1
|
Habuka A, Yamada T, Nakashima S. Interactions of Glycerol, Diglycerol, and Water Studied Using Attenuated Total Reflection Infrared Spectroscopy. APPLIED SPECTROSCOPY 2020; 74:767-779. [PMID: 32223430 DOI: 10.1177/0003702820919530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In order to examine the mixing properties of glycerol-water and diglycerol-water solutions, these solutions were measured using attenuated total reflection infrared spectroscopy. The absorbance spectra corrected for 1 µm thickness were subtracted by pure polyols for obtaining water spectra, and by pure water for polyol spectra. Both asymmetric and symmetric CH2 stretching vibration bands (around 2940, 2885 cm-1) shifted about 10 cm-1 to lower wavenumber side (redshifts) with increasing polyol concentrations, especially at higher concentrations. Redshifts of C-O-H rocking bands (around 1335 cm-1) with increasing polyol concentrations are slightly larger for diglycerol-water (10 > 6 cm-1) than glycerol-water solutions. C-O stretching bands of CHOH groups (1125 and 1112 cm-1) shift slightly but in opposite sides for glycerol and diglycerol at highest polyol concentrations (90-100 wt%). These shifts of CH2 stretching, COH rocking, and CO stretching of CHOH at higher polyol concentrations suggest interactions of outer CH2 with inner CHOH groups of surrounding polyols. The normalized band area changes with polyol concentrations could be fitted by quadratic polynomials possibly due to mixtures of different interactions between water-water, polyol-water, and polyol-polyol molecules. The OH stretching band for diglycerol 90 wt% shows three humps indicating at least three OH components: long, medium, and short H bond water molecules. Short H bond water molecules are the major component possibly between inner CHOH and outer side CH2OH groups, while the long H component might loosely bind to outer CH2OH groups.
Collapse
Affiliation(s)
- Akari Habuka
- Research and Development Center, Sakamoto Yakuhin Kogyo Co., Ltd, Osaka, Japan
| | - Takeshi Yamada
- Research and Development Center, Sakamoto Yakuhin Kogyo Co., Ltd, Osaka, Japan
| | - Satoru Nakashima
- Department of Earth and Space Science, Osaka University, Osaka, Japan
- Faculty of Environmental and Urban Engineering, Kansai University, Osaka, Japan
- Research Institute for Natural Environment, Science and Technology (RINEST), Osaka, Japan
| |
Collapse
|
2
|
Chibelean CB, Petca RC, Radu DC, Petca A. State of the Art in Fertility Preservation for Female Patients Prior to Oncologic Therapies. ACTA ACUST UNITED AC 2020; 56:medicina56020089. [PMID: 32102169 PMCID: PMC7073829 DOI: 10.3390/medicina56020089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
Quality of life improvement stands as one of the main goals of the medical sciences. Increasing cancer survival rates associated with better early detection and extended therapeutic options led to the specific modeling of patients’ choices, comprising aspects of reproductive life that correlated with the evolution of modern society, and requires better assessment. Of these, fertility preservation and ovarian function conservation for pre-menopause female oncologic patients pose a contemporary challenge due to procreation age advance in evolved societies and to the growing expectations regarding cancer treatment. Progress made in cell and tissue-freezing technologies brought hope and shed new light on the onco-fertility field. Additionally, crossing roads with general fertility and senescence studies proved highly beneficial due to the enlarged scope and better synergies and funding. We here strive to bring attention to this domain of care and to sensitize all medical specialties towards a more cohesive approach and to better communication among caregivers and patients.
Collapse
Affiliation(s)
- Călin Bogdan Chibelean
- Department of Urology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu-Mures, 540139 Targu-Mures, Romania;
- Mureș County Hospital, 540136 Targu-Mures, Romania
| | - Răzvan-Cosmin Petca
- “Carol Davila” University of Medicine and Pharmacy, 050471 Bucharest, Romania;
- Department of Urology, “Prof. Dr. Th. Burghele” Clinical Hospital, 050659 Bucharest, Romania
- Correspondence: ; Tel.: +40-722-224492
| | | | - Aida Petca
- “Carol Davila” University of Medicine and Pharmacy, 050471 Bucharest, Romania;
- Department of Obstetrics and Gynecology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| |
Collapse
|
3
|
Nakagawa H, Oyama T. Molecular Basis of Water Activity in Glycerol-Water Mixtures. Front Chem 2019; 7:731. [PMID: 31737605 PMCID: PMC6839025 DOI: 10.3389/fchem.2019.00731] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022] Open
Abstract
Water activity (Aw) is a reliable indication of the microbial growth, enzymatic activity, preservation, and quality of foods. However, a molecular basis of Aw is still under debate in multiple related disciplines. Glycerol-water mixtures can provide a variation of Aws by controlling the ratio of glycerol and water. In this study, the molecular basis of Aw was examined by using differential scanning calorimetry (DSC), attenuated total reflection Fourier-transform infrared spectroscopy (ATR-IR), and incoherent quasi-elastic neutron scattering (IQENS) based on moisture sorption isotherms of glycerol-water mixtures. Three regions were identified and classified based on DSC results. DSC showed that bulk-like water existed at Aw > ≈ 0.7 at 27°C. Hydrogen bonding related molecular vibrations were analyzed by ATR-IR, which indicated that the OH stretching in water molecules is significantly different for Aw > ≈ 0.7. Translational diffusive and/or rotational motions in time and space analyzed by IQENS appeared when Aw > ≈ 0.7, and are correlated with hydrogen bonding related local vibrational dynamics in the glycerol-water mixtures. More importantly, Aw values of glycerol-water mixtures can be explained by the hydrogen bonding network and molecular dynamics of water in the solution. We discuss the implications of Aw in the preservation of food at the molecular level.
Collapse
Affiliation(s)
- Hiroshi Nakagawa
- Hierarchical Structure Research Group, Materials Science Research Center, Japan Atomic Energy Agency, Ibaraki, Japan
| | | |
Collapse
|
4
|
Sapir L, Harries D. Revisiting Hydrogen Bond Thermodynamics in Molecular Simulations. J Chem Theory Comput 2017; 13:2851-2857. [DOI: 10.1021/acs.jctc.7b00238] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liel Sapir
- Institute of Chemistry and The Fritz Haber
Research Center, The Hebrew University, Jerusalem 91904, Israel
| | - Daniel Harries
- Institute of Chemistry and The Fritz Haber
Research Center, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
5
|
GhattyVenkataKrishna PK, Carri GA. The effect of complex solvents on the structure and dynamics of protein solutions: The case of Lysozyme in trehalose/water mixtures. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:14. [PMID: 23404569 DOI: 10.1140/epje/i2013-13014-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/15/2012] [Accepted: 01/17/2013] [Indexed: 06/01/2023]
Abstract
We present a Molecular Dynamics simulation study of the effect of trehalose concentration on the structure and dynamics of individual proteins immersed in trehalose/water mixtures. Hen egg-white Lysozyme is used in this study and trehalose concentrations of 0%, 10%, 20%, 30% and 100% by weight are explored. Surprisingly, we have found that changes in trehalose concentration do not change the global structural characteristics of the protein as measured by standard quantities like the mean square deviation, radius of gyration, solvent accessible surface area, inertia tensor and asphericity. Only in the limit of pure trehalose these metrics change significantly. Specifically, we found that the protein is compressed by 2% when immersed in pure trehalose. At the amino acid level there is noticeable rearrangement of the surface residues due to the change in polarity of the surrounding environment with the addition of trehalose. From a dynamic perspective, our computation of the Incoherent Intermediate Scattering Function shows that the protein slows down with increasing trehalose concentration; however, this slowdown is not monotonic. Finally, we also report in-depth results for the hydration layer around the protein including its structure, hydrogen-bonding characteristics and dynamic behavior at different length scales.
Collapse
|
6
|
Chaytor JL, Tokarew JM, Wu LK, Leclère M, Tam RY, Capicciotti CJ, Guolla L, von Moos E, Findlay CS, Allan DS, Ben RN. Inhibiting ice recrystallization and optimization of cell viability after cryopreservation. Glycobiology 2011; 22:123-33. [PMID: 21852258 DOI: 10.1093/glycob/cwr115] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ice recrystallization inhibition activity of various mono- and disaccharides has been correlated with their ability to cryopreserve human cell lines at various concentrations. Cell viabilities after cryopreservation were compared with control experiments where cells were cryopreserved with dimethylsulfoxide (DMSO). The most potent inhibitors of ice recrystallization were 220 mM solutions of disaccharides; however, the best cell viability was obtained when a 200 mM d-galactose solution was utilized. This solution was minimally cytotoxic at physiological temperature and effectively preserved cells during freeze-thaw. In fact, this carbohydrate was just as effective as a 5% DMSO solution. Further studies indicated that the cryoprotective benefit of d-galactose was a result of its internalization and its ability to mitigate osmotic stress, prevent intracellular ice formation and/or inhibit ice recrystallization. This study supports the hypothesis that the ability of a cryoprotectant to inhibit ice recrystallization is an important property to enhance cell viability post-freeze-thaw. This cryoprotective benefit is observed in three different human cell lines. Furthermore, we demonstrated that the ability of a potential cryoprotectant to inhibit ice recrystallation may be used as a predictor of its ability to preserve cells at subzero temperatures.
Collapse
Affiliation(s)
- Jennifer L Chaytor
- Department of Chemistry, University of Ottawa, D'Iorio Hall, 10 Marie Curie, Ottawa, ON, Canada K1N 6N5
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lelong G, Howells WS, Brady JW, Talón C, Price DL, Saboungi ML. Translational and rotational dynamics of monosaccharide solutions. J Phys Chem B 2010; 113:13079-85. [PMID: 19739660 DOI: 10.1021/jp905001q] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular dynamics computer simulations have been carried out on aqueous solutions of glucose at concentrations bracketing those previously measured with quasi-elastic neutron scattering (QENS), in order to investigate the motions and interactions of the sugar and water molecules. In addition, QENS measurements have been carried out on fructose solutions to determine whether the effects previously observed for glucose apply to monosaccharide solutions. The simulations indicate a dynamical analogy between higher solute concentration and lower temperature that could provide a key explanation of the bioprotective phenomena observed in many living organisms. The experimental results on fructose solutions show qualitatively similar behavior to the glucose solutions. The dynamics of the water molecules are essentially the same, while the translational diffusion of the sugar molecules is slightly faster in the fructose solutions.
Collapse
Affiliation(s)
- Gérald Lelong
- Centre de Recherche sur la Matiere Divisee, Universite d'Orleans/CNRS-UMR 6619, 45071 Orleans, France.
| | | | | | | | | | | |
Collapse
|
8
|
Zelent B, Vanderkooi JM. Infrared spectroscopy used to study ice formation: the effect of trehalose, maltose, and glucose on melting. Anal Biochem 2009; 390:215-7. [PMID: 19376080 DOI: 10.1016/j.ab.2009.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 04/11/2009] [Indexed: 10/20/2022]
Abstract
We report the use of infrared (IR) spectroscopy to detect ice crystals in biological solutions. The method is based on the temperature dependence of the OH bending and stretch bands of water. By using mixtures of D(2)O and H(2)O, water's absorption bands can be made to be on-scale in transmission mode. Water's stretch band moves to lower frequency and sharpens with freezing, and the bending band goes to higher frequency and becomes less sharp. The technique is demonstrated for the study of the hysteresis of freezing in the presence of glucosyl sugars, namely glucose, maltose, and trehalose.
Collapse
Affiliation(s)
- B Zelent
- Johnson Research Foundation, Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
9
|
Zelent B, Vanderkooi JM, Nucci NV, Gryczynski I, Gryczynski Z. Phosphate assisted proton transfer in water and sugar glasses: a study using fluorescence of pyrene-1-carboxylate and IR spectroscopy. J Fluoresc 2009; 19:21-31. [PMID: 18496739 DOI: 10.1007/s10895-008-0375-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 04/10/2008] [Indexed: 10/22/2022]
Abstract
The role of water's H-bond percolation network in acid-assisted proton transfer was studied in water and glycerol solutions and in sugar glasses. Proton transfer rates were determined by the fluorescence of pyrene-1-carboxylate, a compound with a higher pK in its excited state relative to the ground state. Excitation of pyrene-1-COO- produces fluorescence from pyrene-1-COOH when a proton is accepted during the excited singlet state lifetime of pyrene-1-COO-. The presence of glycerol as an aqueous cosolvent decreases proton transfer rates from phosphoric and acetic acid in a manner that does not follow the Stokes relationship on viscosity. In sugar glass composed of trehalose and sucrose, proton transfer occurs when phosphate is incorporated in the glass. Sugar glass containing phosphate retains water and it is suggested that proton transfer requires this water. The infrared (IR) frequency of water bending mode in sugar glass and in aqueous solution is affected by the presence of phosphate and the IR spectral bands of all phosphate species in water are temperature dependent; both results are consistent with H-bonding between water and phosphate. The fluorescence results, which studied the effect of cosolvent, highlight the role of water in assisting proton transfer in reactions involving biological acids, and the IR results, which give spectroscopic evidence for H-bonding between water and phosphate, are consistent with a mechanism of proton transfer involving H-bonding. The possibility that the phosphate-rich surface of membranes assists in proton equilibration in cells is discussed.
Collapse
Affiliation(s)
- Bogumil Zelent
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
10
|
Sun Y, Hayakawa S, Ogawa M, Fukada K, Izumori K. Influence of a rare sugar, d-Psicose, on the physicochemical and functional properties of an aerated food system containing egg albumen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:4789-4796. [PMID: 18517216 DOI: 10.1021/jf800050d] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
d-Psicose (Psi) might be an ideal sucrose (Suc) substitute for food products due to its sweet taste, easy processing, and functional properties (noncaloric and low glycemic response). In the present study, the effects of Psi on foaming properties of egg white (EW) protein and the quality of butter cookies were analyzed to find a better use of Psi in aerated food systems. The results showed that Psi could improve the foaming properties of EW protein with increasing whipping time in comparison to Suc and d-fructose (Fru). The addition of Psi to butter cookies, as partial replacement of Suc, had no influence on the cook loss while significantly contributing to a color change of the cookie crust through a nonenzymatic browning reaction. Furthermore, Psi-containing cookies possessed the highest antioxidant capacity in all tested cookies using two assays of radical scavenging activity and ferric reducing power. It was found that there was a close correlation between the crust color and the antioxidant activity of the cookie. The results suggest that the addition of Psi enhanced the browning reaction during cookie processing and, consequently, produced a strong antioxidant activity.
Collapse
Affiliation(s)
- Yuanxia Sun
- Department of Biochemistry and Food Science, Kagawa University, 2393 Ikenobe, Miki, Kagawa 761-0795, Japan
| | | | | | | | | |
Collapse
|