1
|
Tian Z, Zhang Y, Lyu X. Promoting roles of KLF5 in myocardial infarction in mice involving microRNA-27a suppression and the following GFPT2/TGF-β/Smad2/3 axis activation. Cell Cycle 2021; 20:874-893. [PMID: 33910455 PMCID: PMC8168596 DOI: 10.1080/15384101.2021.1907512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 01/09/2023] Open
Abstract
Myocardial infarction (MI) is a major atherosclerotic cardiovascular disease which represents a leading cause of death worldwide. Kruppel-like factor 5 (KLF5) is a member of the kruppel-like transcription factor family which has been reported with pro-apoptotic functions in myocardial cells. This work focuses on the function of KLF5 in the pathogenesis of MI and the molecules involved. A mouse model with MI was established. Hypoxia/reoxygenation (H/R)-treated H9C2 cells were applied for in vitro experiments. A KLF5-specific inhibitor ML264 was administrated in cell and animal models. ML264 significantly reduced apoptosis, expression of fibrosis-related markers, reactive oxygen species in the H/R-treated H9C2 cells, and it reduced myocardial injury, infarct size, apoptosis and fibrosis in the myocardial tissues in model mice through specific downregulation of KLF5. A microRNA (miRNA) microarray analysis was performed, which suggested miR-27a as the most upregulated miRNA in the H/R-treated cells after ML264 treatment. miR-27a mimic reduced apoptosis and fibrosis in H/R-treated cells, while miR-27a inhibition blocked the protective roles of ML264. The integrated bioinformatic analyses and luciferase assays confirmed glutamine fructose-6-phosphate transaminase 2 (GFPT2) mRNA as a target of miR-27a. Overexpression of GFPT2 counteracted the protective functions of miR-27a against MI through the activation of the TGF-β/Smad2/3 signaling pathway. To conclude, this study evidenced that KLF5 possibly induces cell and tissue damage in MI through downregulation of miR-27a and the subsequent activation of GFPT2/TGF-β/Smad2/3 axis. This study may offer novel thoughts into MI treatment.
Collapse
Affiliation(s)
- Zhen Tian
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun130031, Jilin, P. R. China
| | - Yan Zhang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun130031, Jilin, P. R.China
| | - Xueman Lyu
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun130031, Jilin, P. R.China
| |
Collapse
|
2
|
Zi C, Zhang C, Yang Y, Ma J. Penehyclidine hydrochloride protects against anoxia/reoxygenation injury in cardiomyocytes through ATP-sensitive potassium channels, and the Akt/GSK-3β and Akt/mTOR signaling pathways. Cell Biol Int 2020; 44:1353-1362. [PMID: 32125033 DOI: 10.1002/cbin.11329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/01/2020] [Indexed: 12/13/2022]
Abstract
Penehyclidine hydrochloride (PHC) can protect against myocardial ischemia/reperfusion (I/R) injury. However, the possible mechanisms of PHC in anoxia/reoxygenation (A/R)-induced injury in H9c2 cells remain unclear. In the present study, H9c2 cells were pretreated with PI3K/Akt inhibitor LY294002, ATP-sensitive K+ (KATP) channel blocker 5-hydroxydecanoate (5-HD), PHC, or KATP channel opener diazoxide (DZ) before subjecting to A/R injury. Cell viability and cell apoptosis were determined by cell counting kit-8 assay and annexin V/PI assay, respectively. Myocardial injury was evaluated by measuring creatine kinase (CK) and lactate dehydrogenase (LDH) activities. Intracellular Ca2+ levels, reactive oxygen species (ROS) generation, mitochondrial membrane potential (ΔΨm ), and mitochondrial permeability transition pore (mPTP) were measured. The levels of cytoplasmic/mitochondrial cytochrome c (Cyt-C), Bax, Bcl-2, cleaved caspase-3, KATP channel subunits (Kir6.2 and SUR2A), and the members of the Akt/GSK-3β and Akt/mTOR signaling pathways were determined by western blotting. We found that PHC preconditioning alleviated A/R-induced cell injury by increasing cell viability, reducing CK and LDH activities, and inhibiting cell apoptosis. In addition, PHC preconditioning ameliorated intracellular Ca2+ overload and ROS production, accompanied by inhibition of both mPTP opening and Cyt-C release into cytoplasm, and maintenance of ΔΨm . Moreover, PHC preconditioning activated mitochondrial KATP channels, and modulated the Akt/GSK-3β and Akt/mTOR signaling pathways. Similar effects were observed upon treatment with DZ. Pretreatment with LY294002 or 5-HD blocked the beneficial effects of PHC. These results suggest that the protective effects of PHC preconditioning on A/R injury may be related to mitochondrial KATP channels, as well as the Akt/GSK-3β and Akt/mTOR signaling pathways.
Collapse
Affiliation(s)
- Congna Zi
- Department of Anesthesiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, 100029, PR China.,Department of Anesthesiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, PR China
| | - Chunlei Zhang
- Department of Anesthesiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, 100029, PR China
| | - Yanli Yang
- Department of Anesthesiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, 100029, PR China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, 100029, PR China
| |
Collapse
|
3
|
Ren ZH, Ke ZP, Luo M, Shi Y. Icariin protects against ischemia‑reperfusion injury in H9C2 cells by upregulating heat shock protein 20. Mol Med Rep 2017; 17:3336-3343. [PMID: 29257284 DOI: 10.3892/mmr.2017.8251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 06/30/2017] [Indexed: 11/06/2022] Open
Abstract
Icariin (ICA) has been implicated in certain biological and pathological processes, including myocardial ischemia/reperfusion (I/R) injury. The aim of the present study was to investigate the role of ICA in I/R‑induced cardiomyocyte injury and the potential underlying mechanism. Cell proliferation and apoptosis of H9C2 cells was determined by cell counting kit‑8 and flow cytometry assays. In addition, reactive oxygen species (ROS) production in H9C2 cells was measured by flow cytometry. Reverse transcription‑quantitative polymerase chain reaction and western blot assay were performed to examine the expression levels of proteins, including HSP20, B‑cell lymphoma 2 (Bcl‑2), cytochrome complex (Cyt‑c), apoptotic protease activating factor 1 (APAF1), caspase‑9 andcaspase‑3, and the phosphorylation of Akt (p‑Akt) in H9C2 cells. The present results demonstrated that, compared with the control group, the I/R group demonstrated significantly reduced levels of HSP20 expression and cell proliferation, and increased apoptosis and ROS production in H9C2 cells. In parallel, the expression levels of Cyt‑c, APAF1, caspase‑9 and caspase‑3 were significantly increased in the I/R group, although Bcl‑2 and p‑Akt/Akt expression levels were decreased. Furthermore, compared with the I/R group, ICA treatment and/or HSP20 overexpression significantly improved cardiac function, as evidenced by promoted cell proliferation and inhibited apoptosis of H9C2 cells. The current study indicates that ICA exerts a cardioprotective effect against I/R injury, which is associated with the upregulation of HSP20.
Collapse
Affiliation(s)
- Zhi-Hong Ren
- Department of Pediatrics, The Central Hospital of Huanggang, Huanggang, Hubei 438000, P.R. China
| | - Zun-Ping Ke
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Man Luo
- Department of Emergency, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Yan Shi
- Department of Emergency, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, Jiangsu 223302, P.R. China
| |
Collapse
|
4
|
Liu H, Yang L, Wu HJ, Chen KH, Lin F, Li G, Sun HY, Xiao GS, Wang Y, Li GR. Water-soluble acacetin prodrug confers significant cardioprotection against ischemia/reperfusion injury. Sci Rep 2016; 6:36435. [PMID: 27819271 PMCID: PMC5098248 DOI: 10.1038/srep36435] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/17/2016] [Indexed: 01/04/2023] Open
Abstract
The morbidity and mortality of patients with ischemic cardiomyopathy resulted from ischemia/reperfusion injury are very high. The present study investigates whether our previously synthesized water-soluble phosphate prodrug of acacetin was cardioprotective against ischemia/reperfusion injury in an in vivo rat model. We found that intravenous administration of acacetin prodrug (10 mg/kg) decreased the ventricular arrhythmia score and duration, reduced ventricular fibrillation and infarct size, and improved the impaired heart function induced by myocardial ischemia/reperfusion injury in anesthetized rats. The cardioprotective effects were further confirmed with the parent compound acacetin in an ex vivo rat regional ischemia/reperfusion heart model. Molecular mechanism analysis revealed that acacetin prevented the ischemia/reperfusion-induced reduction of the anti-oxidative proteins SOD-2 and thioredoxin, suppressed the release of inflammation cytokines TLR4, IL-6 and TNFα, and decreased myocyte apoptosis induced by ischemia/reperfusion. Our results demonstrate the novel evidence that acacetin prodrug confer significant in vivo cardioprotective effect against ischemia/reperfusion injury by preventing the reduction of endogenous anti-oxidants and the release of inflammatory cytokines, thereby inhibiting cardiomyocytes apoptosis, which suggests that the water-soluble acacetin prodrug is likely useful in the future as a new drug candidate for treating patients with acute coronary syndrome.
Collapse
Affiliation(s)
- Hui Liu
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.,Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Yang
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.,Department of Anaesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Jun Wu
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Kui-Hao Chen
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.,Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Lin
- Shanghai Institute of Pharmaceutical Industry, China National Pharmaceutical Group, Shanghai, China
| | - Gang Li
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.,Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Hai-Ying Sun
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Guo-Sheng Xiao
- Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Gui-Rong Li
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.,Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
5
|
Zhu Z, Zhu J, Zhao X, Yang K, Lu L, Zhang F, Shen W, Zhang R. All-Trans Retinoic Acid Ameliorates Myocardial Ischemia/Reperfusion Injury by Reducing Cardiomyocyte Apoptosis. PLoS One 2015; 10:e0133414. [PMID: 26186635 PMCID: PMC4506146 DOI: 10.1371/journal.pone.0133414] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/26/2015] [Indexed: 12/21/2022] Open
Abstract
Myocardial ischemia/reperfusion (I/R) injury interferes with the restoration of blood flow to ischemic myocardium. Oxidative stress-elicited apoptosis has been reported to contribute to I/R injury. All-trans retinoic acid (ATRA) has anti-apoptotic activity as previously reported. Here, we investigated the effects and the mechanism of action of ATRA on myocardial I/R injury both in vivo and in vitro. In vivo, ATRA reduced the size of the infarcted area (17.81±1.05% vs. 24.41±1.03%, P<0.05) and rescued cardiac function loss (ejection fraction 46.42±6.76% vs. 37.18±4.63%, P<0.05) after I/R injury. Flow-cytometric analysis and TUNEL assay demonstrated that the protective role of ATRA on myocardial I/R injury was related to its anti-apoptotic effects. The anti-apoptotic effects of ATRA were associated with partial inhibition of reactive oxygen species (ROS) production and significantly less phosphorylation of mitogen-activated protein kinases (MAPKs) including p38, JNK, and ERK. Western blot analysis also revealed that ATRA pre-treatment increased a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) expression (0.65 ± 0.20 vs. 0.41±0.02 in vivo) and reduced the level of receptor for advanced glycation end-products (RAGE) (0.38 ± 0.17 vs. 0.52 ± 0.11 in vivo). Concomitantly, the protective role of ATRA on I/R injury was not observed in RAGE-KO mice. The current results indicated that ATRA could prevent myocardial injury and reduced cardiomyocyte apoptosis after I/R effectively. One possible mechanism underlying these effects is that ATRA could increase ADAM10 expression and thus cleave RAGE, which is the main receptor up-stream of MAPKs in myocardial I/R injury, resulting in the down-regulation of MAPK signaling and protective role on myocardial I/R injury.
Collapse
Affiliation(s)
- Zhengbin Zhu
- Department of Cardiology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
- Institute of Cardiovascular Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Jinzhou Zhu
- Department of Cardiology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
- Institute of Cardiovascular Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Xiaoran Zhao
- Department of Cardiology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
- Institute of Cardiovascular Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Ke Yang
- Institute of Cardiovascular Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Lin Lu
- Department of Cardiology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
- Institute of Cardiovascular Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Fengru Zhang
- Department of Cardiology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Weifeng Shen
- Department of Cardiology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
- Institute of Cardiovascular Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Ruiyan Zhang
- Department of Cardiology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
- Institute of Cardiovascular Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
- * E-mail:
| |
Collapse
|
6
|
Myokardiale Protektion und Konditionierung. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2014. [DOI: 10.1007/s00398-014-1095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Abstract
Cardiovascular disease (CVD) has become the most-common cause of death worldwide. The Western lifestyle does not promote healthy living, and the consequences are most devastating when social inequalities are combined with economic factors and population growth. The expansion of poor nutritional habits, obesity, and associated conditions (such as diabetes mellitus, hypertension, physical inactivity, and advancing age) are major risk factors for developing CVD and are increasing in prevalence. Individuals in low-income and middle-income countries are undergoing a major shift in cardiovascular risk factors as they adopt Western lifestyles, a phenomenon that is hastened by industrialization, urbanization, and globalization. In this Perspectives article, I predict the 10 most-promising advances in cardiovascular therapies and interventions. Our improved understanding of CVD might help us, during the next decade, to achieve a transition from treating complex disease to promoting global cardiovascular health.
Collapse
Affiliation(s)
- Valentin Fuster
- Cardiovascular Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, PO Box 1030, New York, NY 10029-6574, USA
| |
Collapse
|
8
|
Lichtenauer M, Schreiber C, Jung C, Beer L, Mangold A, Gyöngyösi M, Podesser BK, Ankersmit HJ. Myocardial infarct size measurement using geometric angle calculation. Eur J Clin Invest 2014; 44:160-7. [PMID: 25266895 DOI: 10.1111/eci.12202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 11/03/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND In basic cardiovascular research focusing on animal models of myocardial infarction (MI), the measurement of infarct size is performed by planimetry of histological sections of the heart. However, in the setting of chronic MI with ongoing changes in ventricular geometry caused by wall thinning and hypertrophy, the scar area tends to become smaller. MATERIALS AND METHODS Here, in this study we compared infarct measurements in tissue sections (of rat and porcine hearts) based on three different calculation approaches, that is, infarct area, infarct lengths and infarct angles utilizing the centroid of the left ventricle using a newly developed calculation approach. RESULTS Infarct sizes from all three measurement approaches showed significant correlation with parameters of cardiac function. However, results derived from area measurements were significantly smaller than those obtained using the other two measurement approaches due to scar thinning (infarct size area: 14·81% ± 1·27 SEM, length: 23·94% ± 2·04 SEM, angle: 24·75% ± 2·13 SEM, P < 0·0001, n = 30). Moreover, results from angle measurements evidenced a much better correlation with parameters of cardiac function in a small animal model of chronic MI (e.g. ejection fraction, angle: r = -0·73; length: r = -0·64; area: r = -0·59, n = 30) as well as in a large animal model of acute MI (angle: r = -0·82; area: r = -0·67, n = 10). CONCLUSIONS We concluded that area-, length- and angle-based measurements can be used to determine the relative infarct size in acute MI models, although an area-based measurement might be less accurate in the setting of chronic MI. Our new method of infarct angle measurement is a reliable and simple way to calculate infarct size compared with conventional measurement approaches.
Collapse
Affiliation(s)
- Michael Lichtenauer
- Universitätsherzzentrum Thüringen, Clinic of Internal Medicine I, Department of Cardiology, Friedrich Schiller University Jena, Jena, Germany; Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Synergistic protection of MLC 1 against cardiac ischemia/reperfusion-induced degradation: a novel therapeutic concept for the future. Future Med Chem 2013; 5:389-98. [PMID: 23495687 DOI: 10.4155/fmc.13.19] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cardiovascular diseases are a major burden to society and a leading cause of morbidity and mortality in the developed world. Despite clinical and scientific advances in understanding the molecular mechanisms and treatment of heart injury, novel therapeutic strategies are needed to prevent morbidity and mortality due to cardiac events. Growing evidence reported over the last decade has focused on the intracellular targets for proteolytic degradation by MMP-2. Of particular interest is the establishment of MMP-2-dependent degradation of cardiac contractile proteins in response to increased oxidative stress conditions, such as ischemia/reperfusion. The authors' laboratory has identified a promising preventive therapeutic target using the classical pharmacological concept of synergy to target MMP-2 activity and its proteolytic action on a cardiac contractile protein. This manuscript provides an overview of the body of evidence that supports the importance of cardiac contractile protein degradation in ischemia/reperfusion injury and the use of synergy to protect against it.
Collapse
|
10
|
Geelen T, Paulis LE, Coolen BF, Nicolay K, Strijkers GJ. Passive targeting of lipid-based nanoparticles to mouse cardiac ischemia-reperfusion injury. CONTRAST MEDIA & MOLECULAR IMAGING 2013; 8:117-26. [PMID: 23281284 DOI: 10.1002/cmmi.1501] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/12/2012] [Accepted: 08/21/2012] [Indexed: 11/10/2022]
Abstract
Reperfusion therapy is commonly applied after a myocardial infarction. Reperfusion, however, causes secondary damage. An emerging approach for treatment of ischemia-reperfusion (IR) injury involves the delivery of therapeutic nanoparticles to the myocardium to promote cell survival and constructively influence scar formation and myocardial remodeling. The aim of this study was to provide detailed understanding of the in vivo accumulation and distribution kinetics of lipid-based nanoparticles (micelles and liposomes) in a mouse model of acute and chronic IR injury. Both micelles and liposomes contained paramagnetic and fluorescent lipids and could therefore be visualized with magnetic resonance imaging (MRI) and confocal laser scanning microscopy (CLSM). In acute IR injury both types of nanoparticles accumulated massively and specifically in the infarcted myocardium as revealed by MRI and CLSM. Micelles displayed faster accumulation kinetics, probably owing to their smaller size. Liposomes occasionally co-localized with vessels and inflammatory cells. In chronic IR injury only minor accumulation of micelles was observed with MRI. Nevertheless, CLSM revealed specific accumulation of both micelles and liposomes in the infarct area 3 h after administration. Owing to their specific accumulation in the infarcted myocardium, lipid-based micelles and liposomes are promising vehicles for (visualization of) drug delivery in myocardial infarction.
Collapse
Affiliation(s)
- Tessa Geelen
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Madonna R, Cevik C, Nasser M. Electrical plasticity and cardioprotection in myocardial ischemia--role of selective sodium channel blockers. Clin Cardiol 2013; 36:255-61. [PMID: 23529949 DOI: 10.1002/clc.22113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/11/2013] [Indexed: 11/08/2022] Open
Abstract
The concept of electrical protection of the ischemic myocardium is in constant evolution and has recently been supported by experimental and clinical studies. Historically, antiplatelet agents, angiotensin-converting enzyme inhibitors, β-blockers, and statins have been all proposed as drugs conferring anti-ischemic cardioprotection. This was supported by the evidence consistently indicating that all these drugs were capable of reducing mortality and the risk of repeat myocardial infarction. The electrical plasticity paradigm is, however, a novel concept that depicts the benefits of improved sodium channel blockade with drugs such as ranolazine and cariporide. Although it has been hypothesized that the protective role of ranolazine depends on decreased fatty acid β-oxidation affecting preconditioning, we speculate against such a hypothesis, because inhibition of β-oxidation requires higher concentrations of the drug, above the therapeutic range. Rather, we discuss the key role of calcium overload reduction through inhibition of the late sodium current (I(Na)). Mechanisms driving cardioprotection involve the block of a cascade of complex ionic exchanges that can result in intracellular acidosis, excess cytosolic calcium, myocardial cellular dysfunction, and eventually cell injury and death. In this review we discuss the studies that demonstrate how electrical plasticity through sodium channel blockers can promote cardioprotection against ischemia in coronary heart disease.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Texas Heart Institute and St. Luke's Episcopal Hospital, Department of adult cardiiology, Houston, Texas, USA.
| | | | | |
Collapse
|
12
|
A kinase interacting protein (AKIP1) is a key regulator of cardiac stress. Proc Natl Acad Sci U S A 2013; 110:E387-96. [PMID: 23319652 DOI: 10.1073/pnas.1221670110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
cAMP-dependent protein kinase (PKA) regulates a myriad of functions in the heart, including cardiac contractility, myocardial metabolism,and gene expression. However, a molecular integrator of the PKA response in the heart is unknown. Here, we show that the PKA adaptor A-kinase interacting protein 1 (AKIP1) is up-regulated in cardiac myocytes in response to oxidant stress. Mice with cardiac gene transfer of AKIP1 have enhanced protection to ischemic stress. We hypothesized that this adaptation to stress was mitochondrial dependent. AKIP1 interacted with the mitochondrial localized apoptosis inducing factor (AIF) under both normal and oxidant stress. When cardiac myocytes or whole hearts are exposed to oxidant and ischemic stress, levels of both AKIP1 and AIF were enhanced. AKIP1 is preferentially localized to interfibrillary mitochondria and up-regulated in this cardiac mitochondrial subpopulation on ischemic injury. Mitochondria isolated from AKIP1 gene transferred hearts showed increased mitochondrial localization of AKIP1, decreased reactive oxygen species generation, enhanced calcium tolerance, decreased mitochondrial cytochrome C release,and enhance phosphorylation of mitochondrial PKA substrates on ischemic stress. These observations highlight AKIP1 as a critical molecular regulator and a therapeutic control point for stress adaptation in the heart.
Collapse
|