1
|
Văcăraş V, Vulturar R, Chiş A, Damian L. Inclusion body myositis, viral infections, and TDP-43: a narrative review. Clin Exp Med 2024; 24:91. [PMID: 38693436 PMCID: PMC11062973 DOI: 10.1007/s10238-024-01353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
The ubiquitous RNA-processing molecule TDP-43 is involved in neuromuscular diseases such as inclusion body myositis, a late-onset acquired inflammatory myopathy. TDP-43 solubility and function are disrupted in certain viral infections. Certain viruses, high viremia, co-infections, reactivation of latent viruses, and post-acute expansion of cytotoxic T cells may all contribute to inclusion body myositis, mainly in an age-shaped immune landscape. The virally induced senescent, interferon gamma-producing cytotoxic CD8+ T cells with increased inflammatory, and cytotoxic features are involved in the occurrence of inclusion body myositis in most such cases, in a genetically predisposed host. We discuss the putative mechanisms linking inclusion body myositis, TDP-43, and viral infections untangling the links between viruses, interferon, and neuromuscular degeneration could shed a light on the pathogenesis of the inclusion body myositis and other TDP-43-related neuromuscular diseases, with possible therapeutic implications.
Collapse
Affiliation(s)
- Vitalie Văcăraş
- Department of Neurosciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, 43, Victor Babeş St, 400012, Cluj-Napoca, Romania
- Neurology Department of Cluj, County Emergency Hospital, 3-5, Clinicilor St, 400347, Cluj-Napoca, Romania
| | - Romana Vulturar
- Department of Molecular Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 6, Pasteur St, 400349, Cluj-Napoca, Romania
- Cognitive Neuroscience Laboratory, University Babeş-Bolyai, 30, Fântânele St, 400294, Cluj-Napoca, Romania
- Association for Innovation in Rare Inflammatory, Metabolic, Genetic Diseases INNOROG, 30E, Făgetului St, 400497, Cluj-Napoca, Romania
| | - Adina Chiş
- Department of Molecular Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 6, Pasteur St, 400349, Cluj-Napoca, Romania.
- Cognitive Neuroscience Laboratory, University Babeş-Bolyai, 30, Fântânele St, 400294, Cluj-Napoca, Romania.
- Association for Innovation in Rare Inflammatory, Metabolic, Genetic Diseases INNOROG, 30E, Făgetului St, 400497, Cluj-Napoca, Romania.
| | - Laura Damian
- Association for Innovation in Rare Inflammatory, Metabolic, Genetic Diseases INNOROG, 30E, Făgetului St, 400497, Cluj-Napoca, Romania
- Department of Rheumatology, Centre for Rare Autoimmune and Autoinflammatory Diseases, Emergency, Clinical County Hospital Cluj, 2-4, Clinicilor St, 400006, Cluj-Napoca, Romania
- CMI Reumatologie Dr. Damian, 6-8, Petru Maior St, 400002, Cluj-Napoca, Romania
| |
Collapse
|
2
|
Alix JJP, Plesia M, Dudgeon AP, Kendall CA, Hewamadduma C, Hadjivassiliou M, Gorman GS, Taylor RW, McDermott CJ, Shaw PJ, Mead RJ, Day JC. Conformational fingerprinting with Raman spectroscopy reveals protein structure as a translational biomarker of muscle pathology. Analyst 2024; 149:2738-2746. [PMID: 38533726 PMCID: PMC11056770 DOI: 10.1039/d4an00320a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
Neuromuscular disorders are a group of conditions that can result in weakness of skeletal muscles. Examples include fatal diseases such as amyotrophic lateral sclerosis and conditions associated with high morbidity such as myopathies (muscle diseases). Many of these disorders are known to have abnormal protein folding and protein aggregates. Thus, easy to apply methods for the detection of such changes may prove useful diagnostic biomarkers. Raman spectroscopy has shown early promise in the detection of muscle pathology in neuromuscular disorders and is well suited to characterising the conformational profiles relating to protein secondary structure. In this work, we assess if Raman spectroscopy can detect differences in protein structure in muscle in the setting of neuromuscular disease. We utilise in vivo Raman spectroscopy measurements from preclinical models of amyotrophic lateral sclerosis and the myopathy Duchenne muscular dystrophy, together with ex vivo measurements of human muscle samples from individuals with and without myopathy. Using quantitative conformation profiling and matrix factorisation we demonstrate that quantitative 'conformational fingerprinting' can be used to identify changes in protein folding in muscle. Notably, myopathic conditions in both preclinical models and human samples manifested a significant reduction in α-helix structures, with concomitant increases in β-sheet and, to a lesser extent, nonregular configurations. Spectral patterns derived through non-negative matrix factorisation were able to identify myopathy with a high accuracy (79% in mouse, 78% in human tissue). This work demonstrates the potential of conformational fingerprinting as an interpretable biomarker for neuromuscular disorders.
Collapse
Affiliation(s)
- James J P Alix
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
- National Institute for Health and Care Research Sheffield Biomedical Research Centre, Sheffield, UK
| | - Maria Plesia
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK.
| | - Alexander P Dudgeon
- Biophotonics Research Unit, Gloucestershire Hospitals NHS Foundation Trust, UK
- Department of Physics and Astronomy, University of Exeter, UK
| | - Catherine A Kendall
- Biophotonics Research Unit, Gloucestershire Hospitals NHS Foundation Trust, UK
| | - Channa Hewamadduma
- National Institute for Health and Care Research Sheffield Biomedical Research Centre, Sheffield, UK
- Department of Neurology, Academic Directorate of Neurosciences, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, UK
| | - Marios Hadjivassiliou
- National Institute for Health and Care Research Sheffield Biomedical Research Centre, Sheffield, UK
- Department of Neurology, Academic Directorate of Neurosciences, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, UK
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- National Institute for Health and Care Research Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Christopher J McDermott
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
- National Institute for Health and Care Research Sheffield Biomedical Research Centre, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
- National Institute for Health and Care Research Sheffield Biomedical Research Centre, Sheffield, UK
| | - Richard J Mead
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - John C Day
- Interface Analysis Centre, School of Physics, University of Bristol, UK
| |
Collapse
|
3
|
Guglielmi V, Cheli M, Tonin P, Vattemi G. Sporadic Inclusion Body Myositis at the Crossroads between Muscle Degeneration, Inflammation, and Aging. Int J Mol Sci 2024; 25:2742. [PMID: 38473988 PMCID: PMC10932328 DOI: 10.3390/ijms25052742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Sporadic inclusion body myositis (sIBM) is the most common muscle disease of older people and is clinically characterized by slowly progressive asymmetrical muscle weakness, predominantly affecting the quadriceps, deep finger flexors, and foot extensors. At present, there are no enduring treatments for this relentless disease that eventually leads to severe disability and wheelchair dependency. Although sIBM is considered a rare muscle disorder, its prevalence is certainly higher as the disease is often undiagnosed or misdiagnosed. The histopathological phenotype of sIBM muscle biopsy includes muscle fiber degeneration and endomysial lymphocytic infiltrates that mainly consist of cytotoxic CD8+ T cells surrounding nonnecrotic muscle fibers expressing MHCI. Muscle fiber degeneration is characterized by vacuolization and the accumulation of congophilic misfolded multi-protein aggregates, mainly in their non-vacuolated cytoplasm. Many players have been identified in sIBM pathogenesis, including environmental factors, autoimmunity, abnormalities of protein transcription and processing, the accumulation of several toxic proteins, the impairment of autophagy and the ubiquitin-proteasome system, oxidative and nitrative stress, endoplasmic reticulum stress, myonuclear degeneration, and mitochondrial dysfunction. Aging has also been proposed as a contributor to the disease. However, the interplay between these processes and the primary event that leads to the coexistence of autoimmune and degenerative changes is still under debate. Here, we outline our current understanding of disease pathogenesis, focusing on degenerative mechanisms, and discuss the possible involvement of aging.
Collapse
Affiliation(s)
- Valeria Guglielmi
- Cellular and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA;
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Marta Cheli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (M.C.); (P.T.)
| | - Paola Tonin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (M.C.); (P.T.)
| | - Gaetano Vattemi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (M.C.); (P.T.)
| |
Collapse
|
4
|
Machado PM, McDermott MP, Blaettler T, Sundgreen C, Amato AA, Ciafaloni E, Freimer M, Gibson SB, Jones SM, Levine TD, Lloyd TE, Mozaffar T, Shaibani AI, Wicklund M, Rosholm A, Carstensen TD, Bonefeld K, Jørgensen AN, Phonekeo K, Heim AJ, Herbelin L, Barohn RJ, Hanna MG, Dimachkie MM. Safety and efficacy of arimoclomol for inclusion body myositis: a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2023; 22:900-911. [PMID: 37739573 DOI: 10.1016/s1474-4422(23)00275-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Inclusion body myositis is the most common progressive muscle wasting disease in people older than 50 years, with no effective drug treatment. Arimoclomol is an oral co-inducer of the cellular heat shock response that was safe and well-tolerated in a pilot study of inclusion body myositis, reduced key pathological markers of inclusion body myositis in two in-vitro models representing degenerative and inflammatory components of this disease, and improved disease pathology and muscle function in mutant valosin-containing protein mice. In the current study, we aimed to assess the safety, tolerability, and efficacy of arimoclomol in people with inclusion body myositis. METHODS This multicentre, randomised, double-blind, placebo-controlled study enrolled adults in specialist neuromuscular centres in the USA (11 centres) and UK (one centre). Eligible participants had a diagnosis of inclusion body myositis fulfilling the European Neuromuscular Centre research diagnostic criteria 2011. Participants were randomised (1:1) to receive either oral arimoclomol 400 mg or matching placebo three times daily (1200 mg/day) for 20 months. The randomisation sequence was computer generated centrally using a permuted block algorithm with randomisation numbers masked to participants and trial staff, including those assessing outcomes. The primary endpoint was the change from baseline to month 20 in the Inclusion Body Myositis Functional Rating Scale (IBMFRS) total score, assessed in all randomly assigned participants, except for those who were randomised in error and did not receive any study medication, and those who did not meet inclusion criteria. Safety analyses included all randomly assigned participants who received at least one dose of study medication. This trial is registered with ClinicalTrials.gov, number NCT02753530, and is completed. FINDINGS Between Aug 16, 2017 and May 22, 2019, 152 participants with inclusion body myositis were randomly assigned to arimoclomol (n=74) or placebo (n=78). One participant was randomised in error (to arimoclomol) but not treated, and another (assigned to placebo) did not meet inclusion criteria. 150 participants (114 [76%] male and 36 [24%] female) were included in the efficacy analyses, 73 in the arimoclomol group and 77 in the placebo group. 126 completed the trial on treatment (56 [77%] and 70 [90%], respectively) and the most common reason for treatment discontinuation was adverse events. At month 20, mean IBMFRS change from baseline was not statistically significantly different between arimoclomol and placebo (-3·26, 95% CI -4·15 to -2·36 in the arimoclomol group vs -2·26, -3·11 to -1·41 in the placebo group; mean difference -0·99 [95% CI -2·23 to 0·24]; p=0·12). Adverse events leading to discontinuation occurred in 13 (18%) of 73 participants in the arimoclomol group and four (5%) of 78 participants in the placebo group. Serious adverse events occurred in 11 (15%) participants in the arimoclomol group and 18 (23%) in the placebo group. Elevated transaminases three times or more of the upper limit of normal occurred in five (7%) participants in the arimoclomol group and one (1%) in the placebo group. Tubulointerstitial nephritis was observed in one (1%) participant in the arimoclomol group and none in the placebo group. INTERPRETATION Arimoclomol did not improve efficacy outcomes, relative to placebo, but had an acceptable safety profile in individuals with inclusion body myositis. This is one of the largest trials done in people with inclusion body myositis, providing data on disease progression that might be used for subsequent clinical trial design. FUNDING US Food and Drug Administration Office of Orphan Products Development and Orphazyme.
Collapse
Affiliation(s)
- Pedro M Machado
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Michael P McDermott
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | - Anthony A Amato
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Emma Ciafaloni
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Miriam Freimer
- Department of Neurology, The Ohio State Wexner Medical Center, Columbus, OH, USA
| | - Summer B Gibson
- Neuromuscular Division, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Sarah M Jones
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Todd D Levine
- Department of Neurology, HonorHealth, Phoenix, AZ, USA
| | - Thomas E Lloyd
- Departments of Neurology and Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Tahseen Mozaffar
- Division of Neuromuscular Disorders, University of California, Irvine, Orange, CA, USA
| | - Aziz I Shaibani
- Nerve and Muscle Center of Texas, Baylor College of Medicine, Houston, TX, USA
| | - Matthew Wicklund
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | - Andrew J Heim
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Laura Herbelin
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Richard J Barohn
- Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Mazen M Dimachkie
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
5
|
Xu S, Gierisch ME, Schellhaus AK, Poser I, Alberti S, Salomons FA, Dantuma NP. Cytosolic stress granules relieve the ubiquitin-proteasome system in the nuclear compartment. EMBO J 2023; 42:e111802. [PMID: 36574355 PMCID: PMC9890234 DOI: 10.15252/embj.2022111802] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/28/2022] Open
Abstract
The role of cytosolic stress granules in the integrated stress response has remained largely enigmatic. Here, we studied the functionality of the ubiquitin-proteasome system (UPS) in cells that were unable to form stress granules. Surprisingly, the inability of cells to form cytosolic stress granules had primarily a negative impact on the functionality of the nuclear UPS. While defective ribosome products (DRiPs) accumulated at stress granules in thermally stressed control cells, they localized to nucleoli in stress granule-deficient cells. The nuclear localization of DRiPs was accompanied by redistribution and enhanced degradation of SUMOylated proteins. Depletion of the SUMO-targeted ubiquitin ligase RNF4, which targets SUMOylated misfolded proteins for proteasomal degradation, largely restored the functionality of the UPS in the nuclear compartment in stress granule-deficient cells. Stress granule-deficient cells showed an increase in the formation of mutant ataxin-1 nuclear inclusions when exposed to thermal stress. Our data reveal that stress granules play an important role in the sequestration of cytosolic misfolded proteins, thereby preventing these proteins from accumulating in the nucleus, where they would otherwise infringe nuclear proteostasis.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Cell and Molecular Biology (CMB)Karolinska InstitutetStockholmSweden
| | - Maria E Gierisch
- Department of Cell and Molecular Biology (CMB)Karolinska InstitutetStockholmSweden
| | | | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB)Technische Universität DresdenDresdenGermany
| | - Florian A Salomons
- Department of Cell and Molecular Biology (CMB)Karolinska InstitutetStockholmSweden
| | - Nico P Dantuma
- Department of Cell and Molecular Biology (CMB)Karolinska InstitutetStockholmSweden
| |
Collapse
|
6
|
Abstract
The autoimmune inflammatory myopathies constitute a heterogeneous group of acquired myopathies that have in common the presence of endomysial inflammation and moderate to severe muscle weakness. Based on currently evolved distinct clinical, histologic, immunopathologic, and autoantibody features, these disorders can be best classified as dermatomyositis, necrotizing autoimmune myositis, antisynthetase syndrome-overlap myositis, and inclusion body myositis. Although polymyositis is no longer considered a distinct subset but rather an extinct entity, it is herein described because its clinicopathologic information has provided over many years fundamental information on T-cell-mediated myocytotoxicity, especially in reference to inclusion body myositis. Each inflammatory myopathy subset has distinct immunopathogenesis, prognosis, and response to immunotherapies, necessitating the need to correctly diagnose each subtype from the outset and avoid disease mimics. The paper describes the main clinical characteristics that aid in the diagnosis of each myositis subtype, highlights the distinct features on muscle morphology and immunopathology, elaborates on the potential role of autoantibodies in pathogenesis or diagnosis , and clarifies common uncertainties in reference to putative triggering factors such as statins and viruses including the 2019-coronavirus-2 pandemic. It extensively describes the main autoimmune markers related to autoinvasive myocytotoxic T-cells, activated B-cells, complement, cytokines, and the possible role of innate immunity. The concomitant myodegenerative features seen in inclusion body myositis along with their interrelationship between inflammation and degeneration are specifically emphasized. Finally, practical guidelines on the best therapeutic approaches are summarized based on up-to-date knowledge and controlled studies, highlighting the prospects of future immunotherapies and ongoing controversies.
Collapse
Affiliation(s)
- Marinos C Dalakas
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States; Neuroimmunology Unit National and Kapodistrian University of Athens Medical School, Athens, Greece.
| |
Collapse
|
7
|
Damian L, Login CC, Solomon C, Belizna C, Encica S, Urian L, Jurcut C, Stancu B, Vulturar R. Inclusion Body Myositis and Neoplasia: A Narrative Review. Int J Mol Sci 2022; 23:ijms23137358. [PMID: 35806366 PMCID: PMC9266341 DOI: 10.3390/ijms23137358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Inclusion body myositis (IBM) is an acquired, late-onset inflammatory myopathy, with both inflammatory and degenerative pathogenesis. Although idiopathic inflammatory myopathies may be associated with malignancies, IBM is generally not considered paraneoplastic. Many studies of malignancy in inflammatory myopathies did not include IBM patients. Indeed, IBM is often diagnosed only after around 5 years from onset, while paraneoplastic myositis is generally defined as the co-occurrence of malignancy and myopathy within 1 to 3 years of each other. Nevertheless, a significant association with large granular lymphocyte leukemia has been recently described in IBM, and there are reports of cancer-associated IBM. We review the pathogenic mechanisms supposed to be involved in IBM and outline the common mechanisms in IBM and malignancy, as well as the therapeutic perspectives. The terminally differentiated, CD8+ highly cytotoxic T cells expressing NK features are central in the pathogenesis of IBM and, paradoxically, play a role in some cancers as well. Interferon gamma plays a central role, mostly during the early stages of the disease. The secondary mitochondrial dysfunction, the autophagy and cell cycle dysregulation, and the crosstalk between metabolic and mitogenic pathways could be shared by IBM and cancer. There are intermingled subcellular mechanisms in IBM and neoplasia, and probably their co-existence is underestimated. The link between IBM and cancers deserves further interest, in order to search for efficient therapies in IBM and to improve muscle function, life quality, and survival in both diseases.
Collapse
Affiliation(s)
- Laura Damian
- Centre for Rare Autoimmune and Autoinflammatory Diseases (ERN-ReCONNET), Department of Rheumatology, Emergency Clinical County Hospital Cluj, 400347 Cluj-Napoca, Romania;
- CMI Reumatologie Dr. Damian, 6-8 Petru Maior St., 400002 Cluj-Napoca, Romania
| | - Cristian Cezar Login
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
- Correspondence:
| | - Carolina Solomon
- Radiology Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
- Radiology Department, Emergency Clinical County Hospital Cluj, 400006 Cluj-Napoca, Romania
| | - Cristina Belizna
- UMR CNRS 6015—INSERM U1083, University of Angers, 49100 Angers, France;
- Internal Medicine Department Clinique de l’Anjou, Angers and Vascular and Coagulation Department, University Hospital Angers, 49100 Angers, France
| | - Svetlana Encica
- Department of Pathology, “Niculae Stancioiu” Heart Institute Cluj-Napoca, 19-21 Calea Moților St., 400001 Cluj-Napoca, Romania;
| | - Laura Urian
- Department of Hematology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400004 Cluj-Napoca, Romania;
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400014 Cluj-Napoca, Romania
| | - Ciprian Jurcut
- Department of Internal Medicine, “Carol Davila” Central Military Emergency University Hospital, Calea Plevnei No 134, 010825 Bucharest, Romania;
| | - Bogdan Stancu
- 2nd Surgical Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Romana Vulturar
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, University “Babes-Bolyai” Cluj-Napoca, 400294 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Clinical implication of denervation in sporadic inclusion body myositis. J Neurol Sci 2022; 439:120317. [PMID: 35709642 DOI: 10.1016/j.jns.2022.120317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/08/2022] [Accepted: 06/03/2022] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Sporadic inclusion body myositis (sIBM) is often accompanied by signs suggestive of denervation on electromyography (EMG), which mimics neurogenic disorders. Hence, the current study aimed to assess reinnervation after denervation in sIBM and its clinical impllcation. METHODS We retrospectively examined consecutive muscle biopsy specimens collected from 109 sIBM patients who were referred to our institution for diagnostic muscle biopsy from 2001 to 2018. Reinnervation after denervation in sIBM patients was assessed via muscle biopsy and EMG. The levels of acetylcholine receptor subunit γ (Chrng) and muscle-specific kinase (MuSK) mRNA, which are markers of denervation, were examined using real-time polymerase chain reaction. Response to treatment was defined as an increase of grade 1 or higher in two or more muscle groups as assessed using the Medical Research Council scale. RESULTS In total, 93 (85.3%) of 109 sIBM patients had reinnervation after denervation on histological examination and/or EMG. The mean disease duration before biopsy was significantly longer in patients with reinnervation after denervation than in those without (p < 0.00001). Patients with denervation had significantly higher levels of Chrng and MuSK mRNA than those without. The proportion of patients who responded to immunosuppressive therapies was smaller in the patients with denervation than those without (p < 0.05). However, there was no significant difference regarding time from onset to using a walking aid between the two groups. DISCUSSION Reinnervation after denervation is associated with disease duration and short-term response to therapy in individuals with sIBM.
Collapse
|
9
|
Abdelnaby R, Mohamed KA, Elgenidy A, Sonbol YT, Bedewy MM, Aboutaleb AM, Ebrahim MA, Maallem I, Dardeer KT, Heikal HA, Gawish HM, Zschüntzsch J. Muscle Sonography in Inclusion Body Myositis: A Systematic Review and Meta-Analysis of 944 Measurements. Cells 2022; 11:600. [PMID: 35203250 PMCID: PMC8869828 DOI: 10.3390/cells11040600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 01/14/2023] Open
Abstract
Inclusion body myositis (IBM) is a slowly progressive muscle weakness of distal and proximal muscles, which is diagnosed by clinical and histopathological criteria. Imaging biomarkers are inconsistently used and do not follow international standardized criteria. We conducted a systematic review and meta-analysis to investigate the diagnostic value of muscle ultrasound (US) in IBM compared to healthy controls. A systematic search of PubMed/MEDLINE, Scopus and Web of Science was performed. Articles reporting the use of muscle ultrasound in IBM, and published in peer-reviewed journals until 11 September 2021, were included in our study. Seven studies were included, with a total of 108 IBM and 171 healthy controls. Echogenicity between IBM and healthy controls, which was assessed by three studies, demonstrated a significant mean difference in the flexor digitorum profundus (FDP) muscle, which had a grey scale value (GSV) of 36.55 (95% CI, 28.65-44.45, p < 0.001), and in the gastrocnemius (GC), which had a GSV of 27.90 (95% CI 16.32-39.48, p < 0.001). Muscle thickness in the FDP showed no significant difference between the groups. The pooled sensitivity and specificity of US in the differentiation between IBM and the controls were 82% and 98%, respectively, and the area under the curve was 0.612. IBM is a rare disease, which is reflected in the low numbers of patients included in each of the studies and thus there was high heterogeneity in the results. Nevertheless, the selected studies conclusively demonstrated significant differences in echogenicity of the FDP and GC in IBM, compared to controls. Further high-quality studies, using standardized operating procedures, are needed to implement muscle ultrasound in the diagnostic criteria.
Collapse
Affiliation(s)
- Ramy Abdelnaby
- Department of Neurology, RWTH Aachen University, Pauwels Street 30, 52074 Aachen, Germany;
| | - Khaled Ashraf Mohamed
- Faculty of Medicine, Cairo University, 1 Gamaa Street, Cairo 12613, Egypt; (K.A.M.); (A.E.); (Y.T.S.); (M.M.B.); (M.A.E.); (K.T.D.); (H.A.H.); (H.M.G.)
| | - Anas Elgenidy
- Faculty of Medicine, Cairo University, 1 Gamaa Street, Cairo 12613, Egypt; (K.A.M.); (A.E.); (Y.T.S.); (M.M.B.); (M.A.E.); (K.T.D.); (H.A.H.); (H.M.G.)
| | - Yousef Tarek Sonbol
- Faculty of Medicine, Cairo University, 1 Gamaa Street, Cairo 12613, Egypt; (K.A.M.); (A.E.); (Y.T.S.); (M.M.B.); (M.A.E.); (K.T.D.); (H.A.H.); (H.M.G.)
| | - Mahmoud Mostafa Bedewy
- Faculty of Medicine, Cairo University, 1 Gamaa Street, Cairo 12613, Egypt; (K.A.M.); (A.E.); (Y.T.S.); (M.M.B.); (M.A.E.); (K.T.D.); (H.A.H.); (H.M.G.)
| | | | - Mohamed Ayman Ebrahim
- Faculty of Medicine, Cairo University, 1 Gamaa Street, Cairo 12613, Egypt; (K.A.M.); (A.E.); (Y.T.S.); (M.M.B.); (M.A.E.); (K.T.D.); (H.A.H.); (H.M.G.)
| | - Imene Maallem
- Faculty of Medicine, Pharmacy Department, University Badji Mokhtar Annaba, Zaafrania Street, Annaba 23000, Algeria;
| | - Khaled Tarek Dardeer
- Faculty of Medicine, Cairo University, 1 Gamaa Street, Cairo 12613, Egypt; (K.A.M.); (A.E.); (Y.T.S.); (M.M.B.); (M.A.E.); (K.T.D.); (H.A.H.); (H.M.G.)
| | - Hamed Amr Heikal
- Faculty of Medicine, Cairo University, 1 Gamaa Street, Cairo 12613, Egypt; (K.A.M.); (A.E.); (Y.T.S.); (M.M.B.); (M.A.E.); (K.T.D.); (H.A.H.); (H.M.G.)
| | - Hazem Maher Gawish
- Faculty of Medicine, Cairo University, 1 Gamaa Street, Cairo 12613, Egypt; (K.A.M.); (A.E.); (Y.T.S.); (M.M.B.); (M.A.E.); (K.T.D.); (H.A.H.); (H.M.G.)
| | - Jana Zschüntzsch
- Clinic for Neurology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| |
Collapse
|
10
|
Coudert L, Osseni A, Gangloff YG, Schaeffer L, Leblanc P. The ESCRT-0 subcomplex component Hrs/Hgs is a master regulator of myogenesis via modulation of signaling and degradation pathways. BMC Biol 2021; 19:153. [PMID: 34330273 PMCID: PMC8323235 DOI: 10.1186/s12915-021-01091-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022] Open
Abstract
Background Myogenesis is a highly regulated process ending with the formation of myotubes, the precursors of skeletal muscle fibers. Differentiation of myoblasts into myotubes is controlled by myogenic regulatory factors (MRFs) that act as terminal effectors of signaling cascades involved in the temporal and spatial regulation of muscle development. Such signaling cascades converge and are controlled at the level of intracellular trafficking, but the mechanisms by which myogenesis is regulated by the endosomal machinery and trafficking is largely unexplored. The Endosomal Sorting Complex Required for Transport (ESCRT) machinery composed of four complexes ESCRT-0 to ESCRT-III regulates the biogenesis and trafficking of endosomes as well as the associated signaling and degradation pathways. Here, we investigate its role in regulating myogenesis. Results We uncovered a new function of the ESCRT-0 hepatocyte growth factor-regulated tyrosine kinase substrate Hrs/Hgs component in the regulation of myogenesis. Hrs depletion strongly impairs the differentiation of murine and human myoblasts. In the C2C12 murine myogenic cell line, inhibition of differentiation was attributed to impaired MRF in the early steps of differentiation. This alteration is associated with an upregulation of the MEK/ERK signaling pathway and a downregulation of the Akt2 signaling both leading to the inhibition of differentiation. The myogenic repressors FOXO1 as well as GSK3β were also found to be both activated when Hrs was absent. Inhibition of the MEK/ERK pathway or of GSK3β by the U0126 or azakenpaullone compounds respectively significantly restores the impaired differentiation observed in Hrs-depleted cells. In addition, functional autophagy that is required for myogenesis was also found to be strongly inhibited. Conclusions We show for the first time that Hrs/Hgs is a master regulator that modulates myogenesis at different levels through the control of trafficking, signaling, and degradation pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01091-4.
Collapse
Affiliation(s)
- L Coudert
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, 8 avenue Rockefeller, 69373, 09, Lyon, Cedex, France
| | - A Osseni
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, 8 avenue Rockefeller, 69373, 09, Lyon, Cedex, France
| | - Y G Gangloff
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, 8 avenue Rockefeller, 69373, 09, Lyon, Cedex, France
| | - L Schaeffer
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, 8 avenue Rockefeller, 69373, 09, Lyon, Cedex, France
| | - P Leblanc
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, 8 avenue Rockefeller, 69373, 09, Lyon, Cedex, France.
| |
Collapse
|
11
|
Hanna AD, Lee CS, Babcock L, Wang H, Recio J, Hamilton SL. Pathological mechanisms of vacuolar aggregate myopathy arising from a Casq1 mutation. FASEB J 2021; 35:e21349. [PMID: 33786938 DOI: 10.1096/fj.202001653rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 11/11/2022]
Abstract
Mice with a mutation (D244G, DG) in calsequestrin 1 (CASQ1), analogous to a human mutation in CASQ1 associated with a delayed onset human myopathy (vacuolar aggregate myopathy), display a progressive myopathy characterized by decreased activity, decreased ability of fast twitch muscles to generate force and low body weight after one year of age. The DG mutation causes CASQ1 to partially dissociate from the junctional sarcoplasmic reticulum (SR) and accumulate in the endoplasmic reticulum (ER). Decreased junctional CASQ1 reduces SR Ca2+ release. Muscles from older DG mice display ER stress, ER expansion, increased mTOR signaling, inadequate clearance of aggregated proteins by the proteasomes, and elevation of protein aggregates and lysosomes. This study suggests that the myopathy associated with the D244G mutation in CASQ1 is driven by CASQ1 mislocalization, reduced SR Ca2+ release, CASQ1 misfolding/aggregation and ER stress. The subsequent maladaptive increase in protein synthesis and decreased protein aggregate clearance are likely to contribute to disease progression.
Collapse
Affiliation(s)
- Amy D Hanna
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Chang Seok Lee
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Lyle Babcock
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Hui Wang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Recio
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Susan L Hamilton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
12
|
Kitajima Y, Yoshioka K, Suzuki N. The ubiquitin-proteasome system in regulation of the skeletal muscle homeostasis and atrophy: from basic science to disorders. J Physiol Sci 2020; 70:40. [PMID: 32938372 PMCID: PMC10717345 DOI: 10.1186/s12576-020-00768-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023]
Abstract
Skeletal muscle is one of the most abundant and highly plastic tissues. The ubiquitin-proteasome system (UPS) is recognised as a major intracellular protein degradation system, and its function is important for muscle homeostasis and health. Although UPS plays an essential role in protein degradation during muscle atrophy, leading to the loss of muscle mass and strength, its deficit negatively impacts muscle homeostasis and leads to the occurrence of several pathological phenotypes. A growing number of studies have linked UPS impairment not only to matured muscle fibre degeneration and weakness, but also to muscle stem cells and deficiency in regeneration. Emerging evidence suggests possible links between abnormal UPS regulation and several types of muscle diseases. Therefore, understanding of the role of UPS in skeletal muscle may provide novel therapeutic insights to counteract muscle wasting, and various muscle diseases. In this review, we focussed on the role of proteasomes in skeletal muscle and its regeneration, including a brief explanation of the structure of proteasomes. In addition, we summarised the recent findings on several diseases and elaborated on how the UPS is related to their pathological states.
Collapse
Affiliation(s)
- Yasuo Kitajima
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811, Japan.
| | - Kiyoshi Yoshioka
- Institute for Research On Productive Aging (IRPA), #201 Kobe hybrid business center, Minami-cho 6-7-6, Minatojima, Kobe, 650-0047, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
- Department of Neurology, Shodo-Kai Southern Tohoku General Hospital, 1-2-5, Satonomori, Iwanuma, Miyagi, 989-2483, Japan.
| |
Collapse
|
13
|
Chatterjee S, Prayson RA. Concurrent anti-PM-Scl antibody-associated systemic sclerosis and inclusion body myositis – report of two cases and review of the literature. Semin Arthritis Rheum 2020; 50:498-502. [DOI: 10.1016/j.semarthrit.2019.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/08/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022]
|
14
|
Kopacz A, Kloska D, Targosz-Korecka M, Zapotoczny B, Cysewski D, Personnic N, Werner E, Hajduk K, Jozkowicz A, Grochot-Przeczek A. Keap1 governs ageing-induced protein aggregation in endothelial cells. Redox Biol 2020; 34:101572. [PMID: 32487458 PMCID: PMC7327977 DOI: 10.1016/j.redox.2020.101572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/07/2020] [Accepted: 05/10/2020] [Indexed: 02/07/2023] Open
Abstract
The breach of proteostasis, leading to the accumulation of protein aggregates, is a hallmark of ageing and age-associated disorders, up to now well-established in neurodegeneration. Few studies have addressed the issue of dysfunctional cell response to protein deposition also for the cardiovascular system. However, the molecular basis of proteostasis decline in vascular cells, as well as its relation to ageing, are not understood. Recent studies have indicated the associations of Nrf2 transcription factor, the critical modulator of cellular stress-response, with ageing and premature senescence. In this report, we outline the significance of protein aggregation in physiological and premature ageing of murine and human endothelial cells (ECs). Our study shows that aged donor-derived and prematurely senescent Nrf2-deficient primary human ECs, but not those overexpressing dominant-negative Nrf2, exhibit increased accumulation of protein aggregates. Such phenotype is also found in the aortas of aged mice and young Nrf2 tKO mice. Ageing-related loss of proteostasis in ECs depends on Keap1, well-known repressor of Nrf2, recently perceived as a key independent regulator of EC function and protein S-nitrosation (SNO). Deposition of protein aggregates in ECs is associated with impaired autophagy. It can be counteracted by Keap1 depletion, S-nitrosothiol reductant or rapamycin treatment. Our results show that Keap1:Nrf2 protein balance and Keap1-dependent SNO predominate Nrf2 transcriptional activity-driven mechanisms in governing proteostasis in ageing ECs. Physiological and premature ageing facilitates aggregation of proteins in ECs. Loss of proteostasis depends on Keap1-driven S-nitrosation in ageing ECs. Keap1:Nrf2 ratio predominates Nrf2 transcriptional activity in proteostasis control. Keap1 or SNO depletion, or rapamycin treatment restore proteostasis in ageing ECs.
Collapse
Affiliation(s)
- Aleksandra Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Damian Kloska
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Marta Targosz-Korecka
- Department of Physics of Nanostructures and Nanotechnology, Institute of Physics, Jagiellonian University, 30-387, Krakow, Poland
| | | | - Dominik Cysewski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Nicolas Personnic
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Ewa Werner
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Karolina Hajduk
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland.
| |
Collapse
|
15
|
Haczkiewicz K, Sebastian A, Piotrowska A, Misterska-Skóra M, Hałoń A, Skoczyńska M, Sebastian M, Wiland P, Dzięgiel P, Podhorska-Okołów M. Immunohistochemical and ultrastructural analysis of sporadic inclusion body myositis: a case series. Rheumatol Int 2018; 39:1291-1301. [PMID: 30535925 DOI: 10.1007/s00296-018-4221-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 12/04/2018] [Indexed: 12/18/2022]
Abstract
Sporadic inclusion body myositis (s-IBM) is a progressive, skeletal muscle disease with poor prognosis. However, establishing the final diagnosis is difficult because of the lack of clear biomarkers in the blood serum and very slow development of clinical symptoms. Moreover, most other organs function normally without any disturbance. Here, in patients with this untreatable disease, we have underlined the importance of immunohistochemical and ultrastructural assessment of skeletal muscle in patients diagnosed with s-IBM. The goal of this study was to identify the distribution of specific antigens and to determine morphological features in order to localize pathological protein aggregates, rimmed vacuoles, and loss of myofibrils, which are key elements in the diagnosis of s-IBM. All studied patients were between 48 and 83 years of age and were hospitalized in the Department of Rheumatology and Internal Medicine between 2011 and 2016. Anamneses revealed an accelerated progression of muscle atrophy, weakness of limb muscles, and difficulties with climbing stairs. Based on histopathology and transmission electron microscopy examination, inflammatory infiltrations consisting of mononuclear cells, severe atrophy and focal necrosis of myofibers, splitting of myofilaments, myelinoid bodies and rimmed vacuoles were observed. Primary antibodies directed against CD3, CD8, CD68, cN1A, beta-amyloid, Tau protein and apolipoprotein B made it possible to identify types of cells within infiltrations as well as the protein deposits within myofibers. Using a combination of immunohistochemistry and electron microscopy methods, we were able to establish the correct final diagnosis and to implement a specific treatment to inhibit disease progression.
Collapse
Affiliation(s)
- Katarzyna Haczkiewicz
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego Street 6a, 50-368, Wrocław, Poland.
| | - Agata Sebastian
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Borowska Street 213, 50-556, Wrocław, Poland
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego Street 6a, 50-368, Wrocław, Poland
| | - Maria Misterska-Skóra
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Borowska Street 213, 50-556, Wrocław, Poland
| | - Agnieszka Hałoń
- Department of Pathomorphology, Wroclaw Medical University, Borowska Street 213, 50-556, Wrocław, Poland
| | - Marta Skoczyńska
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Borowska Street 213, 50-556, Wrocław, Poland
| | - Maciej Sebastian
- Department of Minimally Invasive Surgery and Proctology, Wroclaw Medical University, Borowska Street 213, 50-556, Wrocław, Poland
| | - Piotr Wiland
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Borowska Street 213, 50-556, Wrocław, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego Street 6a, 50-368, Wrocław, Poland
| | - Marzenna Podhorska-Okołów
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego Street 6a, 50-368, Wrocław, Poland
| |
Collapse
|
16
|
Rasool S, Geetha T, Broderick TL, Babu JR. High Fat With High Sucrose Diet Leads to Obesity and Induces Myodegeneration. Front Physiol 2018; 9:1054. [PMID: 30258366 PMCID: PMC6143817 DOI: 10.3389/fphys.2018.01054] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/16/2018] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle utilizes both free fatty acids (FFAs) and glucose that circulate in the blood stream. When blood glucose levels acutely increase, insulin stimulates muscle glucose uptake, oxidation, and glycogen synthesis. Under these conditions, skeletal muscle preferentially oxidizes glucose while the oxidation of fatty acids (FAs) oxidation is reciprocally decreased. In metabolic disorders associated with insulin resistance, such as diabetes and obesity, both glucose uptake, and utilization muscle are significantly reduced causing FA oxidation to provide the majority of ATP for metabolic processes and contraction. Although the causes of this metabolic inflexibility or disrupted "glucose-fatty acid cycle" are largely unknown, a diet high in fat and sugar (HFS) may be a contributing factor. This metabolic inflexibility observed in models of obesity or with HFS feeding is detrimental because high rates of FA oxidation in skeletal muscle can lead to the buildup of toxic metabolites of fat metabolism and the accumulation of pro-inflammatory cytokines, which further exacerbate the insulin resistance. Further, HFS leads to skeletal muscle atrophy with a decrease in myofibrillar proteins and phenotypically characterized by loss of muscle mass and strength. Overactivation of ubiquitin proteasome pathway, oxidative stress, myonuclear apoptosis, and mitochondrial dysfunction are some of the mechanisms involved in muscle atrophy induced by obesity or in mice fed with HFS. In this review, we will discuss how HFS diet negatively impacts the various physiological and metabolic mechanisms in skeletal muscle.
Collapse
Affiliation(s)
- Suhail Rasool
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, United States
| | - Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, United States
| | - Tom L Broderick
- Laboratory of Diabetes and Exercise Metabolism, Department of Physiology, Midwestern University, Glendale, AZ, United States
| | - Jeganathan R Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, United States
| |
Collapse
|
17
|
Miosite da corpi inclusi. Neurologia 2018. [DOI: 10.1016/s1634-7072(18)89405-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
18
|
Jeong JH, Yang DS, Koo JH, Hwang DJ, Cho JY, Kang EB. Effect of Resistance Exercise on Muscle Metabolism and Autophagy in sIBM. Med Sci Sports Exerc 2018; 49:1562-1571. [PMID: 28333717 DOI: 10.1249/mss.0000000000001286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Sporadic inclusion body myositis (sIBM), a muscular degenerative disease in the elderly, is an inflammatory myopathy characterized by muscle weakness in the wrist flexor, quadriceps, and tibialis anterior muscles. We aimed to identify the therapeutic effect of resistance exercise (RE) in improving sIBM symptoms in an sIBM animal model. METHODS Six-week-old male Wistar rats were divided into a sham group (sham, n = 12), chloroquine-control group (CQ-con, n = 12), and chloroquine-RE group (CQ-RE, n = 12). The rats were subjected to 1 wk of exercise adaptation and 8 wk of exercise (three sessions per week). Protein expression was measured by Western blotting. Rimmed vacuoles (RV) were identified by hematoxylin and eosin staining and modified Gömöri trichrome staining, and amyloid deposition was examined by Congo red staining. RESULTS The effects of CQ and RE differed depending on myofiber characteristics. Soleus muscles showed abnormal autophagy in response to CQ, which increased RV generation and amyloid-β accumulation, resulting in atrophy. RE generated RV and decreased amyloid deposition in soleus muscles and also improved autophagy without generating hypertrophy. This reduced the atrophy signal transduction, resulting in decreased atrophy compared with the CQ-con group. Despite no direct effect of CQ, flexor hallucis longus muscles showed loss of mass because of reduced activity or increased inflammatory response; however, RE increased the hypertrophy signal, resulting in reduced autophagy and atrophy. CONCLUSIONS These results demonstrate that RE had a preventive effect on sIBM induced by CQ treatment in an animal model. However, because the results were from an animal experiment, a more detailed study should be conducted over a longer period, and the effectiveness of different RE programs should also be investigated.
Collapse
Affiliation(s)
- Jae-Hoon Jeong
- 1Department of Physical Education, Hanyang University, Seoul, KOREA; 2Department of Taekwondo Studies, Gachon University, Gyeonggi-do, KOREA; and 3Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, KOREA
| | | | | | | | | | | |
Collapse
|
19
|
Carlisle C, Prill K, Pilgrim D. Chaperones and the Proteasome System: Regulating the Construction and Demolition of Striated Muscle. Int J Mol Sci 2017; 19:E32. [PMID: 29271938 PMCID: PMC5795982 DOI: 10.3390/ijms19010032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/28/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022] Open
Abstract
Protein folding factors (chaperones) are required for many diverse cellular functions. In striated muscle, chaperones are required for contractile protein function, as well as the larger scale assembly of the basic unit of muscle, the sarcomere. The sarcomere is complex and composed of hundreds of proteins and the number of proteins and processes recognized to be regulated by chaperones has increased dramatically over the past decade. Research in the past ten years has begun to discover and characterize the chaperones involved in the assembly of the sarcomere at a rapid rate. Because of the dynamic nature of muscle, wear and tear damage is inevitable. Several systems, including chaperones and the ubiquitin proteasome system (UPS), have evolved to regulate protein turnover. Much of our knowledge of muscle development focuses on the formation of the sarcomere but recent work has begun to elucidate the requirement and role of chaperones and the UPS in sarcomere maintenance and disease. This review will cover the roles of chaperones in sarcomere assembly, the importance of chaperone homeostasis and the cooperation of chaperones and the UPS in sarcomere integrity and disease.
Collapse
Affiliation(s)
- Casey Carlisle
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Kendal Prill
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Dave Pilgrim
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
20
|
Cruz M, Aragonès JM, Roura P, Altimiras J. [Inclusion-body myositis: Presentation of a case]. Rev Esp Geriatr Gerontol 2017; 52:229-230. [PMID: 28189479 DOI: 10.1016/j.regg.2016.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Maricelis Cruz
- Unidad de Geriatría, Hospital Universitari de Vic, Vic, Barcelona, España
| | | | - Pere Roura
- Unidad de Epidemiología Clínica, Hospital Universitari de Vic, Vic, Barcelona, España
| | - Jacint Altimiras
- Unidad de Epidemiología Clínica, Hospital Universitari de Vic, Vic, Barcelona, España
| |
Collapse
|
21
|
Keller CW, Schmidt J, Lünemann JD. Immune and myodegenerative pathomechanisms in inclusion body myositis. Ann Clin Transl Neurol 2017; 4:422-445. [PMID: 28589170 PMCID: PMC5454400 DOI: 10.1002/acn3.419] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022] Open
Abstract
Inclusion Body Myositis (IBM) is a relatively common acquired inflammatory myopathy in patients above 50 years of age. Pathological hallmarks of IBM are intramyofiber protein inclusions and endomysial inflammation, indicating that both myodegenerative and inflammatory mechanisms contribute to its pathogenesis. Impaired protein degradation by the autophagic machinery, which regulates innate and adaptive immune responses, in skeletal muscle fibers has recently been identified as a potential key pathomechanism in IBM. Immunotherapies, which are successfully used for treating other inflammatory myopathies lack efficacy in IBM and so far no effective treatment is available. Thus, a better understanding of the mechanistic pathways underlying progressive muscle weakness and atrophy in IBM is crucial in identifying novel promising targets for therapeutic intervention. Here, we discuss recent insights into the pathomechanistic network of mutually dependent inflammatory and degenerative events during IBM.
Collapse
Affiliation(s)
- Christian W. Keller
- Institute of Experimental ImmunologyLaboratory of NeuroinflammationUniversity of ZürichZürichSwitzerland
| | - Jens Schmidt
- Department of NeurologyUniversity Medical Center GöttingenGöttingenGermany
| | - Jan D. Lünemann
- Institute of Experimental ImmunologyLaboratory of NeuroinflammationUniversity of ZürichZürichSwitzerland
- Department of NeurologyUniversity Hospital ZürichZürichSwitzerland
| |
Collapse
|
22
|
Manole E, Bastian AE, Butoianu N, Goebel HH. Myositis non-inflammatory mechanisms: An up-dated review. J Immunoassay Immunochem 2017; 38:115-126. [DOI: 10.1080/15321819.2017.1298525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Emilia Manole
- “Victor Babes” National Institute of Pathology, Bucharest, Romania
- Research Center, Colentina Clinical Hospital, Bucharest, Romania
| | - Alexandra E. Bastian
- Pathology Department, Colentina Clinical Hospital, Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Niculina Butoianu
- Pediatric Neurology Department, Clinical Hospital “Prof. Dr. Al. Obregia”, Bucharest, Romania
| | - Hans H. Goebel
- Department of Neuropathology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
23
|
Ceribelli A, De Santis M, Isailovic N, Gershwin ME, Selmi C. The Immune Response and the Pathogenesis of Idiopathic Inflammatory Myositis: a Critical Review. Clin Rev Allergy Immunol 2017; 52:58-70. [PMID: 26780034 DOI: 10.1007/s12016-016-8527-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pathogenesis of idiopathic inflammatory myositis (IIMs, including polymyositis and dermatomyositis) remains largely enigmatic, despite advances in the study of the role played by innate immunity, adaptive immunity, genetic predisposition, and environmental factors in an orchestrated response. Several factors are involved in the inflammatory state that characterizes the different forms of IIMs which share features and mechanisms but are clearly different with respect to the involved sites and characteristics of the inflammation. Cellular and non-cellular mechanisms of both the immune and non-immune systems have been identified as key regulators of inflammation in polymyositis/dermatomyositis, particularly at different stages of disease, leading to the fibrotic state that characterizes the end stage. Among these, a special role is played by an interferon signature and complement cascade with different mechanisms in polymyositis and dermatomyositis; these differences can be identified also histologically in muscle biopsies. Numerous cellular components of the adaptive and innate immune response are present in the site of tissue inflammation, and the complexity of idiopathic inflammatory myositis is further supported by the involvement of non-immune mechanisms such as hypoxia and autophagy. The aim of this comprehensive review is to describe the major pathogenic mechanisms involved in the onset of idiopathic inflammatory myositis and to report on the major working hypothesis with therapeutic implications.
Collapse
Affiliation(s)
- Angela Ceribelli
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, via A. Manzoni 56, 20089, Rozzano, MI, Italy
- BIOMETRA Department, University of Milan, Milan, Italy
| | - Maria De Santis
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, via A. Manzoni 56, 20089, Rozzano, MI, Italy
| | - Natasa Isailovic
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, via A. Manzoni 56, 20089, Rozzano, MI, Italy
| | - M Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, Davis, CA, USA
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, via A. Manzoni 56, 20089, Rozzano, MI, Italy.
- BIOMETRA Department, University of Milan, Milan, Italy.
| |
Collapse
|
24
|
Noda S, Koike H, Maeshima S, Nakanishi H, Iijima M, Matsuo K, Kimura S, Katsuno M, Sobue G. Transforming growth factor-β signaling is upregulated in sporadic inclusion body myositis. Muscle Nerve 2017; 55:741-747. [PMID: 27623743 DOI: 10.1002/mus.25405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 08/30/2016] [Accepted: 09/09/2016] [Indexed: 12/29/2022]
Abstract
INTRODUCTION In this study we aimed to determine whether transforming growth factor-β (TGF-β) signaling is dysregulated in sporadic inclusion body myositis (sIBM) muscle samples. METHODS We examined TGF-β signaling markers in muscle samples from 24 sIBM patients and compared them with those from 10 dermatomyositis (DM) patients using immunohistochemistry and Western blot analyses. RESULTS Compared with the DM muscle fibers, the sIBM muscle fibers exhibited greater TGF-β, TGF-β receptor type I (TβRI), and TGF-β receptor type II (TβRII) immunoreactivity in the cytoplasm, as well as greater phosphorylated Smad2 (pSmad2) immunoreactivity in the myonuclei. The signal intensities of TGF-β, TβRI, and TβRII immunoreactivity correlated significantly with muscle fiber cross-sectional areas. Western blot analyses indicated higher expression levels of TGF-β, TβRI, TβRII, and pSmad2 in the sIBM muscle samples than in the DM muscle samples. CONCLUSIONS These data indicate that upregulation of TGF-β signaling may be an important molecular event in sIBM. Muscle Nerve 55: 741-747, 2017.
Collapse
Affiliation(s)
- Seiya Noda
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Haruki Koike
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinya Maeshima
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Neurology, Nagoya Ekisaikai Hospital, Nagoya, Japan
| | - Hirotaka Nakanishi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Iijima
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Matsuo
- Department of Neurology, Kariya Toyota General Hospital, Kariya, Japan
| | - Seigo Kimura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
25
|
Sharma R, Kumar D, Jha NK, Jha SK, Ambasta RK, Kumar P. Re-expression of cell cycle markers in aged neurons and muscles: Whether cells should divide or die? Biochim Biophys Acta Mol Basis Dis 2017; 1863:324-336. [DOI: 10.1016/j.bbadis.2016.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/01/2016] [Accepted: 09/13/2016] [Indexed: 02/08/2023]
|
26
|
Bastos P, Trindade F, Leite-Moreira A, Falcão-Pires I, Ferreira R, Vitorino R. Methodological approaches and insights on protein aggregation in biological systems. Expert Rev Proteomics 2016; 14:55-68. [DOI: 10.1080/14789450.2017.1264877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Paulo Bastos
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Fábio Trindade
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Adelino Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Inês Falcão-Pires
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rita Ferreira
- Department of Chemistry, Mass Spectrometry Center, QOPNA, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
27
|
Suzuki N, Mori-Yoshimura M, Yamashita S, Nakano S, Murata KY, Inamori Y, Matsui N, Kimura E, Kusaka H, Kondo T, Higuchi I, Kaji R, Tateyama M, Izumi R, Ono H, Kato M, Warita H, Takahashi T, Nishino I, Aoki M. Multicenter questionnaire survey for sporadic inclusion body myositis in Japan. Orphanet J Rare Dis 2016; 11:146. [PMID: 27821140 PMCID: PMC5100251 DOI: 10.1186/s13023-016-0524-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 10/11/2016] [Indexed: 11/20/2022] Open
Abstract
Background Sporadic inclusion body myositis (sIBM) is the most prevalent acquired muscle disease in the elderly. sIBM is an intractable and progressive disease of unknown cause and without effective treatment. The etiology of sIBM is still unknown; however, genetic factors, aging, lifestyles, and environmental factors may be involved. The purpose of this study is to elucidate the cross-sectional profile of patients affected by sIBM in Japan. Methods We surveyed patient data for 146 cases diagnosed at a number of centers across Japan. We also issued a questionnaire for 67 patients and direct caregivers to further elucidate the natural history of the disease. Results The mean age at the onset was 63.4 ± 9.2 years. The mean length of time from the onset to diagnosis was 55.52 ± 49.72 months, suggesting that there is a difficulty in diagnosing this disease with long-term consequences because of late treatment. 73 % described the psychological/mental aspect of the disease. The most popular primary caregiver was the patient’s spouse and 57 % patients mentioned that they were having problems managing the finances. Conclusions Through these surveys, we described the cross-sectional profiles of sIBM in Japan. Many patients described psychological/mental and financial anxiety because of the aged profile of sIBM patients. The profiles of sIBM patients are similar to those in Western countries.
Collapse
Affiliation(s)
- Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Satoshi Yamashita
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Satoshi Nakano
- Department of Neurology, Osaka City General Hospital, 2-13-22 Miyakojima hondoori, Miyakojima-ku, Osaka, Japan
| | - Ken-Ya Murata
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Yukie Inamori
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Naoko Matsui
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - En Kimura
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Hirofumi Kusaka
- Department of Neurology, Kansai Medical University, 2-5-1, Shin-machi, Hirakata, Osaka, Japan
| | - Tomoyoshi Kondo
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Itsuro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ryuji Kaji
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Maki Tateyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Rumiko Izumi
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Hiroya Ono
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Masaaki Kato
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Toshiaki Takahashi
- Department of Neurology, National Hospital Organization Sendai-Nishitaga National Hospital, Sendai, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, Tokyo, Japan.,Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
| |
Collapse
|
28
|
Sporadic inclusion-body myositis: Recent advances and the state of the art in 2016. Rev Neurol (Paris) 2016; 172:581-586. [DOI: 10.1016/j.neurol.2016.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/29/2016] [Indexed: 02/08/2023]
|
29
|
De Paepe B, Martin JJ, Herbelet S, Jimenez-Mallebrera C, Iglesias E, Jou C, Weis J, De Bleecker JL. Activation of osmolyte pathways in inflammatory myopathy and Duchenne muscular dystrophy points to osmoregulation as a contributing pathogenic mechanism. J Transl Med 2016; 96:872-84. [PMID: 27322952 DOI: 10.1038/labinvest.2016.68] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/25/2016] [Accepted: 05/16/2016] [Indexed: 12/22/2022] Open
Abstract
Alongside well-known nuclear factor κB (NFκB) and its associated cytokine networks, nuclear factor of activated T cells 5 (NFAT5), the master regulator of cellular osmoprotective programs, comes forward as an inflammatory regulator. To gain insight into its yet unexplored role in muscle disease, we studied the expression of NFAT5 target proteins involved in osmolyte accumulation: aldose reductase (AR), taurine transporter (TauT), and sodium myo-inositol co-transporter (SMIT). We analyzed idiopathic inflammatory myopathy and Duchenne muscular dystrophy muscle biopsies and myotubes in culture, using immunohistochemistry, immunofluorescence, and western blotting. We report that the level of constitutive AR was upregulated in patients, most strongly so in Duchenne muscular dystrophy. TauT and SMIT expression levels were induced in patients' muscle fibers, mostly representing regenerating and atrophic fibers. In dermatomyositis, strong staining for AR, TauT, and SMIT in atrophic perifascicular fibers was accompanied by staining for other molecular NFAT5 targets, including chaperones, chemokines, and inducible nitric oxide synthase. In these fibers, NFAT5 and NFκB p65 staining coincided, linking both transcription factors with this important pathogenic hallmark. In sporadic inclusion body myositis, SMIT localized to inclusions inside muscle fibers. In addition, SMIT was expressed by a substantial subset of muscle-infiltrating macrophages and T cells in patient biopsies. Our results indicate that osmolyte pathways may contribute to normal muscle functioning, and that activation of AR, TauT, and SMIT in muscle inflammation possibly contributes to the tissue's failing program of damage control.
Collapse
Affiliation(s)
- Boel De Paepe
- Department of Neurology, Neuromuscular Reference Center, Ghent University Hospital, Ghent, Belgium
| | - Jean-Jacques Martin
- Department of Ultrastructural Neuropathology, Born-Bunge Institute, Antwerp University Hospital, Wilrijk, Belgium
| | - Sandrine Herbelet
- Department of Neurology, Neuromuscular Reference Center, Ghent University Hospital, Ghent, Belgium
| | - Cecilia Jimenez-Mallebrera
- Department of Neurology, Neuromuscular Unit, Hospital Sant Joan de DeuBarcelona, Esplugues de Llobregat, Spain
| | - Estibaliz Iglesias
- Department of Pediatrics, Hospital Sant Joan de Deu Barcelona, Esplugues de Llobregat, Spain
| | - Cristina Jou
- Department of Pathology and Biobank, Hospital Sant Joan de Deu Barcelona, Esplugues de Llobregat, Spain
| | - Joachim Weis
- Institute for Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Jan L De Bleecker
- Department of Neurology, Neuromuscular Reference Center, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
30
|
Chen X, Wagener JF, Ghribi O, Geiger JD. Role of Endolysosomes in Skeletal Muscle Pathology Observed in a Cholesterol-Fed Rabbit Model of Alzheimer's Disease. Front Aging Neurosci 2016; 8:129. [PMID: 27375475 PMCID: PMC4896918 DOI: 10.3389/fnagi.2016.00129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 05/18/2016] [Indexed: 12/23/2022] Open
Abstract
Deficits in skeletal muscles contribute not only to the functional decline in people living with Alzheimer’s disease (AD), but also to AD pathogenesis. We have shown that endolysosome dysfunction plays an important role in the development of AD pathological features in a cholesterol-fed rabbit model of AD. Interestingly we observed in skeletal muscle from the rabbit AD model increased deposition of Aβ, phosphorylated tau, and ubiquitin. Here, we tested the hypothesis that endolysosome dysfunction commonly occurs in skeletal muscle and brain in this rabbit model of AD. In skeletal muscle of rabbits fed a 2% cholesterol-enriched diet for 12 weeks we observed the presence of abnormally enlarged endolysosomes, in which were increased accumulations of free cholesterol and multiple AD marker proteins subject to misfolding and aggregation including Aβ, phosphorylated tau, and ubiquitin. Moreover, in skeletal muscle of rabbits fed the cholesterol-enriched diet we observed decreased specific activities of three different lysosome enzymes. Our results suggest that elevated levels of plasma cholesterol can disturb endolysosome structure and function as well as promote the development of AD-like pathological features in skeletal muscle and that these organellar changes might contribute to the development of skeletal muscle deficits in AD.
Collapse
Affiliation(s)
- Xuesong Chen
- Department of Basic Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota Grand Forks, ND, USA
| | - John F Wagener
- Department of Basic Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota Grand Forks, ND, USA
| | - Othman Ghribi
- Department of Basic Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota Grand Forks, ND, USA
| | - Jonathan D Geiger
- Department of Basic Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota Grand Forks, ND, USA
| |
Collapse
|
31
|
Malik A, Hayat G, Kalia JS, Guzman MA. Idiopathic Inflammatory Myopathies: Clinical Approach and Management. Front Neurol 2016; 7:64. [PMID: 27242652 PMCID: PMC4873503 DOI: 10.3389/fneur.2016.00064] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/12/2016] [Indexed: 01/30/2023] Open
Abstract
Idiopathic inflammatory myopathies (IIM) are a group of chronic, autoimmune conditions affecting primarily the proximal muscles. The most common types are dermatomyositis (DM), polymyositis (PM), necrotizing autoimmune myopathy (NAM), and sporadic inclusion body myositis (sIBM). Patients typically present with sub-acute to chronic onset of proximal weakness manifested by difficulty with rising from a chair, climbing stairs, lifting objects, and combing hair. They are uniquely identified by their clinical presentation consisting of muscular and extramuscular manifestations. Laboratory investigations, including increased serum creatine kinase (CK) and myositis specific antibodies (MSA) may help in differentiating clinical phenotype and to confirm the diagnosis. However, muscle biopsy remains the gold standard for diagnosis. These disorders are potentially treatable with proper diagnosis and initiation of therapy. Goals of treatment are to eliminate inflammation, restore muscle performance, reduce morbidity, and improve quality of life. This review aims to provide a basic diagnostic approach to patients with suspected IIM, summarize current therapeutic strategies, and provide an insight into future prospective therapies.
Collapse
Affiliation(s)
- Asma Malik
- Neurology, Saint Louis University, Saint Louis, MO, USA
| | - Ghazala Hayat
- Neurology, Saint Louis University, Saint Louis, MO, USA
| | - Junaid S. Kalia
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern, Dallas, TX, USA
| | - Miguel A. Guzman
- Department of Pathology, Saint Louis University, Saint Louis, MO, USA
| |
Collapse
|
32
|
Sergin I, Bhattacharya S, Emanuel R, Esen E, Stokes CJ, Evans TD, Arif B, Curci JA, Razani B. Inclusion bodies enriched for p62 and polyubiquitinated proteins in macrophages protect against atherosclerosis. Sci Signal 2016; 9:ra2. [PMID: 26732762 DOI: 10.1126/scisignal.aad5614] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy is a catabolic cellular mechanism that degrades dysfunctional proteins and organelles. Atherosclerotic plaque formation is enhanced in mice with macrophages deficient for the critical autophagy protein ATG5. We showed that exposure of macrophages to lipids that promote atherosclerosis increased the abundance of the autophagy chaperone p62 and that p62 colocalized with polyubiquitinated proteins in cytoplasmic inclusions, which are characterized by insoluble protein aggregates. ATG5-null macrophages developed further p62 accumulation at the sites of large cytoplasmic ubiquitin-positive inclusion bodies. Aortas from atherosclerotic mice and plaques from human endarterectomy samples showed increased abundance of p62 and polyubiquitinated proteins that colocalized with plaque macrophages, suggesting that p62-enriched protein aggregates were characteristic of atherosclerosis. The formation of the cytoplasmic inclusions depended on p62 because lipid-loaded p62-null macrophages accumulated polyubiquitinated proteins in a diffuse cytoplasmic pattern. Lipid-loaded p62-null macrophages also exhibited increased secretion of interleukin-1β (IL-1β) and had an increased tendency to undergo apoptosis, which depended on the p62 ubiquitin-binding domain and at least partly involved p62-mediated clearance of NLRP3 inflammasomes. Consistent with our in vitro observations, p62-deficient mice formed greater numbers of more complex atherosclerotic plaques, and p62 deficiency further increased atherosclerotic plaque burden in mice with a macrophage-specific ablation of ATG5. Together, these data suggested that sequestration of cytotoxic ubiquitinated proteins by p62 protects against atherogenesis, a condition in which the clearance of protein aggregates is disrupted.
Collapse
Affiliation(s)
- Ismail Sergin
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Somashubhra Bhattacharya
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Roy Emanuel
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emel Esen
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carl J Stokes
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Trent D Evans
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Batool Arif
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John A Curci
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Babak Razani
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
33
|
Kwon I, Lee Y, Cosio-Lima LM, Cho JY, Yeom DC. Effects of long-term resistance exercise training on autophagy in rat skeletal muscle of chloroquine-induced sporadic inclusion body myositis. J Exerc Nutrition Biochem 2015; 19:225-34. [PMID: 26525066 PMCID: PMC4624124 DOI: 10.5717/jenb.2015.15090710] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/02/2015] [Accepted: 09/07/2015] [Indexed: 11/04/2022] Open
Abstract
PURPOSE We examined whether resistance exercise training restores impaired autophagy functions caused by Chloroquine (CQ)-induced Sporadic Inclusion Body Myositis (sIBM) in rat skeletal muscle. METHODS Male wistar rats were randomly assigned into three groups: Sham (n = 6), CQ (n = 6), and CQ + Exercise (CE, n = 6). To create a rat model of sIBM, rats in the CQ and CE group were intraperitoneally injected with CQ 5 days a week for 16 weeks. Rats in the CE group performed resistance exercise training 3 times a week for 8 weeks in conjunction with CQ starting from week 9 to week 16. During the training period, maximal carrying load, body weight, muscle weight, and relative muscle weight were measured. Autophagy responses were examined by measuring specific markers. RESULTS While maximal carrying capacity for resistance exercise training was dramatically increased in the CE group, no significant changes occurred in the skeletal muscle weight as well as in the relative muscle weight of CE compared to the other groups. CQ treatment caused significant increases in the levels of Beclin-1 and p62, and decreases in the levels of LAMP-2 proteins. Interestingly, no significant differences in the LC3-II/I ratio or the LC3-II protein levels were observed. Although CQ-treatment groups suppressed the levels of the potent autophagy inducer, BNIP3, p62 levels were decreased in only the CE group. CONCLUSION Our findings demonstrate that sIBM induced by CQ treatment results in muscle degeneration via impaired autophagy and that resistance exercise training improves movable loading activity. Finally, regular exercise training may provide protection against sIBM by enhancing the autophagy flux through p62 protein.
Collapse
Affiliation(s)
- Insu Kwon
- Department of Exercise Science and Community Health, University of West Florida, Pensacola, USA
| | - Youngil Lee
- Department of Exercise Science and Community Health, University of West Florida, Pensacola, USA
| | - Ludmila M Cosio-Lima
- Department of Exercise Science and Community Health, University of West Florida, Pensacola, USA
| | - Joon-Yong Cho
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Republic of Korea
| | - Dong-Chul Yeom
- Department of Physical Education, Korea National Sport University, Seoul, Republic of Korea
| |
Collapse
|
34
|
Chilingaryan A, Rison RA, Beydoun SR. Misdiagnosis of inclusion body myositis: two case reports and a retrospective chart review. J Med Case Rep 2015; 9:169. [PMID: 26268316 PMCID: PMC4533788 DOI: 10.1186/s13256-015-0647-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 07/06/2015] [Indexed: 11/20/2022] Open
Abstract
Introduction Sporadic inclusion body myositis is the most common adult myopathy in persons aged 50 years and older. The clinical presentation includes a chronic, slowly progressive course with a predilection for weakness of the forearm flexors and quadriceps muscles. Its indolent course makes it a disease frequently missed or misdiagnosed as other neuromuscular conditions by health care professionals. The degenerative processes with amyloid accumulation distinguish sporadic inclusion body myositis from other inflammatory myopathies. Currently, no effective therapy exists. This clinical report highlights the difficulties in diagnosing the disease, examples of misdiagnosis, and inappropriate therapies that can result from misdiagnosis. Case presentation We present our clinical experience with 20 patients over a 10-year period and describe in depth two cases, both men, one of Indian ethnicity and the other of Hispanic ethnicity, who were referred to our neuromuscular division for second opinions and diagnosed with sporadic inclusion body myositis years after symptom onset. Conclusions Although sporadic inclusion body myositis is rare and without effective therapy, accurate diagnosis is crucial to providing adequate counseling and information about the prognosis and disease course, and to avoiding inappropriate therapy.
Collapse
Affiliation(s)
- Amaiak Chilingaryan
- Neuromuscular Division, Keck School of Medicine, University of Southern California, 1520 San Pablo Street, Suite 3000, Los Angeles, CA, 90033, USA.
| | - Richard A Rison
- Keck School of Medicine, University of Southern California, Los Angeles County Medical Center, PIH Health Hospital-Whittier Stroke Program, 12401 Washington Boulevard, Whittier, CA, 90602, USA.
| | - Said R Beydoun
- Neuromuscular Division, Keck School of Medicine, University of Southern California, 1520 San Pablo Street, Suite 3000, Los Angeles, CA, 90033, USA.
| |
Collapse
|
35
|
Jong CJ, Ito T, Schaffer SW. The ubiquitin-proteasome system and autophagy are defective in the taurine-deficient heart. Amino Acids 2015; 47:2609-22. [PMID: 26193770 DOI: 10.1007/s00726-015-2053-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/10/2015] [Indexed: 12/31/2022]
Abstract
Taurine depletion leads to impaired mitochondrial function, as characterized by reduced ATP production and elevated superoxide generation. These defects can fundamentally alter cardiomyocyte function and if left unchanged can result in cell death. To protect against these stresses, cardiomyocytes possess quality control processes, such as the ubiquitin-proteasome system (UPS) and autophagy, which can rejuvenate cells through the degradation of damaged proteins and organelles. Hence, the present study tested the hypothesis that reactive oxygen species generated by damaged mitochondria initiates UPS and autophagy in the taurine-deficient heart. Using transgenic mice lacking the taurine transporter (TauTKO) as a model of taurine deficiency, it was shown that the levels of ubiquitinated protein were elevated, an effect associated with a decrease in ATP-dependent 26S β5 proteasome activity. Treating the TauTKO mouse with the mitochondria-specific antioxidant, mitoTEMPO, largely abolished the increase in ubiquitinated protein content. The TauTKO heart was also associated with impaired autophagy, characterized by an increase in the initiator, Beclin-1, and autophagosome content, but a defect in the generation of active autophagolysosomes. Although mitoTEMPO treatment only restores the oxidative balance within the mitochondria, it appeared to completely disrupt the crosstalk between the damaged mitochondria and the quality control processes. Thus, mitochondrial oxidative stress is the main trigger initiating the quality control systems in the taurine-deficient heart. We conclude that the activation of the UPS and autophagy is another fundamental function of mitochondria.
Collapse
Affiliation(s)
- Chian Ju Jong
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL, 36688, USA
| | - Takashi Ito
- School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| | - Stephen W Schaffer
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL, 36688, USA.
| |
Collapse
|
36
|
Abstract
PURPOSE OF THE REVIEW To describe new insights and developments in the pathogenesis, diagnosis and treatment of sporadic inclusion body myositis (IBM). RECENT FINDINGS Various hypothesis about the pathogenesis of IBM continue to be investigated, including autoimmune factors, mitochondrial dysfunction, protein dyshomeostasis, altered nucleic acid metabolism, myonuclear degeneration and the role of the myostatin pathway. Serum autoantibodies against cytosolic 5'-nucleotidase 1A have been identified in IBM showing moderate diagnostic performance. The differential diagnostic value of histopathological features, including different protein aggregates, continues to be evaluated. MRI may also be of monitoring value in IBM. New therapeutic strategies are being tested in IBM patients, namely the upregulation of the heat shock response and the antagonism of myostatin. SUMMARY Recent important advances have occurred in IBM. These advances, including recent and ongoing clinical trials, may lead to earlier diagnosis and improved understanding and treatment of the disease. Despite improved knowledge, IBM continues to be a puzzling disease and the pathogenesis remains to be clarified. An interdisciplinary, bench to bedside translational research approach is crucial for the successful identification of novel treatments for this debilitating, currently untreatable disorder.
Collapse
|
37
|
Güttsches AK, Balakrishnan-Renuka A, Kley RA, Tegenthoff M, Brand-Saberi B, Vorgerd M. ATOH8: a novel marker in human muscle fiber regeneration. Histochem Cell Biol 2014; 143:443-52. [PMID: 25514850 DOI: 10.1007/s00418-014-1299-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2014] [Indexed: 01/20/2023]
Abstract
Regenerating muscle fibers emerge from quiescent satellite cells, which differentiate into mature multinuclear myofibers upon activation. It has recently been found that ATOH8, a bHLH transcription factor, is regulated during myogenic differentiation. In this study, expression and localization of ATOH8, the other well-described regeneration markers, vimentin, nestin and neonatal myosin, and the satellite cell marker Pax7 were analyzed on protein level in human myopathy samples by immunofluorescence studies. On mRNA level, expression levels of ATOH8 and vimentin were studied by quantitative real-time PCR. ATOH8 is expressed in activated satellite cells and proliferating myoblasts of human skeletal muscle tissue. Quantitative analyses of ATOH8+, Pax7+, vimentin+, nestin+ and neonatal myosin+ muscle fibers showed the highest amount of regenerating muscle fibers in inflammatory myopathies, followed by muscular dystrophy. The relative co-expression of ATOH8 with the above-mentioned markers did not vary among the disorders. These results show that the novel regeneration marker ATOH8 contributes to muscle cell differentiation in healthy and diseased human muscle tissue.
Collapse
Affiliation(s)
- Anne-K Güttsches
- Department of Neurology, Heimer-Institute at the BG University-Hospital Bergmannsheil GmbH, Ruhr University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany,
| | | | | | | | | | | |
Collapse
|
38
|
Machado PM, Ahmed M, Brady S, Gang Q, Healy E, Morrow JM, Wallace AC, Dewar L, Ramdharry G, Parton M, Holton JL, Houlden H, Greensmith L, Hanna MG. Ongoing developments in sporadic inclusion body myositis. Curr Rheumatol Rep 2014; 16:477. [PMID: 25399751 PMCID: PMC4233319 DOI: 10.1007/s11926-014-0477-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sporadic inclusion body myositis (IBM) is an acquired muscle disorder associated with ageing, for which there is no effective treatment. Ongoing developments include: genetic studies that may provide insights regarding the pathogenesis of IBM, improved histopathological markers, the description of a new IBM autoantibody, scrutiny of the diagnostic utility of clinical features and biomarkers, the refinement of diagnostic criteria, the emerging use of MRI as a diagnostic and monitoring tool, and new pathogenic insights that have led to novel therapeutic approaches being trialled for IBM, including treatments with the objective of restoring protein homeostasis and myostatin blockers. The effect of exercise in IBM continues to be investigated. However, despite these ongoing developments, the aetiopathogenesis of IBM remains uncertain. A translational and multidisciplinary collaborative approach is critical to improve the diagnosis, treatment, and care of patients with IBM.
Collapse
Affiliation(s)
- Pedro M. Machado
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, Box 102, 8-11 Queen Square, London, WC1N 3BG UK
| | - Mhoriam Ahmed
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, Box 102, 8-11 Queen Square, London, WC1N 3BG UK
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Stefen Brady
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, Box 102, 8-11 Queen Square, London, WC1N 3BG UK
| | - Qiang Gang
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, Box 102, 8-11 Queen Square, London, WC1N 3BG UK
| | - Estelle Healy
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, Box 102, 8-11 Queen Square, London, WC1N 3BG UK
| | - Jasper M. Morrow
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, Box 102, 8-11 Queen Square, London, WC1N 3BG UK
| | - Amanda C. Wallace
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, Box 102, 8-11 Queen Square, London, WC1N 3BG UK
| | - Liz Dewar
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, Box 102, 8-11 Queen Square, London, WC1N 3BG UK
| | - Gita Ramdharry
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, Box 102, 8-11 Queen Square, London, WC1N 3BG UK
| | - Matthew Parton
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, Box 102, 8-11 Queen Square, London, WC1N 3BG UK
| | - Janice L. Holton
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, Box 102, 8-11 Queen Square, London, WC1N 3BG UK
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, Box 102, 8-11 Queen Square, London, WC1N 3BG UK
| | - Linda Greensmith
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, Box 102, 8-11 Queen Square, London, WC1N 3BG UK
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Michael G. Hanna
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, Box 102, 8-11 Queen Square, London, WC1N 3BG UK
| |
Collapse
|
39
|
Engel WK. Diagnostic histochemistry and clinical-pathological testings as molecular pathways to pathogenesis and treatment of the ageing neuromuscular system: a personal view. Biochim Biophys Acta Mol Basis Dis 2014; 1852:563-84. [PMID: 25460198 DOI: 10.1016/j.bbadis.2014.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 12/22/2022]
Abstract
Ageing of the neuromuscular system in elderhood ingravescently contributes to slowness, weakness, falling and death, often accompanied by numbness and pain. This article is to put in perspective examples from a half-century of personal and team neuromuscular histochemical-pathological and clinical-pathological research, including a number of lucky and instructive accomplishments identifying new treatments and new diseases. A major focus currently is on some important, still enigmatic, aspects of the ageing neuromuscular system. It is also includes some of the newest references of others on various closely-related aspects of this ageing system. The article may help guide others in their molecular-based endeavors to identify paths leading to discovering new treatments and new pathogenic aspects. These are certainly needed - our ageing and unsteady constituents are steadily increasing. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.
Collapse
Affiliation(s)
- W King Engel
- USC Neuromuscular Center, Department of Neurology, University of Southern California Keck School of Medicine, Good Samaritan Hospital, Los Angeles, CA, USA.
| |
Collapse
|
40
|
Askanas V, Engel WK, Nogalska A. Sporadic inclusion-body myositis: A degenerative muscle disease associated with aging, impaired muscle protein homeostasis and abnormal mitophagy. Biochim Biophys Acta Mol Basis Dis 2014; 1852:633-43. [PMID: 25241263 DOI: 10.1016/j.bbadis.2014.09.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 01/13/2023]
Abstract
Sporadic inclusion-body myositis (s-IBM) is the most common degenerative muscle disease in which aging appears to be a key risk factor. In this review we focus on several cellular molecular mechanisms responsible for multiprotein aggregation and accumulations within s-IBM muscle fibers, and their possible consequences. Those include mechanisms leading to: a) accumulation in the form of aggregates within the muscle fibers, of several proteins, including amyloid-β42 and its oligomers, and phosphorylated tau in the form of paired helical filaments, and we consider their putative detrimental influence; and b) protein misfolding and aggregation, including evidence of abnormal myoproteostasis, such as increased protein transcription, inadequate protein disposal, and abnormal posttranslational modifications of proteins. Pathogenic importance of our recently demonstrated abnormal mitophagy is also discussed. The intriguing phenotypic similarities between s-IBM muscle fibers and the brains of Alzheimer and Parkinson's disease patients, the two most common neurodegenerative diseases associated with aging, are also discussed. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.
Collapse
Affiliation(s)
- Valerie Askanas
- USC Neuromuscular Center, Department of Neurology, University of Southern California Keck School of Medicine, Good Samaritan Hospital, Los Angeles, CA, USA.
| | - W King Engel
- USC Neuromuscular Center, Department of Neurology, University of Southern California Keck School of Medicine, Good Samaritan Hospital, Los Angeles, CA, USA
| | - Anna Nogalska
- USC Neuromuscular Center, Department of Neurology, University of Southern California Keck School of Medicine, Good Samaritan Hospital, Los Angeles, CA, USA
| |
Collapse
|
41
|
Hogrel JY, Allenbach Y, Canal A, Leroux G, Ollivier G, Mariampillai K, Servais L, Herson S, Decostre V, Benveniste O. Four-year longitudinal study of clinical and functional endpoints in sporadic inclusion body myositis: Implications for therapeutic trials. Neuromuscul Disord 2014; 24:604-10. [DOI: 10.1016/j.nmd.2014.04.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/11/2014] [Accepted: 04/23/2014] [Indexed: 11/25/2022]
|
42
|
Gang Q, Bettencourt C, Machado P, Hanna MG, Houlden H. Sporadic inclusion body myositis: the genetic contributions to the pathogenesis. Orphanet J Rare Dis 2014; 9:88. [PMID: 24948216 PMCID: PMC4071018 DOI: 10.1186/1750-1172-9-88] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/12/2014] [Indexed: 11/10/2022] Open
Abstract
Sporadic inclusion body myositis (sIBM) is the commonest idiopathic inflammatory muscle disease in people over 50 years old. It is characterized by slowly progressive muscle weakness and atrophy, with typical pathological changes of inflammation, degeneration and mitochondrial abnormality in affected muscle fibres. The cause(s) of sIBM are still unknown, but are considered complex, with the contribution of multiple factors such as environmental triggers, ageing and genetic susceptibility. This review summarizes the current understanding of the genetic contributions to sIBM and provides some insights for future research in this mysterious disease with the advantage of the rapid development of advanced genetic technology. An international sIBM genetic study is ongoing and whole-exome sequencing will be applied in a large cohort of sIBM patients with the aim of unravelling important genetic risk factors for sIBM.
Collapse
Affiliation(s)
- Qiang Gang
- Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| | | | | | | | | |
Collapse
|
43
|
Kwon B, Kumar P, Lee HK, Zeng L, Walsh K, Fu Q, Barakat A, Querfurth HW. Aberrant cell cycle reentry in human and experimental inclusion body myositis and polymyositis. Hum Mol Genet 2014; 23:3681-94. [PMID: 24556217 DOI: 10.1093/hmg/ddu077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Inclusion body myositis (IBM), a degenerative and inflammatory disorder of skeletal muscle, and Alzheimer's disease share protein derangements and attrition of postmitotic cells. Overexpression of cyclins and proliferating cell nuclear antigen (PCNA) and evidence for DNA replication is reported in Alzheimer's disease brain, possibly contributing to neuronal death. It is unknown whether aberrant cell cycle reentry also occurs in IBM. We examined cell cycle markers in IBM compared with normal control, polymyositis (PM) and non-inflammatory dystrophy sample sets. Next, we tested for evidence of reentry and DNA synthesis in C2C12 myotubes induced to express β-amyloid (Aβ42). We observed increased levels of Ki-67, PCNA and cyclins E/D1 in IBM compared with normals and non-inflammatory conditions. Interestingly, PM samples displayed similar increases. Satellite cell markers did not correlate with Ki-67-affected myofiber nuclei. DNA synthesis and cell cycle markers were induced in Aβ-bearing myotubes. Cell cycle marker and cyclin protein expressions were also induced in an experimental allergic myositis-like model of PM in mice. Levels of p21 (Cip1/WAF1), a cyclin-dependent kinase inhibitor, were decreased in affected myotubes. However, overexpression of p21 did not rescue cells from Aβ-induced toxicity. This is the first report of cell cycle reentry in human myositis. The absence of rescue and evidence for reentry in separate models of myodegeneration and inflammation suggest that new DNA synthesis may be a reactive response to either or both stressors.
Collapse
Affiliation(s)
- Bumsup Kwon
- Department of Neurology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Pravir Kumar
- Department of Biotechnology, Delhi Technological University, New Delhi 110042, India
| | - Han-Kyu Lee
- Department of Neurology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Ling Zeng
- Molecular Cardiology and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02135, USA
| | - Kenneth Walsh
- Molecular Cardiology and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02135, USA
| | - Qinghao Fu
- Department of Neurology, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA
| | - Amey Barakat
- Department of Neurology, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA
| | - Henry W Querfurth
- Department of Neurology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA Molecular Cardiology and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02135, USA
| |
Collapse
|
44
|
|
45
|
Cortese A, Plagnol V, Brady S, Simone R, Lashley T, Acevedo-Arozena A, de Silva R, Greensmith L, Holton J, Hanna MG, Fisher EMC, Fratta P. Widespread RNA metabolism impairment in sporadic inclusion body myositis TDP43-proteinopathy. Neurobiol Aging 2013; 35:1491-8. [PMID: 24462217 PMCID: PMC3988933 DOI: 10.1016/j.neurobiolaging.2013.12.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 12/14/2013] [Accepted: 12/25/2013] [Indexed: 12/12/2022]
Abstract
TDP43 protein mislocalization is a hallmark of the neurodegenerative diseases amyotrophic lateral sclerosis and frontotemporal dementia, and mutations in the gene encoding TDP43 cause both disorders, further highlighting its role in disease pathogenesis. TDP43 is a heterogenous ribonucleoprotein, therefore suggesting that alterations in RNA metabolism play a role in these disorders, although direct evidence in patients is lacking. Sporadic inclusion body myositis (sIBM) is the most common acquired myopathy occurring in adults aged older than 50 years and abnormal cytoplasmic accumulations of TDP43 have been consistently described in sIBM myofibers. Here, we exploit high quality RNA from frozen sIBM muscle biopsies for transcriptomic studies on TDP43-proteinopathy patient tissue. Surprisingly, we found widespread sIBM-specific changes in the RNA metabolism pathways themselves. Consistent with this finding, we describe novel RNA binding proteins to mislocalize in the cytoplasm of sIBM myofibers and splicing changes in MAPT, a gene previously shown to play a role in sIBM. Our data indicate widespread alterations of RNA metabolism are a novel aspect of disease pathogenesis in sIBM. These findings also document an association, in TDP43-proteinopathy patients, between heterogenous ribonucleoprotein pathology and RNA metabolism alterations and carry importance for neurodegenerative diseases, such as amyotrophic lateral sclerosis and frontotemporal dementia.
Collapse
Affiliation(s)
- Andrea Cortese
- MRC Centre for Neuromuscular Disease, UCL Institute of Neurology, London, UK; Department of General Neurology, C. Mondino National Institute of Neurology Foundation, IRCCS, Italy
| | - Vincent Plagnol
- UCL Genetics Institute, University College London, London, UK
| | - Stefen Brady
- MRC Centre for Neuromuscular Disease, UCL Institute of Neurology, London, UK
| | - Roberto Simone
- The Reta Lila Weston Institute, UCL Institute of Neurology, London, UK
| | - Tammaryn Lashley
- Department of Molecular Neuroscience, Queen Square Brain Bank, UCL Institute of Neurology, London, UK
| | | | - Rohan de Silva
- The Reta Lila Weston Institute, UCL Institute of Neurology, London, UK
| | - Linda Greensmith
- MRC Centre for Neuromuscular Disease, UCL Institute of Neurology, London, UK; Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| | - Janice Holton
- MRC Centre for Neuromuscular Disease, UCL Institute of Neurology, London, UK; Department of Molecular Neuroscience, Queen Square Brain Bank, UCL Institute of Neurology, London, UK
| | - Michael G Hanna
- MRC Centre for Neuromuscular Disease, UCL Institute of Neurology, London, UK
| | - Elizabeth M C Fisher
- MRC Centre for Neuromuscular Disease, UCL Institute of Neurology, London, UK; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Pietro Fratta
- MRC Centre for Neuromuscular Disease, UCL Institute of Neurology, London, UK; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.
| |
Collapse
|
46
|
Abstract
In certain sporadic, familial, and infectious prion diseases, the prion protein misfolds and aggregates in skeletal muscle in addition to the brain and spinal cord. In myocytes, prion aggregates accumulate intracellularly, yet little is known about clearance pathways. Here we investigated the clearance of prion aggregates in muscle of transgenic mice that develop prion disease de novo. In addition to neurodegeneration, aged mice developed a degenerative myopathy, with scattered myocytes containing ubiquitinated, intracellular prion inclusions that were adjacent to myocytes lacking inclusions. Myocytes also showed elevated levels of the endoplasmic reticulum chaperone Grp78/BiP, suggestive of impaired protein degradation and endoplasmic reticulum stress. Additionally, autophagy was induced, as indicated by increased levels of beclin-1 and LC3-II. In C2C12 myoblasts, inhibition of autophagosome maturation or lysosomal degradation led to enhanced prion aggregation, consistent with a role for autophagy in prion aggregate clearance. Taken together, these findings suggest that the induction of autophagy may be a central strategy for prion aggregate clearance in myocytes. IMPORTANCE In prion diseases, the prion protein misfolds and aggregates in the central nervous system and sometimes in other organs, including muscle, yet the cellular pathways of prion aggregate clearance are unclear. Here we investigated the clearance of prion aggregates in the muscle of a transgenic mouse model that develops profound muscle degeneration. We found that endoplasmic reticulum stress pathways were activated and that autophagy was induced. Blocking of autophagic degradation in cell culture models led to an accumulation of aggregated prion protein. Collectively, these findings suggest that autophagy has an instrumental role in prion protein clearance.
Collapse
|
47
|
Nakamori M, Takahashi T, Nishikawa T, Yamazaki Y, Kurashige T, Maruyama H, Arihiro K, Matsumoto M. Molecular markers for granulovacuolar degeneration are present in rimmed vacuoles. PLoS One 2013; 8:e80995. [PMID: 24312256 PMCID: PMC3842945 DOI: 10.1371/journal.pone.0080995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/08/2013] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Rimmed vacuoles (RVs) are round-oval cytoplasmic inclusions, detected in muscle cells of patients with myopathies, such as inclusion body myositis (IBM) and distal myopathy with RVs (DMRV). Granulovacuolar degeneration (GVD) bodies are spherical vacuoles containing argentophilic and hematoxyphilic granules, and are one of the pathological hallmarks commonly found in hippocampal pyramidal neurons of patients with aging-related neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. These diseases are common in the elderly and share some pathological features. Therefore, we hypothesized that mechanisms of vacuolar formation in RVs and GVD bodies are common despite their role in two differing pathologies. We explored the components of RVs by immunohistochemistry, using antibodies for GVD markers. METHODS Subjects included one AD case, eight cases of sporadic IBM, and three cases of DMRV. We compared immunoreactivity and staining patterns for GVD markers. These markers included: (1) tau-modifying proteins (caspase 3, cyclin-dependent kinase 5 [CDK5], casein kinase 1δ [CK1δ], and c-jun N-terminal kinase [JNK]), (2) lipid raft-associated materials (annexin 2, leucine-rich repeat kinase 2 [LRRK2], and flotillin-1), and (3) other markers (charged multi-vesicular body protein 2B [CHMP2B] and phosphorylated transactive response DNA binding protein-43 [pTDP43]) in both GVD bodies and RVs. Furthermore, we performed double staining of each GVD marker with pTDP43 to verify the co-localization. RESULTS GVD markers, including lipid raft-associated proteins and tau kinases, were detected in RVs. CHMP2B, pTDP43, caspase 3, LRRK2, annexin 2 and flotillin-1 were detected on the rim and were diffusely distributed in the cytoplasm of RV-positive fibers. CDK5, CK1δ and JNK were detected only on the rim. In double staining experiments, all GVD markers colocalized with pTDP43 in RVs. CONCLUSIONS These results suggest that RVs of muscle cells and GVD bodies of neurons share a number of molecules, such as raft-related proteins and tau-modifying proteins.
Collapse
Affiliation(s)
- Masahiro Nakamori
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tetsuya Takahashi
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- * E-mail:
| | - Tomokazu Nishikawa
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yu Yamazaki
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takashi Kurashige
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masayasu Matsumoto
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
48
|
In vivo interaction proteomics reveal a novel p38 mitogen-activated protein kinase/Rack1 pathway regulating proteostasis in Drosophila muscle. Mol Cell Biol 2013; 34:474-84. [PMID: 24277934 DOI: 10.1128/mcb.00824-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several recent studies suggest that systemic aging in metazoans is differentially affected by functional decline in specific tissues, such as skeletal muscle. In Drosophila, longevity appears to be tightly linked to myoproteostasis, and the formation of misfolded protein aggregates is a hallmark of senescence in aging muscle. Similarly, defective myoproteostasis is described as an important contributor to the pathology of several age-related degenerative muscle diseases in humans, e.g., inclusion body myositis. p38 mitogen-activated protein kinase (MAPK) plays a central role in a conserved signaling pathway activated by a variety of stressful stimuli. Aging p38 MAPK mutant flies display accelerated motor function decline, concomitant with an enhanced accumulation of detergent-insoluble protein aggregates in thoracic muscles. Chemical genetic experiments suggest that p38-mediated regulation of myoproteostasis is not limited to the control of reactive oxygen species production or the protein degradation pathways but also involves upstream turnover pathways, e.g., translation. Using affinity purification and mass spectrometry, we identified Rack1 as a novel substrate of p38 MAPK in aging muscle and showed that the genetic interaction between p38b and Rack1 controls muscle aggregate formation, locomotor function, and longevity. Biochemical analyses of Rack1 in aging and stressed muscle suggest a model whereby p38 MAPK signaling causes a redistribution of Rack1 between a ribosome-bound pool and a putative translational repressor complex.
Collapse
|
49
|
Kosmidis ML, Alexopoulos H, Tzioufas AG, Dalakas MC. The effect of anakinra, an IL1 receptor antagonist, in patients with sporadic inclusion body myositis (sIBM): A small pilot study. J Neurol Sci 2013; 334:123-5. [DOI: 10.1016/j.jns.2013.08.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/03/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022]
|
50
|
Clerici AM, Bono G, Delodovici ML, Azan G, Cafasso G, Micieli G. A rare association of early-onset inclusion body myositis, rheumatoid arthritis and autoimmune thyroiditis: a case report and literature review. FUNCTIONAL NEUROLOGY 2013; 28:127-32. [PMID: 24125563 DOI: 10.11138/fneur/2013.28.2.127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sporadic inclusion body myositis (sIBM) is a slowly progressive, red-rimmed vacuolar myopathy leading to muscular atrophy and progressive weakness; it predominantly affects males older than fifty years, and is resistant to immunotherapy. It has been described in association with immuno-mediated thrombocytopenic purpura, multiple sclerosis, connective tissue disorders and, occasionally, rheumatoid arthritis. A 37-year-old man with longstanding rheumatoid arthritis and autoimmune thyroiditis with hypothyroidism was referred to us with slowly progressive, diffuse muscle weakness and wasting, which had initially involved the volar finger flexors, and subsequently also the ankle dorsiflexors and knee extensors. Needle electromyography showed typical myopathic motor unit potentials, fibrillation and positive sharp waves with normal nerve conduction studies. Quadriceps muscle biopsy was suggestive of sIBM. Considering data published in the literature, this case may be classified as an early-onset form. The patient was treated with long-term intravenous immunoglobulin and obtained a substantial stabilization of his muscle strength.
Collapse
|