineral density in the femoral neck increases after hip resurfacing: a cohort with five-year follow-up. INTERNATIONAL ORTHOPAEDICS 2010; 35:1303-7. [PMID: PMID: 20730585 PMCID: PMC3167457 DOI: 10.1007/s00264-010-1115-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 08/09/2010] [Accepted: 08/10/2010] [Indexed: 10/19/2022]
Abstract
Hip resurfacing is an effective treatment modality for arthritis of the hip in carefully selected patients; however, its use remains controversial due to its higher revision rates compared with conventional total hip replacement surgery. The most frequent reason for revision is femoral neck fracture, and preoperative bone mineral density is an important factor when considering the option of hip resurfacing. Whilst reduction in bone mineral density following total hip replacement is well documented, little is known about the long-term changes in femoral neck bone mineral density after hip resurfacing. We followed 15 patients (ten male and five female) who underwent unilateral hip resurfacing for osteoarthritis with standardised dual energy X-ray absorbiometry scans at two weeks, three months, one year, two years and five years postoperatively to determine changes in the femoral neck bone mineral density. Both males and females initially had decreases in bone mineral density at three months postoperatively, but had gradual mean increases to 119% of their initial measurements by five years. This study demonstrates that femoral neck bone mineral density increases after hip resurfacing and that this increase continues for at least five years.
Collapse
|