1
|
Liu J, Fan T, Chen Y, Zhao J. Seeking the neural representation of statistical properties in print during implicit processing of visual words. NPJ SCIENCE OF LEARNING 2023; 8:60. [PMID: 38102191 PMCID: PMC10724295 DOI: 10.1038/s41539-023-00209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Statistical learning (SL) plays a key role in literacy acquisition. Studies have increasingly revealed the influence of distributional statistical properties of words on visual word processing, including the effects of word frequency (lexical level) and mappings between orthography, phonology, and semantics (sub-lexical level). However, there has been scant evidence to directly confirm that the statistical properties contained in print can be directly characterized by neural activities. Using time-resolved representational similarity analysis (RSA), the present study examined neural representations of different types of statistical properties in visual word processing. From the perspective of predictive coding, an equal probability sequence with low built-in prediction precision and three oddball sequences with high built-in prediction precision were designed with consistent and three types of inconsistent (orthographically inconsistent, orthography-to-phonology inconsistent, and orthography-to-semantics inconsistent) Chinese characters as visual stimuli. In the three oddball sequences, consistent characters were set as the standard stimuli (probability of occurrence p = 0.75) and three types of inconsistent characters were set as deviant stimuli (p = 0.25), respectively. In the equal probability sequence, the same consistent and inconsistent characters were presented randomly with identical occurrence probability (p = 0.25). Significant neural representation activities of word frequency were observed in the equal probability sequence. By contrast, neural representations of sub-lexical statistics only emerged in oddball sequences where short-term predictions were shaped. These findings reveal that the statistical properties learned from long-term print environment continues to play a role in current word processing mechanisms and these mechanisms can be modulated by short-term predictions.
Collapse
Affiliation(s)
- Jianyi Liu
- School of Psychology, Shaanxi Normal University, and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China.
| | - Tengwen Fan
- School of Psychology, Shaanxi Normal University, and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China
| | - Yan Chen
- Key laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan, China
- Key laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China
| | - Jingjing Zhao
- School of Psychology, Shaanxi Normal University, and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China.
| |
Collapse
|
2
|
Hippocampal and auditory contributions to speech segmentation. Cortex 2022; 150:1-11. [DOI: 10.1016/j.cortex.2022.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 11/03/2021] [Accepted: 01/23/2022] [Indexed: 11/21/2022]
|
3
|
Ramos-Escobar N, Segura E, Olivé G, Rodriguez-Fornells A, François C. Oscillatory activity and EEG phase synchrony of concurrent word segmentation and meaning-mapping in 9-year-old children. Dev Cogn Neurosci 2021; 51:101010. [PMID: 34461393 PMCID: PMC8403737 DOI: 10.1016/j.dcn.2021.101010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 10/28/2022] Open
Abstract
When learning a new language, one must segment words from continuous speech and associate them with meanings. These complex processes can be boosted by attentional mechanisms triggered by multi-sensory information. Previous electrophysiological studies suggest that brain oscillations are sensitive to different hierarchical complexity levels of the input, making them a plausible neural substrate for speech parsing. Here, we investigated the functional role of brain oscillations during concurrent speech segmentation and meaning acquisition in sixty 9-year-old children. We collected EEG data during an audio-visual statistical learning task during which children were exposed to a learning condition with consistent word-picture associations and a random condition with inconsistent word-picture associations before being tested on their ability to recall words and word-picture associations. We capitalized on the brain dynamics to align neural activity to the same rate as an external rhythmic stimulus to explore modulations of neural synchronization and phase synchronization between electrodes during multi-sensory word learning. Results showed enhanced power at both word- and syllabic-rate and increased EEG phase synchronization between frontal and occipital regions in the learning compared to the random condition. These findings suggest that multi-sensory cueing and attentional mechanisms play an essential role in children's successful word learning.
Collapse
Affiliation(s)
- Neus Ramos-Escobar
- Dept. of Cognition, Development and Educational Science, Institute of Neuroscience, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, 08097, Spain; Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, 08097, Spain
| | - Emma Segura
- Dept. of Cognition, Development and Educational Science, Institute of Neuroscience, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, 08097, Spain; Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, 08097, Spain
| | - Guillem Olivé
- Dept. of Cognition, Development and Educational Science, Institute of Neuroscience, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, 08097, Spain; Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, 08097, Spain
| | - Antoni Rodriguez-Fornells
- Dept. of Cognition, Development and Educational Science, Institute of Neuroscience, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, 08097, Spain; Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, 08097, Spain; Catalan Institution for Research and Advanced Studies, ICREA, Barcelona, Spain.
| | | |
Collapse
|
4
|
Pesnot Lerousseau J, Schön D. Musical Expertise Is Associated with Improved Neural Statistical Learning in the Auditory Domain. Cereb Cortex 2021; 31:4877-4890. [PMID: 34013316 DOI: 10.1093/cercor/bhab128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 11/14/2022] Open
Abstract
It is poorly known whether musical training is associated with improvements in general cognitive abilities, such as statistical learning (SL). In standard SL paradigms, musicians have shown better performances than nonmusicians. However, this advantage could be due to differences in auditory discrimination, in memory or truly in the ability to learn sequence statistics. Unfortunately, these different hypotheses make similar predictions in terms of expected results. To dissociate them, we developed a Bayesian model and recorded electroencephalography (EEG). Our results confirm that musicians perform approximately 15% better than nonmusicians at predicting items in auditory sequences that embed either low or high-order statistics. These higher performances are explained in the model by parameters governing the learning of high-order statistics and the selection stage noise. EEG recordings reveal a neural underpinning of the musician's advantage: the P300 amplitude correlates with the surprise elicited by each item, and so, more strongly for musicians. Finally, early EEG components correlate with the surprise elicited by low-order statistics, as opposed to late EEG components that correlate with the surprise elicited by high-order statistics and this effect is stronger for musicians. Overall, our results demonstrate that musical expertise is associated with improved neural SL in the auditory domain. SIGNIFICANCE STATEMENT It is poorly known whether musical training leads to improvements in general cognitive skills. One fundamental cognitive ability, SL, is thought to be enhanced in musicians, but previous studies have reported mixed results. This is because such musician's advantage can embrace very different explanations, such as improvement in auditory discrimination or in memory. To solve this problem, we developed a Bayesian model and recorded EEG to dissociate these explanations. Our results reveal that musical expertise is truly associated with an improved ability to learn sequence statistics, especially high-order statistics. This advantage is reflected in the electroencephalographic recordings, where the P300 amplitude is more sensitive to surprising items in musicians than in nonmusicians.
Collapse
Affiliation(s)
| | - Daniele Schön
- Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
5
|
Snijders TM, Benders T, Fikkert P. Infants Segment Words from Songs-An EEG Study. Brain Sci 2020; 10:E39. [PMID: 31936586 PMCID: PMC7017257 DOI: 10.3390/brainsci10010039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/25/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
Children's songs are omnipresent and highly attractive stimuli in infants' input. Previous work suggests that infants process linguistic-phonetic information from simplified sung melodies. The present study investigated whether infants learn words from ecologically valid children's songs. Testing 40 Dutch-learning 10-month-olds in a familiarization-then-test electroencephalography (EEG) paradigm, this study asked whether infants can segment repeated target words embedded in songs during familiarization and subsequently recognize those words in continuous speech in the test phase. To replicate previous speech work and compare segmentation across modalities, infants participated in both song and speech sessions. Results showed a positive event-related potential (ERP) familiarity effect to the final compared to the first target occurrences during both song and speech familiarization. No evidence was found for word recognition in the test phase following either song or speech. Comparisons across the stimuli of the present and a comparable previous study suggested that acoustic prominence and speech rate may have contributed to the polarity of the ERP familiarity effect and its absence in the test phase. Overall, the present study provides evidence that 10-month-old infants can segment words embedded in songs, and it raises questions about the acoustic and other factors that enable or hinder infant word segmentation from songs and speech.
Collapse
Affiliation(s)
- Tineke M. Snijders
- Language Development Department, Max Planck Institute for Psycholinguistics, 6500 Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 Nijmegen, The Netherlands;
| | - Titia Benders
- Department of Linguistics, Macquarie University, North Ryde 2109, Australia
| | - Paula Fikkert
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 Nijmegen, The Netherlands;
- Centre for Language Studies, Radboud University, 6500 Nijmegen, The Netherlands
| |
Collapse
|
6
|
Daikoku T. Neurophysiological Markers of Statistical Learning in Music and Language: Hierarchy, Entropy, and Uncertainty. Brain Sci 2018; 8:E114. [PMID: 29921829 PMCID: PMC6025354 DOI: 10.3390/brainsci8060114] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 01/07/2023] Open
Abstract
Statistical learning (SL) is a method of learning based on the transitional probabilities embedded in sequential phenomena such as music and language. It has been considered an implicit and domain-general mechanism that is innate in the human brain and that functions independently of intention to learn and awareness of what has been learned. SL is an interdisciplinary notion that incorporates information technology, artificial intelligence, musicology, and linguistics, as well as psychology and neuroscience. A body of recent study has suggested that SL can be reflected in neurophysiological responses based on the framework of information theory. This paper reviews a range of work on SL in adults and children that suggests overlapping and independent neural correlations in music and language, and that indicates disability of SL. Furthermore, this article discusses the relationships between the order of transitional probabilities (TPs) (i.e., hierarchy of local statistics) and entropy (i.e., global statistics) regarding SL strategies in human's brains; claims importance of information-theoretical approaches to understand domain-general, higher-order, and global SL covering both real-world music and language; and proposes promising approaches for the application of therapy and pedagogy from various perspectives of psychology, neuroscience, computational studies, musicology, and linguistics.
Collapse
Affiliation(s)
- Tatsuya Daikoku
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.
| |
Collapse
|
7
|
Paraskevopoulos E, Chalas N, Bamidis P. Functional connectivity of the cortical network supporting statistical learning in musicians and non-musicians: an MEG study. Sci Rep 2017; 7:16268. [PMID: 29176557 PMCID: PMC5701139 DOI: 10.1038/s41598-017-16592-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 11/14/2017] [Indexed: 01/18/2023] Open
Abstract
Statistical learning is a cognitive process of great importance for the detection and representation of environmental regularities. Complex cognitive processes such as statistical learning usually emerge as a result of the activation of widespread cortical areas functioning in dynamic networks. The present study investigated the cortical large-scale network supporting statistical learning of tone sequences in humans. The reorganization of this network related to musical expertise was assessed via a cross-sectional comparison of a group of musicians to a group of non-musicians. The cortical responses to a statistical learning paradigm incorporating an oddball approach were measured via Magnetoencephalographic (MEG) recordings. Large-scale connectivity of the cortical activity was calculated via a statistical comparison of the estimated transfer entropy in the sources' activity. Results revealed the functional architecture of the network supporting the processing of statistical learning, highlighting the prominent role of informational processing pathways that bilaterally connect superior temporal and intraparietal sources with the left IFG. Musical expertise is related to extensive reorganization of this network, as the group of musicians showed a network comprising of more widespread and distributed cortical areas as well as enhanced global efficiency and increased contribution of additional temporal and frontal sources in the information processing pathway.
Collapse
Affiliation(s)
- Evangelos Paraskevopoulos
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, P.C., 54124, Thessaloniki, Greece.
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, P.C., D-48149, Münster, Germany.
| | - Nikolas Chalas
- School of Biology, Faculty of Science, Aristotle University of Thessaloniki, P.C., 54124, Thessaloniki, Greece
| | - Panagiotis Bamidis
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, P.C., 54124, Thessaloniki, Greece
| |
Collapse
|
8
|
Auditory Magnetoencephalographic Frequency-Tagged Responses Mirror the Ongoing Segmentation Processes Underlying Statistical Learning. Brain Topogr 2016; 30:220-232. [DOI: 10.1007/s10548-016-0518-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022]
|
9
|
François C, Jaillet F, Takerkart S, Schön D. Faster sound stream segmentation in musicians than in nonmusicians. PLoS One 2014; 9:e101340. [PMID: 25014068 PMCID: PMC4094420 DOI: 10.1371/journal.pone.0101340] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 06/05/2014] [Indexed: 12/24/2022] Open
Abstract
The musician's brain is considered as a good model of brain plasticity as musical training is known to modify auditory perception and related cortical organization. Here, we show that music-related modifications can also extend beyond motor and auditory processing and generalize (transfer) to speech processing. Previous studies have shown that adults and newborns can segment a continuous stream of linguistic and non-linguistic stimuli based only on probabilities of occurrence between adjacent syllables, tones or timbres. The paradigm classically used in these studies consists of a passive exposure phase followed by a testing phase. By using both behavioural and electrophysiological measures, we recently showed that adult musicians and musically trained children outperform nonmusicians in the test following brief exposure to an artificial sung language. However, the behavioural test does not allow for studying the learning process per se but rather the result of the learning. In the present study, we analyze the electrophysiological learning curves that are the ongoing brain dynamics recorded as the learning is taking place. While musicians show an inverted U shaped learning curve, nonmusicians show a linear learning curve. Analyses of Event-Related Potentials (ERPs) allow for a greater understanding of how and when musical training can improve speech segmentation. These results bring evidence of enhanced neural sensitivity to statistical regularities in musicians and support the hypothesis of positive transfer of training effect from music to sound stream segmentation in general.
Collapse
Affiliation(s)
- Clément François
- Cognition and Brain Plasticity Unit, Institute of Biomedicine Research of Bellvitge, Barcelona, Spain
- Department of Basic Psychology, University of Barcelona, Barcelona, Spain
| | - Florent Jaillet
- Institut de Neurosciences de la Timone, Unité Mixte de Recherche 7289, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Sylvain Takerkart
- Institut de Neurosciences de la Timone, Unité Mixte de Recherche 7289, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Daniele Schön
- Institut de Neurosciences des Systèmes Unité 1106, Aix-Marseille Université, Institut National de la Santé Et de la Recherche Médicale, Marseille, France
- * E-mail:
| |
Collapse
|
10
|
Flaugnacco E, Lopez L, Terribili C, Zoia S, Buda S, Tilli S, Monasta L, Montico M, Sila A, Ronfani L, Schön D. Rhythm perception and production predict reading abilities in developmental dyslexia. Front Hum Neurosci 2014; 8:392. [PMID: 24926248 PMCID: PMC4045153 DOI: 10.3389/fnhum.2014.00392] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/16/2014] [Indexed: 11/30/2022] Open
Abstract
Rhythm organizes events in time and plays a major role in music, but also in the phonology and prosody of a language. Interestingly, children with developmental dyslexia—a learning disability that affects reading acquisition despite normal intelligence and adequate education—have a poor rhythmic perception. It has been suggested that an accurate perception of rhythmical/metrical structure, that requires accurate perception of rise time, may be critical for phonological development and subsequent literacy. This hypothesis is mostly based on results showing a high degree of correlation between phonological awareness and metrical skills, using a very specific metrical task. We present new findings from the analysis of a sample of 48 children with a diagnosis of dyslexia, without comorbidities. These children were assessed with neuropsychological tests, as well as specifically-devised psychoacoustic and musical tasks mostly testing temporal abilities. Associations were tested by multivariate analyses including data mining strategies, correlations and most importantly logistic regressions to understand to what extent the different auditory and musical skills can be a robust predictor of reading and phonological skills. Results show a strong link between several temporal skills and phonological and reading abilities. These findings are discussed in the framework of the neuroscience literature comparing music and language processing, with a particular interest in the links between rhythm processing in music and language.
Collapse
Affiliation(s)
- Elena Flaugnacco
- Child Neurology and Psychiatry Ward, Institute for Maternal and Child Health - IRCCS Burlo Garofolo Pediatric Institute Trieste, Italy ; Center for the Child Health - Onlus Trieste, Italy
| | - Luisa Lopez
- Developmental Neuropsychiatry Ward, Villaggio Eugenio Litta Rome, Italy
| | - Chiara Terribili
- Developmental Neuropsychiatry Ward, Villaggio Eugenio Litta Rome, Italy
| | - Stefania Zoia
- Child Neurology and Psychiatry Ward, Institute for Maternal and Child Health - IRCCS Burlo Garofolo Pediatric Institute Trieste, Italy
| | - Sonia Buda
- Developmental Neuropsychiatry Ward, Villaggio Eugenio Litta Rome, Italy
| | - Sara Tilli
- Developmental Neuropsychiatry Ward, Villaggio Eugenio Litta Rome, Italy
| | - Lorenzo Monasta
- Epidemiology and Biostatistics Unit, Institute for Maternal and Child Health - IRCCS Burlo Garofolo Pediatric Institute Trieste, Italy
| | - Marcella Montico
- Epidemiology and Biostatistics Unit, Institute for Maternal and Child Health - IRCCS Burlo Garofolo Pediatric Institute Trieste, Italy
| | | | - Luca Ronfani
- Epidemiology and Biostatistics Unit, Institute for Maternal and Child Health - IRCCS Burlo Garofolo Pediatric Institute Trieste, Italy
| | - Daniele Schön
- Institut de Neurosciences des Systémes, Aix-Marseille Université Marseille, France ; INSERM, U1106 Marseille, France
| |
Collapse
|
11
|
François C, Schön D. Neural sensitivity to statistical regularities as a fundamental biological process that underlies auditory learning: the role of musical practice. Hear Res 2013; 308:122-8. [PMID: 24035820 DOI: 10.1016/j.heares.2013.08.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 08/21/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
Abstract
There is increasing evidence that humans and other nonhuman mammals are sensitive to the statistical structure of auditory input. Indeed, neural sensitivity to statistical regularities seems to be a fundamental biological property underlying auditory learning. In the case of speech, statistical regularities play a crucial role in the acquisition of several linguistic features, from phonotactic to more complex rules such as morphosyntactic rules. Interestingly, a similar sensitivity has been shown with non-speech streams: sequences of sounds changing in frequency or timbre can be segmented on the sole basis of conditional probabilities between adjacent sounds. We recently ran a set of cross-sectional and longitudinal experiments showing that merging music and speech information in song facilitates stream segmentation and, further, that musical practice enhances sensitivity to statistical regularities in speech at both neural and behavioral levels. Based on recent findings showing the involvement of a fronto-temporal network in speech segmentation, we defend the idea that enhanced auditory learning observed in musicians originates via at least three distinct pathways: enhanced low-level auditory processing, enhanced phono-articulatory mapping via the left Inferior Frontal Gyrus and Pre-Motor cortex and increased functional connectivity within the audio-motor network. Finally, we discuss how these data predict a beneficial use of music for optimizing speech acquisition in both normal and impaired populations.
Collapse
Affiliation(s)
- Clément François
- Cognition and Brain Plasticity Unit, Dept. of Basic Psychology (Campus de Bellvitge) & IDIBELL, University of Barcelona, Feixa Llarga s/n, 08907 L'Hospitalet (Barcelona), Spain; Department of Basic Psychology, Faculty of Psychology, University of Barcelona, 08035 Barcelona, Spain
| | - Daniele Schön
- Aix-Marseille Université, INS, Marseille, France; INSERM, U1106, Marseille, France.
| |
Collapse
|
12
|
Chobert J, Besson M. Musical expertise and second language learning. Brain Sci 2013; 3:923-40. [PMID: 24961431 PMCID: PMC4061852 DOI: 10.3390/brainsci3020923] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/23/2013] [Accepted: 05/24/2013] [Indexed: 11/16/2022] Open
Abstract
Increasing evidence suggests that musical expertise influences brain organization and brain functions. Moreover, results at the behavioral and neurophysiological levels reveal that musical expertise positively influences several aspects of speech processing, from auditory perception to speech production. In this review, we focus on the main results of the literature that led to the idea that musical expertise may benefit second language acquisition. We discuss several interpretations that may account for the influence of musical expertise on speech processing in native and foreign languages, and we propose new directions for future research.
Collapse
Affiliation(s)
- Julie Chobert
- Laboratoire de Neurosciences Cognitives, CNRS-Aix-Marseille Université, 3 place Victor Hugo, 13331 Marseille Cedex 3, France.
| | - Mireille Besson
- Laboratoire de Neurosciences Cognitives, CNRS-Aix-Marseille Université, 3 place Victor Hugo, 13331 Marseille Cedex 3, France.
| |
Collapse
|
13
|
Altenmüller E, Demorest SM, Fujioka T, Halpern AR, Hannon EE, Loui P, Majno M, Oechslin MS, Osborne N, Overy K, Palmer C, Peretz I, Pfordresher PQ, Särkämö T, Wan CY, Zatorre RJ. Introduction to The neurosciences and music IV: learning and memory. Ann N Y Acad Sci 2012; 1252:1-16. [PMID: 22524334 DOI: 10.1111/j.1749-6632.2012.06474.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The conference entitled "The Neurosciences and Music-IV: Learning and Memory'' was held at the University of Edinburgh from June 9-12, 2011, jointly hosted by the Mariani Foundation and the Institute for Music in Human and Social Development, and involving nearly 500 international delegates. Two opening workshops, three large and vibrant poster sessions, and nine invited symposia introduced a diverse range of recent research findings and discussed current research directions. Here, the proceedings are introduced by the workshop and symposia leaders on topics including working with children, rhythm perception, language processing, cultural learning, memory, musical imagery, neural plasticity, stroke rehabilitation, autism, and amusia. The rich diversity of the interdisciplinary research presented suggests that the future of music neuroscience looks both exciting and promising, and that important implications for music rehabilitation and therapy are being discovered.
Collapse
Affiliation(s)
- E Altenmüller
- Institute of Music Physiology and Musician's Medicine, Hannover University of Music, Drama and Media, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|