1
|
Dysin AP, Egorov AR, Godzishevskaya AA, Kirichuk AA, Tskhovrebov AG, Kritchenkov AS. Biologically Active Supplements Affecting Producer Microorganisms in Food Biotechnology: A Review. Molecules 2023; 28:molecules28031413. [PMID: 36771079 PMCID: PMC9921933 DOI: 10.3390/molecules28031413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Microorganisms, fermentation processes, and the resultant metabolic products are a key driving force in biotechnology and, in particular, in food biotechnology. The quantity and/or quality of final manufactured food products are directly related to the efficiency of the metabolic processes of producer microorganisms. Food BioTech companies are naturally interested in increasing the productivity of their biotechnological production lines. This could be achieved via either indirect or direct influence on the fundamental mechanisms governing biological processes occurring in microbial cells. This review considers an approach to improve the efficiency of producer microorganisms through the use of several types of substances or complexes affecting the metabolic processes of microbial producers that are of interest for food biotechnology, particularly fermented milk products. A classification of these supplements will be given, depending on their chemical nature (poly- and oligosaccharides; poly- and oligopeptides, individual amino acids; miscellaneous substances, including vitamins and other organic compounds, minerals, and multicomponent supplements), and the approved results of their application will be comprehensively surveyed.
Collapse
Affiliation(s)
- Artem P. Dysin
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Anton R. Egorov
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Anastasia A. Godzishevskaya
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Anatoly A. Kirichuk
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Alexander G. Tskhovrebov
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Correspondence: (A.G.T.); (A.S.K.)
| | - Andreii S. Kritchenkov
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Metal Physics Laboratory, Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus
- Correspondence: (A.G.T.); (A.S.K.)
| |
Collapse
|
2
|
Shen Y, Hong S, Li Y. Pea protein composition, functionality, modification, and food applications: A review. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 101:71-127. [PMID: 35940709 DOI: 10.1016/bs.afnr.2022.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The demand for proteins continues to increase due to their nutritional benefits, the growing world population, and rising protein deficiency. Plant-based proteins represent a sustainable source to supplement costly animal proteins. Pea (Pisum sativum L.) is one of the most produced plant legume crops in the world and contributes to 26% of the total pulse production. The average protein content of pea is about 20%-25%. The commercial utilization of pea proteins is limited, partially due to its less desirable functionalities and beany off-flavor. Protein modification may change these properties and broaden the application of pea proteins in the food industry. Functional properties such as protein solubility, water and oil holding capacity, emulsifying/foaming capacity and stability, and gelation can be altered and improved by enzymatic, chemical, and physical modifications. These modifications work by affecting protein chemical structures, hydrophobicity/hydrophilicity balance, and interactions with other food constituents. Modifiers, reaction conditions, and degree of modifications are critical variables for protein modifications and can be controlled to achieve desirable functional attributes that may meet applications in meat analogs, baking products, dressings, beverages, dairy mimics, encapsulation, and emulsions. Understanding pea protein characteristics will allow us to design better functional ingredients for food applications.
Collapse
Affiliation(s)
- Yanting Shen
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| | - Shan Hong
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States.
| |
Collapse
|
3
|
Boulay M, Al Haddad M, Rul F. Streptococcus thermophilus growth in soya milk: Sucrose consumption, nitrogen metabolism, soya protein hydrolysis and role of the cell-wall protease PrtS. Int J Food Microbiol 2020; 335:108903. [PMID: 33065381 DOI: 10.1016/j.ijfoodmicro.2020.108903] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
Societal demand for plant-based foods is increasing. In this context, soya products fermented using lactic acid bacteria (LAB) are appealing because of their potential health and nutritional benefits. The thermophilic LAB Streptococcus thermophilus is an essential starter species in the dairy industry. However, while its physiology is well characterized, little is known about its general metabolic activity or its techno-functional properties when it is grown in soya milk. In this study, S. thermophilus LMD-9 growth, sugar production, and lactic acid production in soya milk versus cow's milk were measured. Additionally, the main metabolic pathways used by the bacterium when growing in soya milk were characterized using a proteomic approach. Streptococcus thermophilus LMD-9 growth decreased soya milk pH, from 7.5 to 4.9, in 5 h. During fermentation, acidification thus occurred in tandem with lactate production and increasing population size (final population: 1.0 × 109 CFU/ml). As growth proceeded, sucrose was consumed, and fructose was produced. The proteomic analysis (LC-MS/MS) of the strain's cytosolic and cell envelope-associated proteins revealed that proteins related to amino acid transport and nitrogen metabolism were the most common among the 328 proteins identified (63/328 = 19.2% of total proteins). The cell-wall protease PrtS was present, and an LMD-9 deletion mutant was constructed by interrupting the prtS gene (STER_RS04165 locus). Acidification levels, growth levels, and final population size were lower in the soya milk cultures when the ΔprtS strain versus the wild-type (wt) strain was used. The SDS-PAGE profile of the soluble proteins in the supernatant indicated that soya milk proteins were less hydrolyzed by the ΔprtS strain than by the wt strain. It was discovered that S. thermophilus can grow in soya milk by consuming sucrose, can hydrolyze soya proteins, and can produce acidification levels comparable to those in cow's milk. This study comprehensively examined the proteomics of S. thermophilus grown in soya milk and demonstrated that the cell-wall protease PrtS is involved in the LAB's growth in soya milk and in the proteolysis of soya proteins, which are two novel findings. These results clarify how S. thermophilus adapts to soya milk and can help inform efforts to develop new fermented plant-based foods with better-characterized biochemical and microbiological traits.
Collapse
Affiliation(s)
- Mylène Boulay
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Maher Al Haddad
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Françoise Rul
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
4
|
Kašparovská J, Dadáková K, Lochman J, Hadrová S, Křížová L, Kašparovský T. Changes in equol and major soybean isoflavone contents during processing and storage of yogurts made from control or isoflavone-enriched bovine milk determined using LC-MS (TOF) analysis. Food Chem 2017; 222:67-73. [PMID: 28041561 DOI: 10.1016/j.foodchem.2016.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 11/25/2016] [Accepted: 12/04/2016] [Indexed: 01/22/2023]
Abstract
The effect of supplementing a basal diet for dairy cows with "Soybean extract 40" (Biomedica, Prague, Czech Republic), containing 40% soybean isoflavones, on the contents of daidzein, glycitein, genistein, and equol in milk as well as fresh and mature yogurts was estimated. To determine the contents of these isoflavonoids, an efficient analytical LC-MS (TOF) technique was used. The "Soybean extract 40" used in our study contained an especially high proportion of daidzein (307gkg-1). In both milk and yogurt samples, the amounts of daidzein and its metabolite equol were significantly higher in samples obtained from cows that received the isoflavone extract-supplemented diet than from those that received the basal diet, as the precursor daidzein contributed to the increased equol concentrations. Fermentation caused significant changes in the daidzein and glycitein concentrations. With maturation, the concentrations of daidzein and equol were unaffected, while the glycitein concentration decreased significantly.
Collapse
Affiliation(s)
| | | | - Jan Lochman
- Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Sylvie Hadrová
- Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | | | | |
Collapse
|
5
|
Abstract
Soy proteins as the health-promoting ingredients and candidate fat substitutes in dairy products are good substrates for the cross-linking action of the enzyme transglutaminase. Non-fat set yogurt samples were prepared from the milks enriched with soy protein isolate (SPI) and/or treated with the enzyme transglutaminase. The highest titrable acidity was recorded for the yogurt enriched with SPI and treated with the enzyme throughout the cold storage for 21 d. SPI-enrichment of yogurt milk increased the water holding capacity. Although enrichment with SPI did not influence the count of Streptococcus themophilus, increased that of Lactobacillus bulgaricus ∼3 log cycles. The enzymatic treatment of SPI-enriched milk however, suppressed the bacteria growth-promoting influence of SPI due probably to making the soy proteins inaccessible for Lactobacillus. SPI-enrichment and enzymatic treatment of milk decreased the various organic acids content in yoghurt samples; influence of the former was more significant. The cross-linking of milk proteins to soy proteins was confirmed with the gel electrophoresis results.
Collapse
|
6
|
van Hylckama Vlieg JET, Veiga P, Zhang C, Derrien M, Zhao L. Impact of microbial transformation of food on health - from fermented foods to fermentation in the gastro-intestinal tract. Curr Opin Biotechnol 2011; 22:211-9. [PMID: 21247750 DOI: 10.1016/j.copbio.2010.12.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 12/11/2010] [Accepted: 12/13/2010] [Indexed: 02/07/2023]
Abstract
Fermentation of food components by microbes occurs both during certain food production processes and in the gastro-intestinal tract. In these processes specific compounds are produced that originate from either biotransformation reactions or biosynthesis, and that can affect the health of the consumer. In this review, we summarize recent advances highlighting the potential to improve the nutritional status of a fermented food by rational choice of food-fermenting microbes. The vast numbers of microbes residing in the human gut, the gut microbiota, also give rise to a broad array of health-active molecules. Diet and functional foods are important modulators of the gut microbiota activity that can be applied to improve host health. A truly multidisciplinary approach is required to increase our understanding of the molecular mechanisms underlying health beneficial effects that arise from the interaction of diet, microbes and the human body.
Collapse
|