1
|
Plum Pox Virus Genome-Based Vector Enables the Expression of Different Heterologous Polypeptides in Nicotiana benthamiana Plants. Processes (Basel) 2022. [DOI: 10.3390/pr10081526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Plant viral vectors have become a promising tool for the rapid and cost-effective production of recombinant proteins in plants. Among the numerous genera of viruses that have been used for heterologous expression, potyviruses offer several advantages, such as polyprotein expression strategy or a broad host range. In our work, the expression vectors pAD/pAD-agro based on the plum pox virus (PPV) genome were used for the heterologous expression of different foreign polypeptides: alfalfa mosaic virus capsid protein (AMV CP), zucchini yellow mosaic virus capsid protein (ZYMV CP), the small heat-shock protein of Cronobacter sakazakii fused with hexahistidine (sHSP-his), a fragment of influenza A virus hemagglutinin (HA2-2), influenza A virus protein PB1-F2, SARS-CoV-2 nucleocapsid protein (CoN2-his), and its N- and C-terminal fragments (CoN-1-his and CoN3-his, respectively), each fused with a hexahistidine anchor. Particular proteins differed in their accumulation, tissue localization, stability, and solubility. The accumulation rate of produced polypeptides varied from low (N, hemagglutinin fragment) to relatively high (plant viral CPs, N-terminal fragment of N, PB1-F2). Some proteins preferentially accumulated in roots (sHSP, hemagglutinin fragment, PB1-F2), showing signs of proteolytic degradation in leaf tissues. Thus, each expression requires an individual approach and optimization. Here, we summarize our several-year experiments and discuss the usefulness of the pAD/pADep vector system.
Collapse
|
2
|
Development of an Inactivated H7N9 Subtype Avian Influenza Serological DIVA Vaccine Using the Chimeric HA Epitope Approach. Microbiol Spectr 2021; 9:e0068721. [PMID: 34585985 PMCID: PMC8557892 DOI: 10.1128/spectrum.00687-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
H7N9 avian influenza virus (AIV) is an emerging zoonotic pathogen, and it is necessary to develop a differentiating infected from vaccinated animals (DIVA) vaccine for the purpose of eradication. H7N9 subtype AIV hemagglutinin subunit 2 glycoprotein (HA2) peptide chips and antisera of different AIV subtypes were used to screen H7N9 AIV-specific epitopes. A selected specific epitope in the HA2 protein of H7N9 AIV strain A/Chicken/Huadong/JD/17 (JD/17) was replaced with an epitope from an H3N2 subtype AIV strain by reverse genetics. The protection and serological DIVA characteristics of the recombinant H7N9 AIV strain were evaluated. The results showed that a specific epitope on the HA2 protein of H7N9 AIV, named the H7-12 peptide, was successfully screened. The recombinant H7N9 AIV with a modified epitope in the HA2 protein was rescued and named A/Chicken/Huadong/JD-cHA/17 (JD-cHA/17). The HA titer of JD-cHA/17 was 10 log2, and the 50% egg infective dose (EID50) titer was 9.67 log10 EID50/ml. Inactivated JD-cHA/17 induced a hemagglutination inhibition (HI) antibody titer similar that of the parent strain and provided 100% protection against high-pathogenicity or low-pathogenicity H7N9 AIV challenge. A peptide chip coated with H7-12 peptide was successfully applied to detect the seroconversion of chickens infected or vaccinated with JD/17, while there was no reactivity with antisera of chickens vaccinated with JD-cHA/17. Therefore, the marked vaccine candidate JD-cHA/17 can be used as a DIVA vaccine against H7N9 avian influenza when combined with an H7-12 peptide chip, making it a useful tool for stamping out the H7N9 AIV. IMPORTANCE DIVA vaccine is a useful tool for eradicating avian influenza, especially for highly pathogenic avian influenza. Several different DIVA strategies have been proposed for avian influenza inactivated whole-virus vaccine, involving the neuraminidase (NA), nonstructural protein 1 (NS1), matrix protein 2 ectodomain (M2e), or HA2 gene. However, virus reassortment, residual protein in a vaccine component, or reduced vaccine protection may limit the application of these DIVA strategies. Here, we constructed a novel chimeric H7N9 AIV, JD-cHA/17, that expressed the entire HA protein with substitution of an H3 AIV epitope in HA2. The chimeric H7N9 recombinant vaccine provides full clinical protection against high-pathogenicity or low-pathogenicity H7N9 AIV challenge. Combined with a short-peptide-based microarray chip containing the H7N9 AIV epitope in HA2, our finding is expected to be useful as a marker vaccine designed for avian influenza.
Collapse
|
3
|
Putri K, Wibowo MH, Tarigan S, Wawegama N, Ignjatovic J, Noormohammadi AH. Analysis of antibody response to an epitope in the haemagglutinin subunit 2 of avian influenza virus H5N1 for differentiation of infected and vaccinated chickens. Avian Pathol 2019; 49:161-170. [PMID: 31738584 DOI: 10.1080/03079457.2019.1694635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The H5N1 subtype of highly pathogenic avian influenza virus has been circulating in poultry in Indonesia since 2003 and vaccination has been used as a strategy to eradicate the disease. However, monitoring of vaccinated poultry flocks for H5N1 infection by serological means has been difficult, as vaccine antibodies are not readily distinguishable from those induced by field viruses. Therefore, a test that differentiates infected and vaccinated animals (DIVA) would be essential. Currently, no simple and specific DIVA test is available for screening of a large number of vaccinated chickens. Several epitopes on E29 domain of the haemagglutinin H5N1 subunit 2 (HA2) have recently been examined for their antigenicity and potential as possible markers for DIVA in chicken. In this study, the potential of E29 as an antigen for DIVA was evaluated in detail. Three different forms of full-length E29 peptide, a truncated E29 peptide (E15), and a recombinant E29 were compared for their ability to detect anti-E29 antibodies. Preliminary ELISA experiments using mono-specific chicken and rabbit E29 sera, and a mouse monoclonal antibody revealed that the linear E29 peptide was the most antigenic. Further examination of the E29 antigenicity in ELISA, using several sera from experimentally infected or vaccinated chickens, revealed that the full-length E29 peptide had the greatest discrimination power between infected and vaccinated chicken sera while providing the least non-specific reaction. This study demonstrates the usefulness of the HPAI H5N1 HA2 E29 epitope as a DIVA antigen in HPAI H5N1-vaccinated and -infected chickens.RESEARCH HIGHLIGHTS E29 (HA2 positions 488-516) epitope is antigenic in chickens.Antibodies to E29 are elicited following live H5N1 virus infection in chickens.E29 epitope is a potential DIVA antigen for use in ELISA.
Collapse
Affiliation(s)
- Khrisdiana Putri
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Australia
| | | | - Simson Tarigan
- Indonesian Research Centre for Veterinary Science (IRCVS), Bogor, Indonesia
| | - Nadeeka Wawegama
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Australia
| | - Jagoda Ignjatovic
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Australia
| | - Amir H Noormohammadi
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Australia
| |
Collapse
|
4
|
Hassan AO, Amen O, Sayedahmed EE, Vemula SV, Amoah S, York I, Gangappa S, Sambhara S, Mittal SK. Adenovirus vector-based multi-epitope vaccine provides partial protection against H5, H7, and H9 avian influenza viruses. PLoS One 2017; 12:e0186244. [PMID: 29023601 PMCID: PMC5638338 DOI: 10.1371/journal.pone.0186244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/27/2017] [Indexed: 11/18/2022] Open
Abstract
The emergence of H5, H7, and H9 avian influenza virus subtypes in humans reveals their pandemic potential. Although human-to-human transmission has been limited, the genetic reassortment of the avian and human/porcine influenza viruses or mutations in some of the genes resulting in virus replication in the upper respiratory tract of humans could generate novel pandemic influenza viruses. Current vaccines do not provide cross protection against antigenically distinct strains of the H5, H7, and H9 influenza viruses. Therefore, newer vaccine approaches are needed to overcome these potential threats. We developed an egg-independent, adenovirus vector-based, multi-epitope (ME) vaccine approach using the relatively conserved immunogenic domains of the H5N1 influenza virus [M2 ectodomain (M2e), hemagglutinin (HA) fusion domain (HFD), T-cell epitope of nucleoprotein (TNP). and HA α-helix domain (HαD)]. Our ME vaccine induced humoral and cell-mediated immune responses and caused a significant reduction in the viral loads in the lungs of vaccinated mice that were challenged with antigenically distinct H5, H7, or H9 avian influenza viruses. These results suggest that our ME vaccine approach provided broad protection against the avian influenza viruses. Further improvement of this vaccine will lead to a pre-pandemic vaccine that may lower morbidity, hinder transmission, and prevent mortality in a pandemic situation before a strain-matched vaccine becomes available.
Collapse
Affiliation(s)
- Ahmed O. Hassan
- Department of Comparative Pathobiology and Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States of America
| | - Omar Amen
- Department of Comparative Pathobiology and Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States of America
- Poultry Diseases Department, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Ekramy E. Sayedahmed
- Department of Comparative Pathobiology and Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States of America
| | - Sai V. Vemula
- Department of Comparative Pathobiology and Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States of America
| | - Samuel Amoah
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Ian York
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Shivaprakash Gangappa
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
- * E-mail: (SKM); (SS)
| | - Suresh K. Mittal
- Department of Comparative Pathobiology and Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States of America
- * E-mail: (SKM); (SS)
| |
Collapse
|
5
|
Klausberger M, Tscheliessnig R, Neff S, Nachbagauer R, Wohlbold TJ, Wilde M, Palmberger D, Krammer F, Jungbauer A, Grabherr R. Globular Head-Displayed Conserved Influenza H1 Hemagglutinin Stalk Epitopes Confer Protection against Heterologous H1N1 Virus. PLoS One 2016; 11:e0153579. [PMID: 27088239 PMCID: PMC4835069 DOI: 10.1371/journal.pone.0153579] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/31/2016] [Indexed: 11/29/2022] Open
Abstract
Significant genetic variability in the head region of the influenza A hemagglutinin, the main target of current vaccines, makes it challenging to develop a long-lived seasonal influenza prophylaxis. Vaccines based on the conserved hemagglutinin stalk domain might provide broader cross-reactive immunity. However, this region of the hemagglutinin is immunosubdominant to the head region. Peptide-based vaccines have gained much interest as they allow the immune system to focus on relevant but less immunogenic epitopes. We developed a novel influenza A hemagglutinin-based display platform for H1 hemagglutinin stalk peptides that we identified in an epitope mapping assay using human immune sera and synthetic HA peptides. Flow cytometry and competition assays suggest that the identified stalk sequences do not recapitulate the epitopes of already described broadly neutralizing stalk antibodies. Vaccine constructs displaying 25-mer stalk sequences provided up to 75% protection from lethal heterologous virus challenge in BALB/c mice and induced antibody responses against the H1 hemagglutinin. The developed platform based on a vaccine antigen has the potential to be either used as stand-alone or as prime-vaccine in combination with conventional seasonal or pandemic vaccines for the amplification of stalk-based cross-reactive immunity in humans or as platform to evaluate the relevance of viral peptides/epitopes for protection against influenza virus infection.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Epitopes/immunology
- Female
- Flow Cytometry
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Protein Conformation
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Miriam Klausberger
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Rupert Tscheliessnig
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Silke Neff
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Raffael Nachbagauer
- Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Teddy John Wohlbold
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Monika Wilde
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Dieter Palmberger
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Reingard Grabherr
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
6
|
Hasan NH, Ignjatovic J, Peaston A, Hemmatzadeh F. Avian Influenza Virus and DIVA Strategies. Viral Immunol 2016; 29:198-211. [PMID: 26900835 DOI: 10.1089/vim.2015.0127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Vaccination is becoming a more acceptable option in the effort to eradicate avian influenza viruses (AIV) from commercial poultry, especially in countries where AIV is endemic. The main concern surrounding this option has been the inability of the conventional serological tests to differentiate antibodies produced due to vaccination from antibodies produced in response to virus infection. In attempts to address this issue, at least six strategies have been formulated, aiming to differentiate infected from vaccinated animals (DIVA), namely (i) sentinel birds, (ii) subunit vaccine, (iii) heterologous neuraminidase (NA), (iv) nonstructural 1 (NS1) protein, (v) matrix 2 ectodomain (M2e) protein, and (vi) haemagglutinin subunit 2 (HA2) glycoprotein. This short review briefly discusses the strengths and limitations of these DIVA strategies, together with the feasibility and practicality of the options as a part of the surveillance program directed toward the eventual eradication of AIV from poultry in countries where highly pathogenic avian influenza is endemic.
Collapse
Affiliation(s)
- Noor Haliza Hasan
- 1 School of Animal and Veterinary Sciences, The University of Adelaide , Adelaide, Australia .,2 Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah , Sabah, Malaysia
| | - Jagoda Ignjatovic
- 3 School of Veterinary and Agricultural Sciences, The University of Melbourne , Melbourne, Australia
| | - Anne Peaston
- 1 School of Animal and Veterinary Sciences, The University of Adelaide , Adelaide, Australia
| | - Farhid Hemmatzadeh
- 1 School of Animal and Veterinary Sciences, The University of Adelaide , Adelaide, Australia
| |
Collapse
|
7
|
Rosendahl Huber SK, Camps MGM, Jacobi RHJ, Mouthaan J, van Dijken H, van Beek J, Ossendorp F, de Jonge J. Synthetic Long Peptide Influenza Vaccine Containing Conserved T and B Cell Epitopes Reduces Viral Load in Lungs of Mice and Ferrets. PLoS One 2015; 10:e0127969. [PMID: 26046664 PMCID: PMC4457525 DOI: 10.1371/journal.pone.0127969] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/22/2015] [Indexed: 12/22/2022] Open
Abstract
Currently licensed influenza vaccines mainly induce antibodies against highly variable epitopes. Due to antigenic drift, protection is subtype or strain-specific and regular vaccine updates are required. In case of antigenic shifts, which have caused several pandemics in the past, completely new vaccines need to be developed. We set out to develop a vaccine that provides protection against a broad range of influenza viruses. Therefore, highly conserved parts of the influenza A virus (IAV) were selected of which we constructed antibody and T cell inducing peptide-based vaccines. The B epitope vaccine consists of the highly conserved HA2 fusion peptide and M2e peptide coupled to a CD4 helper epitope. The T epitope vaccine comprises 25 overlapping synthetic long peptides of 26-34 amino acids, thereby avoiding restriction for a certain MHC haplotype. These peptides are derived from nucleoprotein (NP), polymerase basic protein 1 (PB1) and matrix protein 1 (M1). C57BL/6 mice, BALB/c mice, and ferrets were vaccinated with the B epitopes, 25 SLP or a combination of both. Vaccine-specific antibodies were detected in sera of mice and ferrets and vaccine-specific cellular responses were measured in mice. Following challenge, both mice and ferrets showed a reduction of virus titers in the lungs in response to vaccination. Summarizing, a peptide-based vaccine directed against conserved parts of influenza virus containing B and T cell epitopes shows promising results for further development. Such a vaccine may reduce disease burden and virus transmission during pandemic outbreaks.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Viral/immunology
- Databases, Factual
- Dogs
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/immunology
- Female
- Ferrets
- Influenza A Virus, H1N1 Subtype/metabolism
- Influenza A Virus, H5N1 Subtype/metabolism
- Influenza Vaccines/immunology
- Lung/virology
- Madin Darby Canine Kidney Cells
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Molecular Sequence Data
- Vaccines, Subunit/chemical synthesis
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/immunology
- Viral Load
- Viral Matrix Proteins/chemistry
- Viral Matrix Proteins/immunology
Collapse
Affiliation(s)
- S. K. Rosendahl Huber
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - M. G. M. Camps
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - R. H. J. Jacobi
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - J. Mouthaan
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - H. van Dijken
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - J. van Beek
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - F. Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - J. de Jonge
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- * E-mail:
| |
Collapse
|
8
|
Targeting the HA2 subunit of influenza A virus hemagglutinin via CD40L provides universal protection against diverse subtypes. Mucosal Immunol 2015; 8:211-20. [PMID: 25052763 PMCID: PMC4269809 DOI: 10.1038/mi.2014.59] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 05/30/2014] [Indexed: 02/04/2023]
Abstract
The influenza viral hemagglutinin (HA) is comprised of two subunits. Current influenza vaccine predominantly induces neutralizing antibodies (Abs) against the HA1 subunit, which is constantly evolving in unpredictable fashion. The other subunit, HA2, however, is highly conserved but largely shielded by the HA head domain. Thus, enhancing immune response against HA2 could potentially elicit broadly inhibitory Abs. We generated a recombinant adenovirus (rAd) encoding secreted fusion protein, consisting of codon-optimized HA2 subunit of influenza A/California/7/2009(H1N1) virus fused to a trimerized form of murine CD40L, and determined its ability of inducing protective immunity upon intranasal administration. We found that mice immunized with this recombinant viral vaccine were completely protected against lethal challenge with divergent influenza A virus subtypes including H1N1, H3N2, and H9N2. Codon-optimization of HA2 as well as the use of CD40L as a targeting ligand/molecular adjuvant were indispensable to enhance HA2-specific mucosal IgA and serum IgG levels. Moreover, induction of HA2-specific T-cell responses was dependent on CD40L, as rAd secreting HA2 subunit without CD40L failed to induce any significant levels of T-cell cytokines. Finally, sera obtained from immunized mice were capable of inhibiting 13 subtypes of influenza A viruses in vitro. These results provide proof of concept for a prototype HA2-based universal influenza vaccine.
Collapse
|
9
|
Protective immunity based on the conserved hemagglutinin stalk domain and its prospects for universal influenza vaccine development. BIOMED RESEARCH INTERNATIONAL 2014; 2014:546274. [PMID: 24982895 PMCID: PMC4055638 DOI: 10.1155/2014/546274] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/13/2014] [Indexed: 11/17/2022]
Abstract
Influenza virus surface glycoprotein hemagglutinin (HA) is an excellent and chief target that elicits neutralizing antibodies during vaccination or natural infection. Its HA2 subunit (stem domain) is most conserved as compared to HA1 subunit (globular head domain). Current influenza vaccine relies on globular head domain that provides protection only against the homologous vaccine strains, rarely provides cross-protection against divergent strains, and needs to be updated annually. There is an urge for a truly universal vaccine that provides broad cross-protection against different subtype influenza A viruses along with influenza B viruses and need not be updated annually. Antibodies against the stem domain of hemagglutinin (HA) are able to neutralize a wide spectrum of influenza virus strains and subtypes. These stem-specific antibodies have great potential for the development of universal vaccine against influenza viruses. In this review, we have discussed the stem-specific cross-reactive antibodies and heterosubtypic protection provided by them. We have also discussed their epitope-based DNA vaccine and their future prospects in this scenario.
Collapse
|
10
|
B cell response and hemagglutinin stalk-reactive antibody production in different age cohorts following 2009 H1N1 influenza virus vaccination. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:867-76. [PMID: 23576673 DOI: 10.1128/cvi.00735-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The 2009 pandemic H1N1 (pH1N1) influenza virus carried a swine-origin hemagglutinin (HA) that was closely related to the HAs of pre-1947 H1N1 viruses but highly divergent from the HAs of recently circulating H1N1 strains. Consequently, prior exposure to pH1N1-like viruses was mostly limited to individuals over the age of about 60 years. We related age and associated differences in immune history to the B cell response to an inactivated monovalent pH1N1 vaccine given intramuscularly to subjects in three age cohorts: 18 to 32 years, 60 to 69 years, and ≥70 years. The day 0 pH1N1-specific hemagglutination inhibition (HAI) and microneutralization (MN) titers were generally higher in the older cohorts, consistent with greater prevaccination exposure to pH1N1-like viruses. Most subjects in each cohort responded well to vaccination, with early formation of circulating virus-specific antibody (Ab)-secreting cells and ≥4-fold increases in HAI and MN titers. However, the response was strongest in the 18- to 32-year cohort. Circulating levels of HA stalk-reactive Abs were increased after vaccination, especially in the 18- to 32-year cohort, raising the possibility of elevated levels of cross-reactive neutralizing Abs. In the young cohort, an increase in MN activity against the seasonal influenza virus A/Brisbane/59/07 after vaccination was generally associated with an increase in the anti-Brisbane/59/07 HAI titer, suggesting an effect mediated primarily by HA head-reactive rather than stalk-reactive Abs. Our findings support recent proposals that immunization with a relatively novel HA favors the induction of Abs against conserved epitopes. They also emphasize the need to clarify how the level of circulating stalk-reactive Abs relates to resistance to influenza.
Collapse
|
11
|
He XS, Sasaki S, Baer J, Khurana S, Golding H, Treanor JJ, Topham DJ, Sangster MY, Jin H, Dekker CL, Subbarao K, Greenberg HB. Heterovariant cross-reactive B-cell responses induced by the 2009 pandemic influenza virus A subtype H1N1 vaccine. J Infect Dis 2013; 207:288-96. [PMID: 23107783 PMCID: PMC3532823 DOI: 10.1093/infdis/jis664] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 07/31/2012] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The generation of heterovariant immunity is a highly desirable feature of influenza vaccines. The goal of this study was to compare the heterovariant B-cell response induced by the monovalent inactivated 2009 pandemic influenza A virus subtype H1N1 (A[H1N1]pdm09) vaccine with that induced by the 2009 seasonal trivalent influenza vaccine (sTIV) containing a seasonal influenza A virus subtype H1N1 (A[H1N1]) component in young and elderly adults. METHODS Plasmablast-derived polyclonal antibodies (PPAb) from young and elderly recipients of A(H1N1)pdm09 vaccine or sTIV were tested for binding activity to various influenza antigens. RESULTS In A(H1N1)pdm09 recipients, the PPAb titers against homotypic A(H1N1)pdm09 vaccine were similar to those against the heterovariant seasonal A(H1N1) vaccine and were similar between young and elderly subjects. The PPAb avidity was higher among elderly individuals, compared with young individuals. In contrast, the young sTIV recipients had 10-fold lower heterovariant PPAb titers against the A(H1N1)pdm09 vaccine than against the homotypic seasonal A(H1N1) vaccine. In binding assays with recombinant head and stalk domains of hemagglutinin, PPAb from the A(H1N1)pdm09 recipients but not PPAb from the sTIV recipients bound to the conserved stalk domain. CONCLUSION The A(H1N1)pdm09 vaccine induced production of PPAb with heterovariant reactivity, including antibodies targeting the conserved hemagglutinin stalk domain.
Collapse
Affiliation(s)
- Xiao-Song He
- Department of Medicine, Stanford University School of Medicine, Stanford, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
A human CD4+ T cell epitope in the influenza hemagglutinin is cross-reactive to influenza A virus subtypes and to influenza B virus. J Virol 2012; 86:9233-43. [PMID: 22718815 DOI: 10.1128/jvi.06325-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The hemagglutinin protein (HA) of the influenza virus family is a major antigen for protective immunity. Thus, it is a relevant target for developing vaccines. Here, we describe a human CD4(+) T cell epitope in the influenza virus HA that lies in the fusion peptide of the HA. This epitope is well conserved in all 16 subtypes of the HA protein of influenza A virus and the HA protein of influenza B virus. By stimulating peripheral blood mononuclear cells (PBMCs) from a healthy adult donor with peptides covering the entire HA protein based on the sequence of A/Japan/305/1957 (H2N2), we generated a T cell line specific to this epitope. This CD4(+) T cell line recognizes target cells infected with influenza A virus seasonal H1N1 and H3N2 strains, a reassortant H2N1 strain, the 2009 pandemic H1N1 strain, and influenza B virus in cytotoxicity assays and intracellular-cytokine-staining assays. It also lysed target cells infected with avian H5N1 virus. We screened healthy adult PBMCs for T cell responses specific to this epitope and found individuals who had ex vivo gamma interferon (IFN-γ) responses to the peptide epitope in enzyme-linked immunospot (ELISPOT) assays. Almost all donors who responded to the epitope had the HLA-DRB1*09 allele, a relatively common HLA allele. Although natural infection or standard vaccination may not induce strong T and B cell responses to this highly conserved epitope in the fusion peptide, it may be possible to develop a vaccination strategy to induce these CD4(+) T cells, which are cross-reactive to both influenza A and B viruses.
Collapse
|