1
|
Snell-Rood EC, Kjaer SJ, Marek-Spartz M, Devitz AC, Jansa SA. Pronounced declines in heavy metal burdens of Minnesotan mammals over the last century. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52473-52484. [PMID: 39150665 PMCID: PMC11374866 DOI: 10.1007/s11356-024-34667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Humans have drastically altered the ecology of heavy metals, which can have negative effects on animal development and neural functioning. Many species have shown the ability to adapt to anthropogenic increases in metal pollution, but such evolutionary responses will depend on the extent of metal variation over space and time. For terrestrial vertebrates, it is unclear how metal exposure has changed over time: some studies suggest metal content peaked with the enactment of policies controlling lead emissions, while other studies suggest metal levels peaked at least a century earlier. We used 162 specimens of four mammal species (a mouse, shrew, bat, and squirrel) to ask how metal content of the fur and skin has changed over a 90-year time period, and impacts on individual performance (body size and cranial capacity). Using ICP-MS, we show that for lead, cadmium, copper, and chromium, there were significant declines in metal content in mammal tissue over the 90-year time period, with lead levels five times lower now than in the early 1900s. Importantly, metal content began to drop well before the pollution regulation of the 1970s. Effects of time greatly outweighed any effects of an individual living near a human population center. Surprisingly, there were no effects of body metal content on body size, and only manganese was negatively related to relative cranial capacity. Taken together, these results suggest that present day populations of mammals are experiencing levels of heavy metal exposure that are less stressful than they were 100 years ago. In addition, temporal decreases in metal loads likely partly reflect global patterns of pollution decline that affect atmospheric metal deposition rather than local point sources of exposure.
Collapse
Affiliation(s)
- Emilie C Snell-Rood
- Department Ecology, Evolution and Behavior, University of Minnesota, Twin Cities, 1479 Gortner Ave, Gortner 140, St Paul, MN, 55108, USA.
| | - Savannah J Kjaer
- Department Ecology, Evolution and Behavior, University of Minnesota, Twin Cities, 1479 Gortner Ave, Gortner 140, St Paul, MN, 55108, USA
| | - Mary Marek-Spartz
- Department Ecology, Evolution and Behavior, University of Minnesota, Twin Cities, 1479 Gortner Ave, Gortner 140, St Paul, MN, 55108, USA
| | - Amy-Charlotte Devitz
- Department Ecology, Evolution and Behavior, University of Minnesota, Twin Cities, 1479 Gortner Ave, Gortner 140, St Paul, MN, 55108, USA
| | - Sharon A Jansa
- Department Ecology, Evolution and Behavior, University of Minnesota, Twin Cities, 1479 Gortner Ave, Gortner 140, St Paul, MN, 55108, USA
| |
Collapse
|
2
|
Selba MC, Bryson ER, Rosenberg CL, Heng HG, DeLeon VB. Selective breeding in domestic dogs: How selecting for a short face impacted canine neuroanatomy. Anat Rec (Hoboken) 2020; 304:101-115. [PMID: 32686330 DOI: 10.1002/ar.24471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/13/2020] [Accepted: 04/19/2020] [Indexed: 12/17/2022]
Abstract
The range of cranial morphology seen in domestic dogs (Canis lupus familiaris) is a direct result of thousands of years of selective breeding. This article is the first to investigate how selection for reduced faces in brachycephalic dogs impacted the neuroanatomy of the canine brain through the analysis of endocasts. Previous research has demonstrated global effects on the shape of the bony cranium as the result of these breeding practices; however, these studies have largely focused on the bony structures of the skull and failed to consider the influence of facial reduction on the soft tissues of the brain. We generated endocasts from an existing set of clinically-obtained CT scans representing a variety of dogs with various cranial morphologies. These dogs represented four breeds as well as a comparative sample of dogs of unknown breed. We recorded three-dimensional coordinate data for 31 landmarks representing various gyri, sulci, and other neuroanatomical landmarks that allowed us to analyze differences in shape of the endocasts. Through geometric morphometric analyses, we determined that the endocast shape variance in this sample is correlated with cephalic index, and thus the selection for facial reduction has caused a perceivable effect on canine neuroanatomy. Additionally, we found the majority of the shape variance in the sample to be associated with olfactory anatomy; however, the rest of the morphology also correlates with cephalic index. The results of this article indicate that modern breeding practices and the selection for dogs with short faces have significantly influenced canine neuroanatomy.
Collapse
|
3
|
Abstract
BACKGROUND The Australian dingo continues to cause debate amongst Aboriginal people, pastoralists, scientists and the government in Australia. A lingering controversy is whether the dingo has been tamed and has now reverted to its ancestral wild state or whether its ancestors were domesticated and it now resides on the continent as a feral dog. The goal of this article is to place the discussion onto a theoretical framework, highlight what is currently known about dingo origins and taxonomy and then make a series of experimentally testable organismal, cellular and biochemical predictions that we propose can focus future research. DISCUSSION We consider a canid that has been unconsciously selected as a tamed animal and the endpoint of methodical or what we now call artificial selection as a domesticated animal. We consider wild animals that were formerly tamed as untamed and those wild animals that were formerly domesticated as feralized. Untamed canids are predicted to be marked by a signature of unconscious selection whereas feral animals are hypothesized to be marked by signatures of both unconscious and artificial selection. First, we review the movement of dingo ancestors into Australia. We then discuss how differences between taming and domestication may influence the organismal traits of skull morphometrics, brain and size, seasonal breeding, and sociability. Finally, we consider cellular and molecular level traits including hypotheses concerning the phylogenetic position of dingoes, metabolic genes that appear to be under positive selection and the potential for micronutrient compensation by the gut microbiome. CONCLUSIONS Western Australian Government policy is currently being revised to allow the widespread killing of the Australian dingo. These policies are based on an incomplete understanding of the evolutionary history of the canid and assume the dingo is feralized. However, accumulated evidence does not definitively show that the dingo was ever domesticated and additional focused research is required. We suggest that incorporating ancient DNA data into the debate concerning dingo origins will be pivotal to understanding the evolutionary history of the canid. Further, we advocate that future morphological, behavioural and genetic studies should focus on including genetically pure Alpine and Desert dingoes and not dingo-dog hybrids. Finally, we propose that future studies critically examine genes under selection in the dingo and employ the genome from a wild canid for comparison.
Collapse
Affiliation(s)
- J. William O. Ballard
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW 2052 Australia
| | - Laura A. B. Wilson
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| |
Collapse
|
4
|
Allemand R, Boistel R, Daghfous G, Blanchet Z, Cornette R, Bardet N, Vincent P, Houssaye A. Comparative morphology of snake (Squamata) endocasts: evidence of phylogenetic and ecological signals. J Anat 2017; 231:849-868. [PMID: 28960295 DOI: 10.1111/joa.12692] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2017] [Indexed: 12/22/2022] Open
Abstract
Brain endocasts obtained from computed tomography (CT) are now widely used in the field of comparative neuroanatomy. They provide an overview of the morphology of the brain and associated tissues located in the cranial cavity. Through anatomical comparisons between species, insights on the senses, the behavior, and the lifestyle can be gained. Although there are many studies dealing with mammal and bird endocasts, those performed on the brain endocasts of squamates are comparatively rare, thus limiting our understanding of their morphological variability and interpretations. Here, we provide the first comparative study of snake brain endocasts in order to bring new information about the morphology of these structures. Additionally, we test if the snake brain endocast encompasses a phylogenetic and/or an ecological signal. For this purpose, the digital endocasts of 45 snake specimens, including a wide diversity in terms of phylogeny and ecology, were digitized using CT, and compared both qualitatively and quantitatively. Snake endocasts exhibit a great variability. The different methods performed from descriptive characters, linear measurements and the outline curves provided complementary information. All these methods have shown that the shape of the snake brain endocast contains, as in mammals and birds, a phylogenetic signal but also an ecological one. Although phylogenetically related taxa share several similarities between each other, the brain endocast morphology reflects some notable ecological trends: e.g. (i) fossorial species possess both reduced optic tectum and pituitary gland; (ii) both fossorial and marine species have cerebral hemispheres poorly developed laterally; (iii) cerebral hemispheres and optic tectum are more developed in arboreal and terrestrial species.
Collapse
Affiliation(s)
- Rémi Allemand
- Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements, CR2P - UMR 7207 - CNRS, MNHN, UPMC, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France.,Département Adaptations du Vivant, UMR 7179 - CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Renaud Boistel
- IPHEP-UMR CNRS 6046, UFR SFA, Université de Poitiers, Poitiers, France
| | - Gheylen Daghfous
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Zoé Blanchet
- Département Adaptations du Vivant, UMR 7179 - CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Nathalie Bardet
- Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements, CR2P - UMR 7207 - CNRS, MNHN, UPMC, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Peggy Vincent
- Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements, CR2P - UMR 7207 - CNRS, MNHN, UPMC, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Alexandra Houssaye
- Département Adaptations du Vivant, UMR 7179 - CNRS/Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
5
|
Holekamp KE, Benson-Amram S. The evolution of intelligence in mammalian carnivores. Interface Focus 2017; 7:20160108. [PMID: 28479979 DOI: 10.1098/rsfs.2016.0108] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Although intelligence should theoretically evolve to help animals solve specific types of problems posed by the environment, it is unclear which environmental challenges favour enhanced cognition, or how general intelligence evolves along with domain-specific cognitive abilities. The social intelligence hypothesis posits that big brains and great intelligence have evolved to cope with the labile behaviour of group mates. We have exploited the remarkable convergence in social complexity between cercopithecine primates and spotted hyaenas to test predictions of the social intelligence hypothesis in regard to both cognition and brain size. Behavioural data indicate that there has been considerable convergence between primates and hyaenas with respect to their social cognitive abilities. Moreover, compared with other hyaena species, spotted hyaenas have larger brains and expanded frontal cortex, as predicted by the social intelligence hypothesis. However, broader comparative study suggests that domain-general intelligence in carnivores probably did not evolve in response to selection pressures imposed specifically in the social domain. The cognitive buffer hypothesis, which suggests that general intelligence evolves to help animals cope with novel or changing environments, appears to offer a more robust explanation for general intelligence in carnivores than any hypothesis invoking selection pressures imposed strictly by sociality or foraging demands.
Collapse
Affiliation(s)
- Kay E Holekamp
- Department of Integrative Biology, Michigan State University, 288 Farm Lane, Room 203, East Lansing, MI 48824-1115, USA.,Ecology, Evolutionary Biology and Behavior, Michigan State University, 103 Giltner Hall, East Lansing, MI 48824, USA
| | - Sarah Benson-Amram
- Department of Zoology and Physiology, University of Wyoming, 1000 E. University Ave, Biological Science Building, Laramie, WY 82071, USA.,Program in Ecology, Berry Center, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
6
|
Sakai ST, Arsznov BM, Hristova AE, Yoon EJ, Lundrigan BL. Big Cat Coalitions: A Comparative Analysis of Regional Brain Volumes in Felidae. Front Neuroanat 2016; 10:99. [PMID: 27812324 PMCID: PMC5071314 DOI: 10.3389/fnana.2016.00099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/28/2016] [Indexed: 11/13/2022] Open
Abstract
Broad-based species comparisons across mammalian orders suggest a number of factors that might influence the evolution of large brains. However, the relationship between these factors and total and regional brain size remains unclear. This study investigated the relationship between relative brain size and regional brain volumes and sociality in 13 felid species in hopes of revealing relationships that are not detected in more inclusive comparative studies. In addition, a more detailed analysis was conducted of four focal species: lions (Panthera leo), leopards (Panthera pardus), cougars (Puma concolor), and cheetahs (Acinonyx jubatus). These species differ markedly in sociality and behavioral flexibility, factors hypothesized to contribute to increased relative brain size and/or frontal cortex size. Lions are the only truly social species, living in prides. Although cheetahs are largely solitary, males often form small groups. Both leopards and cougars are solitary. Of the four species, leopards exhibit the most behavioral flexibility, readily adapting to changing circumstances. Regional brain volumes were analyzed using computed tomography. Skulls (n = 75) were scanned to create three-dimensional virtual endocasts, and regional brain volumes were measured using either sulcal or bony landmarks obtained from the endocasts or skulls. Phylogenetic least squares regression analyses found that sociality does not correspond with larger relative brain size in these species. However, the sociality/solitary variable significantly predicted anterior cerebrum (AC) volume, a region that includes frontal cortex. This latter finding is despite the fact that the two social species in our sample, lions and cheetahs, possess the largest and smallest relative AC volumes, respectively. Additionally, an ANOVA comparing regional brain volumes in four focal species revealed that lions and leopards, while not significantly different from one another, have relatively larger AC volumes than are found in cheetahs or cougars. Further, female lions possess a significantly larger AC volume than conspecific males; female lion values were also larger than those of the other three species (regardless of sex). These results may reflect greater complexity in a female lion’s social world, but additional studies are necessary. These data suggest that within family comparisons may reveal variations not easily detected by broad comparative analyses.
Collapse
Affiliation(s)
- Sharleen T Sakai
- Department of Psychology, Michigan State University, East LansingMI, USA; Neuroscience Program, Michigan State University, East LansingMI, USA
| | - Bradley M Arsznov
- Department of Psychology, Minnesota State University, Mankato, Mankato MN, USA
| | - Ani E Hristova
- Department of Psychology, Michigan State University, East Lansing MI, USA
| | - Elise J Yoon
- Department of Psychology, Michigan State University, East Lansing MI, USA
| | - Barbara L Lundrigan
- Department of Integrative Biology and Michigan State University Museum, Michigan State University, East Lansing MI, USA
| |
Collapse
|
7
|
Abstract
Despite considerable interest in the forces shaping the relationship between brain size and cognitive abilities, it remains controversial whether larger-brained animals are, indeed, better problem-solvers. Recently, several comparative studies have revealed correlations between brain size and traits thought to require advanced cognitive abilities, such as innovation, behavioral flexibility, invasion success, and self-control. However, the general assumption that animals with larger brains have superior cognitive abilities has been heavily criticized, primarily because of the lack of experimental support for it. Here, we designed an experiment to inquire whether specific neuroanatomical or socioecological measures predict success at solving a novel technical problem among species in the mammalian order Carnivora. We presented puzzle boxes, baited with food and scaled to accommodate body size, to members of 39 carnivore species from nine families housed in multiple North American zoos. We found that species with larger brains relative to their body mass were more successful at opening the boxes. In a subset of species, we also used virtual brain endocasts to measure volumes of four gross brain regions and show that some of these regions improve model prediction of success at opening the boxes when included with total brain size and body mass. Socioecological variables, including measures of social complexity and manual dexterity, failed to predict success at opening the boxes. Our results, thus, fail to support the social brain hypothesis but provide important empirical support for the relationship between relative brain size and the ability to solve this novel technical problem.
Collapse
|
8
|
Holekamp KE, Dantzer B, Stricker G, Shaw Yoshida KC, Benson-Amram S. Brains, brawn and sociality: a hyaena's tale. Anim Behav 2015; 103:237-248. [PMID: 26160980 PMCID: PMC4493912 DOI: 10.1016/j.anbehav.2015.01.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Theoretically intelligence should evolve to help animals solve specific types of problems posed by the environment, but it remains unclear how environmental complexity or novelty facilitates the evolutionary enhancement of cognitive abilities, or whether domain-general intelligence can evolve in response to domain-specific selection pressures. The social complexity hypothesis, which posits that intelligence evolved to cope with the labile behaviour of conspecific group-mates, has been strongly supported by work on the sociocognitive abilities of primates and other animals. Here we review the remarkable convergence in social complexity between cercopithecine primates and spotted hyaenas, and describe our tests of predictions of the social complexity hypothesis in regard to both cognition and brain size in hyaenas. Behavioural data indicate that there has been remarkable convergence between primates and hyaenas with respect to their abilities in the domain of social cognition. Furthermore, within the family Hyaenidae, our data suggest that social complexity might have contributed to enlargement of the frontal cortex. However, social complexity failed to predict either brain volume or frontal cortex volume in a larger array of mammalian carnivores. To address the question of whether or not social complexity might be able to explain the evolution of domain-general intelligence as well as social cognition in particular, we presented simple puzzle boxes, baited with food and scaled to accommodate body size, to members of 39 carnivore species housed in zoos and found that species with larger brains relative to their body mass were more innovative and more successful at opening the boxes. However, social complexity failed to predict success in solving this problem. Overall our work suggests that, although social complexity enhances social cognition, there are no unambiguous causal links between social complexity and either brain size or performance in problem-solving tasks outside the social domain in mammalian carnivores.
Collapse
Affiliation(s)
- Kay E. Holekamp
- Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, U.S.A
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, U.S.A
| | - Ben Dantzer
- Department of Psychology, University of Michigan, Ann Arbor, MI, U.S.A
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, U.S.A
| | - Gregory Stricker
- Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, U.S.A
| | | | - Sarah Benson-Amram
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, U.S.A
- Program in Ecology, University of Wyoming, Laramie, WY, U.S.A
| |
Collapse
|
9
|
Weber GW. Virtual Anthropology. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2014; 156 Suppl 59:22-42. [DOI: 10.1002/ajpa.22658] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gerhard W. Weber
- Department of Anthropology; University of Vienna; A-1090 Vienna Austria
- Core Facility for Micro-Computed Tomography; University of Vienna; A-1090 Vienna Austria
| |
Collapse
|
10
|
Arsznov BM, Sakai ST. The procyonid social club: comparison of brain volumes in the coatimundi (Nasua nasua, N. narica), kinkajou (Potos flavus), and raccoon (Procyon lotor). BRAIN, BEHAVIOR AND EVOLUTION 2013; 82:129-45. [PMID: 24107681 DOI: 10.1159/000354639] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 07/22/2013] [Indexed: 11/19/2022]
Abstract
The present study investigated whether increased relative brain size, including regional brain volumes, is related to differing behavioral specializations exhibited by three member species of the family Procyonidae. Procyonid species exhibit continuums of behaviors related to social and physical environmental complexities: the mostly solitary, semiarboreal and highly dexterous raccoons (Procyon lotor); the exclusively arboreal kinkajous (Potos flavus), which live either alone or in small polyandrous family groups, and the social, terrestrial coatimundi (Nasua nasua, N. narica). Computed tomographic (CT) scans of 45 adult skulls including 17 coatimundis (9 male, 8 female), 14 raccoons (7 male, 7 female), and 14 kinkajous (7 male, 7 female) were used to create three-dimensional virtual endocasts. Endocranial volume was positively correlated with two separate measures of body size: skull basal length (r = 0.78, p < 0.01) and basicranial axis length (r = 0.45, p = 0.002). However, relative brain size (total endocranial volume as a function of body size) varied by species depending on which body size measurement (skull basal length or basicranial axis length) was used. Comparisons of relative regional brain volumes revealed that the anterior cerebrum volume consisting mainly of frontal cortex and surface area was significantly larger in the social coatimundi compared to kinkajous and raccoons. The dexterous raccoon had the largest relative posterior cerebrum volume, which includes the somatosensory cortex, in comparison to the other procyonid species studied. The exclusively arboreal kinkajou had the largest relative cerebellum and brain stem volume in comparison to the semi arboreal raccoon and the terrestrial coatimundi. Finally, intraspecific comparisons failed to reveal any sex differences, except in the social coatimundi. Female coatimundis possessed a larger relative frontal cortical volume than males. Social life histories differ in male and female coatimundis but not in either kinkajous or raccoons. This difference may reflect the differing social life histories experienced by females who reside in their natal bands, and forage and engage in antipredator behavior as a group, while males disperse upon reaching adulthood and are usually solitary thereafter. This analysis in the three procyonid species supports the comparative neurology principle that behavioral specializations correspond to an expansion of neural tissue involved in that function.
Collapse
Affiliation(s)
- Bradley M Arsznov
- Department of Psychology, Michigan State University, East Lansing, Mich., USA
| | | |
Collapse
|
11
|
Logan CJ, Clutton-Brock TH. Validating methods for estimating endocranial volume in individual red deer (Cervus elaphus). Behav Processes 2013; 92:143-6. [DOI: 10.1016/j.beproc.2012.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 11/26/2022]
|
12
|
Arsznov BM, Sakai ST. Pride Diaries: Sex, Brain Size and Sociality in the African Lion (Panthera leo) and Cougar (Puma concolor) . BRAIN, BEHAVIOR AND EVOLUTION 2012; 79:275-89. [DOI: 10.1159/000338670] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 04/04/2012] [Indexed: 11/19/2022]
|