1
|
Gale J, Aizenman E. The physiological and pathophysiological roles of copper in the nervous system. Eur J Neurosci 2024; 60:3505-3543. [PMID: 38747014 PMCID: PMC11491124 DOI: 10.1111/ejn.16370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/28/2024] [Accepted: 04/10/2024] [Indexed: 07/06/2024]
Abstract
Copper is a critical trace element in biological systems due the vast number of essential enzymes that require the metal as a cofactor, including cytochrome c oxidase, superoxide dismutase and dopamine-β-hydroxylase. Due its key role in oxidative metabolism, antioxidant defence and neurotransmitter synthesis, copper is particularly important for neuronal development and proper neuronal function. Moreover, increasing evidence suggests that copper also serves important functions in synaptic and network activity, the regulation of circadian rhythms, and arousal. However, it is important to note that because of copper's ability to redox cycle and generate reactive species, cellular levels of the metal must be tightly regulated to meet cellular needs while avoiding copper-induced oxidative stress. Therefore, it is essential that the intricate system of copper transporters, exporters, copper chaperones and copper trafficking proteins function properly and in coordinate fashion. Indeed, disorders of copper metabolism such as Menkes disease and Wilson disease, as well as diseases linked to dysfunction of copper-requiring enzymes, such as SOD1-linked amyotrophic lateral sclerosis, demonstrate the dramatic neurological consequences of altered copper homeostasis. In this review, we explore the physiological importance of copper in the nervous system as well as pathologies related to improper copper handling.
Collapse
Affiliation(s)
- Jenna Gale
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Elias Aizenman
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Guthrie LM, Soma S, Yuan S, Silva A, Zulkifli M, Snavely TC, Greene HF, Nunez E, Lynch B, De Ville C, Shanbhag V, Lopez FR, Acharya A, Petris MJ, Kim BE, Gohil VM, Sacchettini JC. Elesclomol alleviates Menkes pathology and mortality by escorting Cu to cuproenzymes in mice. Science 2020; 368:620-625. [PMID: 32381719 DOI: 10.1126/science.aaz8899] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/10/2020] [Accepted: 03/19/2020] [Indexed: 12/23/2022]
Abstract
Loss-of-function mutations in the copper (Cu) transporter ATP7A cause Menkes disease. Menkes is an infantile, fatal, hereditary copper-deficiency disorder that is characterized by progressive neurological injury culminating in death, typically by 3 years of age. Severe copper deficiency leads to multiple pathologies, including impaired energy generation caused by cytochrome c oxidase dysfunction in the mitochondria. Here we report that the small molecule elesclomol escorted copper to the mitochondria and increased cytochrome c oxidase levels in the brain. Through this mechanism, elesclomol prevented detrimental neurodegenerative changes and improved the survival of the mottled-brindled mouse-a murine model of severe Menkes disease. Thus, elesclomol holds promise for the treatment of Menkes and associated disorders of hereditary copper deficiency.
Collapse
Affiliation(s)
- Liam M Guthrie
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Shivatheja Soma
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Sai Yuan
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Andres Silva
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Mohammad Zulkifli
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Thomas C Snavely
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Hannah Faith Greene
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Elyssa Nunez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Brogan Lynch
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Courtney De Ville
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Vinit Shanbhag
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Franklin R Lopez
- Texas Veterinary Medicine Diagnostic Laboratory, College Station, TX 77843, USA
| | - Arjun Acharya
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Michael J Petris
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Byung-Eun Kim
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
3
|
Woodfin T, Stoops C, Philips JB, Lose E, Mikhail FM, Hurst A. Menkes disease complicated by concurrent Koolen-de Vries syndrome (17q21.31 deletion). Mol Genet Genomic Med 2019; 7:e829. [PMID: 31250568 PMCID: PMC6687649 DOI: 10.1002/mgg3.829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 02/02/2023] Open
Abstract
Background Koolen‐de Vries (KdV) syndrome is caused by a 17q21.31 deletion leading to clinical symptoms of hypotonia and developmental delay and can present with abnormal hair texture. Menkes disease is an X‐linked recessive inherited disease caused by pathogenic variants in ATP7A, which leads to profound copper deficiency. Method We identified an infant male who presented with prematurity, hypotonia, and dysmorphic features for whom a family history of clinical Menkes disease was revealed after discussion with the clinical genetics team. Results Although initial first‐tier genetic testing identified Kdv syndrome (17q21.31 syndrome), the family history led the team to consider a second diagnostic possibility, and testing of ATP7A revealed a pathogenic variant (c.601C>T, p.R201X). Conclusion Menkes disease and KdV syndrome may both present with hypotonia and abnormal hair, in addition to seizures and failure to thrive. While these genetic conditions have overlapping clinical features, they have different natural histories and different therapeutic options. Here, we report on a patient affected with both disorders and review the diagnostic and therapeutic difficulties this presented.
Collapse
Affiliation(s)
- Taylor Woodfin
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Christine Stoops
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joseph B Philips
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Edward Lose
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Fady M Mikhail
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anna Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
4
|
Trafficking mechanisms of P-type ATPase copper transporters. Curr Opin Cell Biol 2019; 59:24-33. [PMID: 30928671 DOI: 10.1016/j.ceb.2019.02.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/13/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
Copper is an essential micronutrient required for oxygen-dependent enzymes, yet excess of the metal is a toxicant. The tug-of-war between these copper activities is balanced by chaperones and membrane transporters, which control copper distribution and availability. The P-type ATPase transporters, ATP7A and ATP7B, regulate cytoplasmic copper by pumping copper out of cells or into the endomembrane system. Mutations in ATP7A and ATP7B cause diseases that share neuropsychiatric phenotypes, which are similar to phenotypes observed in mutations affecting cytoplasmic trafficking complexes required for ATP7A/B dynamics. Here, we discuss evidence indicating that phenotypes associated to genetic defects in trafficking complexes, such as retromer and the adaptor complex AP-1, result in part from copper dyshomeostasis due to mislocalized ATP7A and ATP7B.
Collapse
|
5
|
Spinazzi M, Sghirlanzoni A, Salviati L, Angelini C. Impaired copper and iron metabolism in blood cells and muscles of patients affected by copper deficiency myeloneuropathy. Neuropathol Appl Neurobiol 2015; 40:888-98. [PMID: 24708542 DOI: 10.1111/nan.12111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/17/2013] [Indexed: 12/29/2022]
Abstract
AIMS Severe copper deficiency leads in humans to a treatable multisystem disease characterized by anaemia and degeneration of spinal cord and nerves, but its mechanisms have not been investigated. We tested whether copper deficit leads to alterations in fundamental copper-dependent proteins and in iron metabolism in blood and muscles of patients affected by copper deficiency myeloneuropathy, and if these metabolic abnormalities are associated with compensatory mechanisms for copper maintenance. METHODS We evaluated the expression of critical copper enzymes, of iron-related proteins, and copper chaperones and transporters in blood and muscles from five copper-deficient patients presenting with subacute sensory ataxia, muscle paralysis, liver steatosis and variable anaemia. Severe copper deficiency was caused by chronic zinc intoxication in all of the patients, with an additional history of gastrectomy in two cases. RESULTS The antioxidant enzyme SOD1 and subunit 2 of cytochrome c oxidase were significantly decreased in blood cells and in muscles of copper-deficient patients compared with controls. In muscle, the iron storage protein ferritin was dramatically reduced despite normal serum ferritin, and the expression of the haem-proteins cytochrome c and myoglobin was impaired. Muscle expression of the copper transporter CTR1 and of the copper chaperone CCS, was strikingly increased, while antioxidant protein 1 was diminished. CONCLUSIONS copper-dependent enzymes with critical functions in antioxidant defences, in mitochondrial energy production, and in iron metabolism are affected in blood and muscles of patients with profound copper deficiency leading to myeloneuropathy. Homeostatic mechanisms are strongly activated to increase intracellular copper retention.
Collapse
Affiliation(s)
- Marco Spinazzi
- Neuromuscular Laboratory, Department of Neurosciences, University of Padova, Padova, Italy
| | | | | | | |
Collapse
|
6
|
Kim JH, Lee BH, Kim YM, Choi JH, Kim GH, Cheon CK, Yoo HW. Novel mutations and clinical outcomes of copper-histidine therapy in Menkes disease patients. Metab Brain Dis 2015; 30:75-81. [PMID: 24919650 DOI: 10.1007/s11011-014-9569-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/19/2014] [Indexed: 01/08/2023]
Abstract
Menkes disease is a very rare X-linked copper metabolism disorder that results from an ATP7A gene mutation. With the advent of subcutaneous copper-histidine therapy, the early diagnosis of Menkes disease becomes of utmost importance for patients' prognosis. In the present study, the clinical characteristics of 12 Korean patients with Menkes disease (11 males and 1 female from 11 unrelated families) were described along with the mutation spectrum. Only 2 male patients were diagnosed in the neonatal period, and the other male patients were diagnosed at age 4.3 ± 1.9 months. The presenting signs included depigmented kinky hair, neurologic deficits, and hypotonia. Serum copper and ceruloplasmin levels were markedly decreased. Intracranial vessels were dilated with tortuosity and accompanied by regional cerebral infarctions, even at an early age. Of note, the female patient was diagnosed at age 18 months, during the evaluation for developmental delay, by characteristic MRA findings, biochemical profiles, and genetic evaluation. A total of 11 ATP7A mutations were identified, including five previously unreported mutations. Most mutations were truncated (except 1 missense mutation), including 3 frameshift, 2 nonsense, 3 large deletion, and 2 splice-site variants. The age at commencement of copper-histidine treatment was variable among patients age 7.3 ± 7.5 (0.5-27) months. Despite the treatment, seven patients died before age 5 years, and the remaining patients were severely retarded in neurodevelopment. The poor outcomes of our patients might be related to delayed therapy, but severe ATP7A mutations should be noted as well.
Collapse
Affiliation(s)
- Ja Hye Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
7
|
Zlatic S, Comstra HS, Gokhale A, Petris MJ, Faundez V. Molecular basis of neurodegeneration and neurodevelopmental defects in Menkes disease. Neurobiol Dis 2015; 81:154-61. [PMID: 25583185 DOI: 10.1016/j.nbd.2014.12.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/04/2014] [Accepted: 12/23/2014] [Indexed: 12/16/2022] Open
Abstract
ATP7A mutations impair copper metabolism resulting in three distinct genetic disorders in humans. These diseases are characterized by neurological phenotypes ranging from intellectual disability to neurodegeneration. Severe ATP7A loss-of-function alleles trigger Menkes disease, a copper deficiency condition where systemic and neurodegenerative phenotypes dominate clinical outcomes. The pathogenesis of these manifestations has been attributed to the hypoactivity of a limited number of copper-dependent enzymes, a hypothesis that we refer as the oligoenzymatic pathogenic hypothesis. This hypothesis, which has dominated the field for 25 years, only explains some systemic Menkes phenotypes. However, we argue that this hypothesis does not fully account for the Menkes neurodegeneration or neurodevelopmental phenotypes. Here, we propose revisions of the oligoenzymatic hypothesis that could illuminate the pathogenesis of Menkes neurodegeneration and neurodevelopmental defects through unsuspected overlap with other neurological conditions including Parkinson's, intellectual disability, and schizophrenia.
Collapse
Affiliation(s)
- Stephanie Zlatic
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Avanti Gokhale
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Michael J Petris
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; Center for Social Translational Neuroscience, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
8
|
Electro-clinical features and magnetic resonance imaging correlates in Menkes disease. Brain Dev 2013; 35:398-405. [PMID: 22921468 DOI: 10.1016/j.braindev.2012.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 07/20/2012] [Accepted: 07/24/2012] [Indexed: 11/22/2022]
Abstract
BACKGROUND Epilepsy is an early and important feature in Menkes disease (MD), an X-linked recessive neurodegenerative disorder of childhood with defect in copper metabolism. There are only few reports on the electro-clinical and magnetic resonance imaging correlates in Menkes disease. The current study describes the electro-clinical features in MD in relation with the structural findings on MRI. PATIENTS AND METHODS Six patients from five families were evaluated between 2005 and 2011. Their diagnosis was based on the characteristic morphological features, microscopic evidence of pili torti and low copper and ceruloplasmin levels. All the patients underwent MRI and EEG as part of the evaluation. RESULTS All patients had classical form of MD with typical morphological features. All but one patient had refractory seizures. Seizure types included multifocal clonic seizures (n=3), myoclonic jerks (n=4) and tonic spasms (n=1). EEG was markedly abnormal in all except in the patient without clinical seizures. While focal epileptiform discharges predominated before six months of age modified hypsarrhythmia was characteristically noted thereafter. MR Imaging revealed abnormalities in all patients, with cerebral atrophy and delayed myelination being the most common observations. Other features noted were subdural effusion (n=3), leukoencephalopathy (n=3) and basal ganglia signal changes (n=1). Follow up imaging in three patients showed resolution of white matter signal intensity changes. CONCLUSIONS Electro-clinical features in Menkes disease are age dependent and evolve sequentially. White matter changes coincided with acute exacerbation of seizures. There was fair correlation between the electro-clinical features and structural findings on MRI.
Collapse
|
9
|
Que EL, Domaille DW, Chang CJ. Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 2008; 108:1517-49. [PMID: 18426241 DOI: 10.1021/cr078203u] [Citation(s) in RCA: 1549] [Impact Index Per Article: 91.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Emily L Que
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
10
|
Spinazzi M, De Lazzari F, Tavolato B, Angelini C, Manara R, Armani M. Myelo-optico-neuropathy in copper deficiency occurring after partial gastrectomy. Do small bowel bacterial overgrowth syndrome and occult zinc ingestion tip the balance? J Neurol 2007; 254:1012-7. [PMID: 17415508 DOI: 10.1007/s00415-006-0479-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 09/25/2006] [Accepted: 10/09/2006] [Indexed: 11/30/2022]
Abstract
Acquired copper deficiency has recently been recognized as a cause of myeloneuropathy mimicking subacute combined degeneration due to vitamin B-12 deficiency. A remote history of gastric surgery is frequently associated with this syndrome. However, the very limited prevalence of severe copper deficiency in patients with a history of gastric surgery suggests that additional contributing factors are likely to be involved. We describe a patient with copper deficiency and a previous Billroth II partial gastrectomy for gastric carcinoma, presenting with severe myelo-optico-neuropathy, demyelinating lesions of the brain, and subjective hyposmia. An abnormal glucose breath test also revealed small bowel bacterial overgrowth syndrome. Copper replacement therapy associated with antibiotic therapy was effective in preventing further neurological damage and in obtaining mild improvement. We propose that copper status should be evaluated in all patients presenting with unexplained noninflammatory myeloneuropathy. Small bowel bacterial overgrowth syndrome should be investigated as a cause of generalized malabsorption and a possible contributing factor to copper deficiency after gastric surgery, as should occult zinc ingestion.
Collapse
Affiliation(s)
- Marco Spinazzi
- Second Neurological Unit, Dept. of Neurosciences, University of Padova Ospedale S Antonio, Via Facciolati 71, 35100, Padova, Italy.
| | | | | | | | | | | |
Collapse
|
11
|
Chacón MA, Barría MI, Lorca R, Huidobro-Toro JP, Inestrosa NC. A human prion protein peptide (PrP(59-91)) protects against copper neurotoxicity. Mol Psychiatry 2003; 8:853-62, 835. [PMID: 14515136 DOI: 10.1038/sj.mp.4001400] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human cellular prion protein (PrP(C)) is involved in several neurodegenerative disorders; however, its normal function is unknown. We report here that a synthetic peptide corresponding to the four-octarepeat sequence of the PrP(C) (PrP(59-91)) protects hippocampal neurons against copper neurotoxic effects in vivo. Using a rat bilateral intrahippocampal injection model, we found that PrP(59-91) protects against copper-induced neurotoxicity, including a recovery in spatial learning performance and a reduced neuronal cell loss and astrogliosis. Previous studies from our laboratory indicated that a tryptophan (Trp) residue plays a key role in the reduction of copper(II) to copper(I); therefore several PrP(59-91) fragments lacking histidine (His) and Trp residues were tested for their capacity to protect from copper toxicity. A PrP(59-91) peptide lacking His residue shows as much neuroprotection as the native peptide; however, PrP(59-91) without Trp residues only partially protected against copper toxicity. The neuroprotective effect not only occurs with PrP(59-91), in fact a full neuroprotection was also observed using just one octamer of the N-terminal region of prion protein. We conclude that the N-terminal tandem octarepeat of the human PrP(C) protects neurons against copper toxicity by a differential contribution of the binding (His) and reducing (Trp) copper activities of PrP(59-91). Our results are consistent with the idea that PrP(C) function is related to copper homeostasis.
Collapse
Affiliation(s)
- M A Chacón
- Centro de Regulación Celular y Patología 'Dr Joaquín V Luco', MIFAB, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
12
|
Strausak D, Mercer JF, Dieter HH, Stremmel W, Multhaup G. Copper in disorders with neurological symptoms: Alzheimer's, Menkes, and Wilson diseases. Brain Res Bull 2001; 55:175-85. [PMID: 11470313 DOI: 10.1016/s0361-9230(01)00454-3] [Citation(s) in RCA: 314] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper is an essential element for the activity of a number of physiologically important enzymes. Enzyme-related malfunctions may contribute to severe neurological symptoms and neurological diseases: copper is a component of cytochrome c oxidase, which catalyzes the reduction of oxygen to water, the essential step in cellular respiration. Copper is a cofactor of Cu/Zn-superoxide-dismutase which plays a key role in the cellular response to oxidative stress by scavenging reactive oxygen species. Furthermore, copper is a constituent of dopamine-beta-hydroxylase, a critical enzyme in the catecholamine biosynthetic pathway. A detailed exploration of the biological importance and functional properties of proteins associated with neurological symptoms will have an important impact on understanding disease mechanisms and may accelerate development and testing of new therapeutic approaches. Copper binding proteins play important roles in the establishment and maintenance of metal-ion homeostasis, in deficiency disorders with neurological symptoms (Menkes disease, Wilson disease) and in neurodegenerative diseases (Alzheimer's disease). The Menkes and Wilson proteins have been characterized as copper transporters and the amyloid precursor protein (APP) of Alzheimer's disease has been proposed to work as a Cu(II) and/or Zn(II) transporter. Experimental, clinical and epidemiological observations in neurodegenerative disorders like Alzheimer's disease and in the genetically inherited copper-dependent disorders Menkes and Wilson disease are summarized. This could provide a rationale for a link between severely dysregulated metal-ion homeostasis and the selective neuronal pathology.
Collapse
Affiliation(s)
- D Strausak
- Center for Cellular and Molecular Biology, School of Biological and Chemical Sciences, Deakin University, Burwood, Victoria, Australia
| | | | | | | | | |
Collapse
|
13
|
Abstract
Menkes' disease is an X-linked disorder caused by impaired intracellular transport of copper. Currently, no therapy effectively arrests the relentless neurodegeneration of Menkes' disease. Previous neuroimaging reports of patients with Menkes' disease describe a range of abnormalities, including intracranial vessel tortuosity and cerebral white matter changes. We report two infants with Menkes' disease who developed ischemic cerebrovascular disease early in infancy. Magnetic resonance studies, including diffusion-weighted imaging and proton magnetic resonance spectroscopy, demonstrated bilateral infarctions of deep gray matter nuclei, a finding not previously described in Menkes' disease. Potential mechanisms for these cerebrovascular lesions in Menkes' disease include the susceptibility to free radical attack and inadequate energy supply from oxidative phosphorylation. These infarctions may play an unrecognized but important role in the neurodegeneration of children with Menkes' disease. The development of effective therapeutic agents against this disease will require a more detailed understanding of such underlying mechanisms.
Collapse
Affiliation(s)
- G E Hsich
- Department of Neurology, Harvard Medical School and Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
14
|
Kunz WS, Kuznetsov AV, Clark JF, Tracey I, Elger CE. Metabolic consequences of the cytochrome c oxidase deficiency in brain of copper-deficient Mo(vbr) mice. J Neurochem 1999; 72:1580-5. [PMID: 10098864 DOI: 10.1046/j.1471-4159.1999.721580.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Biochemical micromethods were used for the investigation of changes in mitochondrial oxidative phosphorylation associated with cytochrome c oxidase deficiency in brain cortex from Mo(vbr) (mottled viable brindled) mice, an animal model of Menkes' copper deficiency syndrome. Enzymatic analysis of cortex homogenates from Mo(vbr) mice showed an approximately twofold decrease in cytochrome c oxidase and a 1.4-fold decrease in NADH:cytochrome c reductase activities as compared with controls. Assessment of mitochondrial respiratory function was performed using digitonin-treated homogenates of the cortex, which exhibited the main characteristics of isolated brain mitochondria. Despite the substantial changes in respiratory chain enzyme activities, no significant differences were found in maximal pyruvate or succinate oxidation rates of brain cortex homogenates from Mo(vbr) and control mice. Inhibitor titrations were used to determine flux control coefficients of NADH:CoQ oxidoreductase and cytochrome c oxidase on the rate of mitochondrial respiration. Application of amobarbital to titrate the activity of NADH:CoQ oxidoreductase showed very similar flux control coefficients for control and mutant animals. Alternately, titration of respiration with azide revealed for Mo(vbr) mice significantly sharper inhibition curves than for controls, indicating a more than twofold elevated flux control coefficient of cytochrome c oxidase. Owing to the reserve capacity of respiratory chain enzymes, the reported changes in activities do not seem to affect whole-brain high-energy phosphates, as observed in a previous study using 31P NMR.
Collapse
Affiliation(s)
- W S Kunz
- Department of Epileptology, University of Bonn Medical Center, Germany
| | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- J H Menkes
- Division of Pediatric Neurology, Cedars Sinai Medical Center, Los Angeles, California 90212-3216, USA
| |
Collapse
|
16
|
Affiliation(s)
- R J Leventer
- Department of Neurology, Royal Children's Hospital, Melbourne, Australia
| | | | | | | |
Collapse
|
17
|
Kuznetsov AV, Clark JF, Winkler K, Kunz WS. Increase of flux control of cytochrome c oxidase in copper-deficient mottled brindled mice. J Biol Chem 1996; 271:283-8. [PMID: 8550574 DOI: 10.1074/jbc.271.1.283] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The brindled mottled mouse (Mobr), an animal model of the Menkes' copper deficiency syndrome, was used for the investigation of changes in respiratory flux control associated with cytochrome c oxidase deficiency in muscle. Enzymatic analysis of cardiac and skeletal muscles showed an approximately 2-fold decrease in cytochrome c oxidase activity of brindled mutants in both types of muscles as compared with controls. The activities of NADH-cytochrome c oxidoreductase (respiratory chain segment I-III) and succinate-cytochrome c oxidoreductase (segment II-III) were normal. Assessment of mitochondrial respiratory function was performed using chemically skinned musculus quadriceps or heart muscle fibers isolated from control and brindled mottled mice. In skeletal muscle, there was no difference found in maximal rates of respiration. In the Mobr hearts, this parameter was slightly lower than control. Alternately, the determination of flux control coefficients of cytochrome c oxidase performed by a step by step inhibition of respiration with increasing concentrations of azide or cyanide revealed significantly sharper inhibition curves for brindled mice than for control, indicating more than 2-fold elevated flux control coefficients of cytochrome c oxidase. This investigation proved essential in characterizing the metabolic effect of a cytochrome c oxidase deficiency. We conclude, therefore, that application of metabolic control analysis can be a valuable approach to study defects of mitochondrial oxidative phosphorylation.
Collapse
Affiliation(s)
- A V Kuznetsov
- Laboratory of Neurobiochemistry, Klinik für Neurologie, Universitätsklinikum, Magdeburg, Germany
| | | | | | | |
Collapse
|
18
|
Shibata N, Hirano A, Kobayashi M, Umahara T, Kawanami T, Asayama K. Cerebellar superoxide dismutase expression in Menkes' kinky hair disease: an immunohistochemical investigation. Acta Neuropathol 1995; 90:198-202. [PMID: 7484097 DOI: 10.1007/bf00294321] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This comparative immunohistochemical study deals with the expression of the cytosolic Cu/Zn-binding and mitochondrial Mn-dependent superoxide dismutases (SODs) in the cerebella of five patients with Menkes' kinky hair disease (MKHD) and five age-matched controls. Several cell types, including Purkinje cells and reactive astrocytes, of all MKHD patients examined were intensely stained by an antibody to Mn SOD, but not by an anti-Cu/Zn SOD antibody. By contrast, the cells of the five controls reacted very weakly or not at all with the anti-Mn SOD antibody, but were strongly reactive with the antibody to Cu/Zn SOD. These results suggest that the increased Mn SOD immunoreactivity in MKHD reflects enzyme induction as a protective mechanism against the highly toxic superoxide anion generated under the disease conditions.
Collapse
Affiliation(s)
- N Shibata
- Department of Pathology, Montefiore Medical Center, Bronx, NY 10467, USA
| | | | | | | | | | | |
Collapse
|
19
|
Chen X, Bonilla E, Sciacco M, Schon EA. Paucity of deleted mitochondrial DNAs in brain regions of Huntington's disease patients. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1271:229-33. [PMID: 7599213 DOI: 10.1016/0925-4439(95)00032-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mitochondrial DNA deletions (delta-mtDNAs), originally found at high levels in patients with sporadic mitochondrial encephalomyopathies, have also been found to accumulate at extremely low levels during normal human aging, especially in long-lived postmitotic tissues such as muscle and brain. We have now quantitated the amount of one such delta-mtDNA species, the so-called 'common deletion', in brain regions from patients with Huntington's disease (HD). Surprisingly, we found a marked decrease in the amount of this delta-mtDNA in the occipital cortex and putamen as compared to age-matched controls; however, no change was found in caudate. Using immunohistochemistry of brain sections, we found no differences in the staining pattern for selected respiratory chain polypeptides between the HD and control tissues. The reduction in the amount of delta-mtDNAs in HD may be related in part to the astrocytic gliosis in the affected areas, in which the deletion-rich neurons are replaced by relatively deletion-poor astrocytes.
Collapse
Affiliation(s)
- X Chen
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|