1
|
Optimization of the Brewing Process and Analysis of Antioxidant Activity and Flavor of Elderberry Wine. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Fruit wines have high nutritional value and good palatability. However, fruit wine made from a single fruit type does not have good enough flavor and nutritional quality. Therefore, flavorsome fruit wines made from a variety of fruits should be developed as a matter of urgency. In this study, the raw material of elderberry wine was used to explore the production technology of mixed juice wines; the fruits selected were apple, lychee, pear, blueberry, and elderberry. We utilized a single-factor experiment and the response surface method (RSM) approach to optimize the fermentation procedures; the results show that the solid–liquid ratio was 1:7.5, the amount of yeast inoculation was 0.68 g/L, the fermentation temperature was 20 °C, and the added sugar content was 120 g/L. Under these process conditions, a verification test was carried out in a 35 L fermenter. The results showed that the alcohol content, residual sugar content, total acidity, total phenol content, and total flavonoid content of the elderberry wine were, respectively, 7.73% vol, 8.32 g/L, 9.78 g/L, 8.73 mg/mL, and 1.6 mg/mL. In total, 33 volatile components were identified in the resulting elderberry wine. It achieved a harmonious aroma and fruit flavor, a homogeneous and transparent liquid phase, a pleasant taste, and a sensory evaluation score of 95. The antioxidant activity experiments showed that elderberry had a certain antioxidant capacity, and that fermented elderberries had significantly higher antioxidant ability than unfermented ones.
Collapse
|
2
|
Abstract
Fruit spirit distillations processes are based on physical principles of heat and mass transfer. These principles are decisive for the separation of desired and undesired aroma compounds, which affect the quality of the distilled product. It is mandatory to control heat and mass transfer parameters to be able to perform fruit spirit distillation processes in a reproducible manner and to achieve equal products with similar volatile compound compositions repeatedly. Up to now, only limited information is available on the magnitude of reproducibility errors since fruit spirit distillation columns are typically not equipped with a suitable control or monitoring technique. We upgraded a batch distillation column with digitized instrumentation and a control technique to be able to control crucial parameters such as thermal energy inputs and reflux rates. This study aimed to identify whether control over two distillation parameters has the potential to enable us to perform distillation processes repeatedly. This study analyzed the magnitude of reproducibility errors for (i) six monitored distillation process parameters and (ii) 13 quantified volatile compounds in the product between duplicated distillation runs performed with equal setups. A total of eight different distillations were performed in duplicate (n = 16), while the six distillation parameters were monitored and logged every ten seconds. The produced distillates were equally subsampled into 20 fractions and each fraction analyzed for 13 volatile compound concentrations. Based on a dataset of 28,600 monitored duplicate distillation process data points, this study showed that process parameters can indeed be replicated with a median relative standard deviation (RSD) of <0.1% to 7% when two crucial process parameters are controlled. The comparison of 1540 volatile compound concentrations in the product fractions showed a reproducibility error with an average median RSD of 9 ± 8%. This illustrated that by gaining control over thermal energy input and reflux rates, the reproducibility of fruit spirit distillation processes and their associated products can largely be met. It is advisable to equip distillation columns with a suitable control technique to be able to reproduce the performance of fruit spirit distillations.
Collapse
|
3
|
Optimization of Fermentation Conditions for Production of Hungarian Sour Cherry Spirit Using Response Surface Methodology. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pálinka is a traditional fruit spirit and a kind of gastronomic heritage in Hungary. In Pálinka production, fermentation is one of the most important processes affecting the quality and yield of spirits. Based on single-factor and three-factor influence level tests by following the Plackett–Burman design, the fermentation process from sour cherry juice concentrate and Saccharomyces cerevisiae by using Response Surface Methodology (RSM) coupled with the central composite rotatable design was investigated to optimize fermentation conditions through three variables in a defined range of temperature (15–25 °C), pH (2.75–3.75), and total soluble solid (18–30 °Brix). After eight fermentation days, production yields of alcohol and volatile compounds were a maximum of 9.02% v/v and 337.37 mg/L at an optimized temperature of 24.71 °C, pH of 3.25, and total soluble solid of 22.49 °Brix. The GC-FID analysis results showed 1-propanol, 2-methyl-1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol, and ethyl acetate were considered the major aroma compound in the cherry spirits. These results provided important information in serving the basic to develop standard fruit spirits production from sour cherry.
Collapse
|
4
|
Inada KOP, Leite IB, Martins ABN, Fialho E, Tomás-Barberán FA, Perrone D, Monteiro M. Jaboticaba berry: A comprehensive review on its polyphenol composition, health effects, metabolism, and the development of food products. Food Res Int 2021; 147:110518. [PMID: 34399496 DOI: 10.1016/j.foodres.2021.110518] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Jaboticaba, a popular Brazilian berry, has been studied due to its relevant polyphenol composition, health benefits and potential use for the development of derived food products. Considering that around 200 articles have been published in recent years, this review aims to provide comprehensive and updated information, as well as a critical discussion on: (i) jaboticaba polyphenolic composition and extraction methods for their accurate determination; (ii) jaboticaba polyphenol's metabolism; (iii) biological effects of the fruit and the relationship with its polyphenols and their metabolites; (iv) challenges in the development of jaboticaba derived products. The determination of jaboticaba polyphenols should employ hydrolysis procedures during extraction, followed by liquid chromatographic analysis. Jaboticaba polyphenols, mainly anthocyanins and ellagitannins, are extensively metabolized, and their metabolites are probably the most important contributors to the relevant health effects associated with the fruit, such as antioxidant, anti-inflammatory, antidiabetic, hepatoprotective and hypolipidemic. Most of the technological processing of jaboticaba fruit and its residues is related to their application as a colorant, antioxidant, antimicrobial and source of polyphenols. The scientific literature still lacks studies on the metabolism and bioactivity of polyphenols from jaboticaba in humans, as well as the effect of technological processes on these issues.
Collapse
Affiliation(s)
- Kim Ohanna Pimenta Inada
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil; Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil; Instituto de Nutrição, Universidade Estadual do Rio de Janeiro, R. São Francisco Xavier, 524, Pavilhão João Lyra Filho, 12° andar, Bloco D, sala 12.002, 20550-900 Rio de Janeiro, Brazil.
| | - Iris Batista Leite
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil
| | - Ana Beatriz Neves Martins
- Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil
| | - Eliane Fialho
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil.
| | - Francisco A Tomás-Barberán
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain.
| | - Daniel Perrone
- Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil.
| | - Mariana Monteiro
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Chemical, Microbiological and Sensory Stability of Steam Extracted Jaboticaba ( Myrciaria jaboticaba) Juice. Foods 2021; 10:foods10040732. [PMID: 33808270 PMCID: PMC8065780 DOI: 10.3390/foods10040732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
Jaboticaba (Myrciaria jaboticaba) is a Brazilian berry rich in phenolic compounds, much appreciated for its sweet and slightly acid taste, and highly perishable. Thus, we aimed at producing jaboticaba juice by steam extraction and at investigating its microbiological, sensorial and chemical qualities during storage for up to 168 days. Juice was microbiologically safe and even though unsweetened juice was well accepted, sucrose addition further improved flavor (21%), overall impression (11%) and purchase intent (21%) scores. Cyanidin-3-O-glucoside (C3G) was the major phenolic (40%), followed by gallic (28%) and ellagic acids (21%). Total phenolics contents decreased from 27% (50 °C) to 50% (25 °C), mainly driven by C3G degradation. At 60 °C, total phenolics contents did not change after 42 days since C3G degradation was counterbalanced by gallic acid formation (129%), which followed zero-order reaction kinetics. Anthocyanins degradation followed first-order reaction kinetics (C3G half-life at 25 °C = 21.7 days) and was associated with color changes during storage. In conclusion, steam extraction followed by hot-filling technique ensured a juice with at least six months of shelf life.
Collapse
|
6
|
Fruit Spirit Production from Coffee Cherries—Process Analysis and Sensory Evaluation. BEVERAGES 2020. [DOI: 10.3390/beverages6030057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Coffee fruit production is an important agricultural sector in more than 70 tropical countries. However, the production of fruit spirits based on coffee fruits has not been investigated to date. This study evaluated, for the first time, its fermentation and distillation performance, ethanol yield and sensorial attributes. A selected yeast strain (Saccharomyces cerevisiae L.) fermented coffee cherry mash within five days and produced ethanol concentrations of 31.0 g/L. The mash was distilled and distillate fractions were categorized for heads/hearts/tails by sensory evaluation, resulting in an ethanol mass ratio of 1.0:4.2:0.8 with a total yield of 1.8% (w/w) ethanol based on coffee cherry mash. Analysis of fermentative volatiles indicated comparatively high methanol contents of 26 ± 4 g/L ethanol in the hearts fraction. Sensory evaluation of the hearts fraction resulted in 15 spirit specific descriptors, with vegetal and nutty indicating the most important terms to describe the perception of coffee cherry spirit. The results suggested that there is a high potential to introduce a fruit spirit based on coffee fruits.
Collapse
|
7
|
Wu X, Liu Q, Deng Y, Li J, Chen X, Gu Y, Lv X, Zheng Z, Jiang S, Li X. Production of itaconic acid by biotransformation of wheat bran hydrolysate with Aspergillus terreus CICC40205 mutant. BIORESOURCE TECHNOLOGY 2017; 241:25-34. [PMID: 28550772 DOI: 10.1016/j.biortech.2017.05.080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 05/28/2023]
Abstract
The replacement of the carbon source in the microbial production of itaconic acid (IA) with economic alternatives has attracted significant attention. In this study, an Aspergillus terreus CICC40205 mutant was used to increase the IA titer and decrease the citric acid titer in the wheat bran hydrolysate compared with the parental strain. The results showed that the IA titer was increased by 33.4%, whereas the citric acid titer was decreased by 75.8%, and were in accordance with those of the improved pathway of co-metabolism of glucose and xylose according to the metabolic flux analysis. Additionally, the maximum IA titer obtained in a 7-L stirred tank was 49.65gL-1±0.38gL-1. Overall, A. terreus CICC40205 showed a great potential for the industrial production of IA through the biotransformation of the wheat bran hydrolysate.
Collapse
Affiliation(s)
- Xuefeng Wu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, Anhui Province 230009, PR China
| | - Qing Liu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Yongdong Deng
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Jinghong Li
- China Rural Technology Development Center, Beijing 100045, PR China
| | - Xiaoju Chen
- College of Chemistry and Material Engineering, Chaohu University, Hefei, Anhui Province 238000, PR China
| | - Yongzhong Gu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Xijun Lv
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Zhi Zheng
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, Anhui Province 230009, PR China
| | - Shaotong Jiang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, Anhui Province 230009, PR China
| | - Xingjiang Li
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, Anhui Province 230009, PR China.
| |
Collapse
|
8
|
Wu X, Liu Q, Deng Y, Chen X, Zheng Z, Jiang S, Li X. Production of Fumaric Acid by Bioconversion of Corncob Hydrolytes Using an Improved Rhizopus oryzae Strain. Appl Biochem Biotechnol 2017; 184:553-569. [DOI: 10.1007/s12010-017-2554-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/03/2017] [Indexed: 11/28/2022]
|
9
|
Sugar cane spirit (cachaça): Effects of mixed inoculum of yeasts on the sensory and chemical characteristics. Food Res Int 2016; 85:76-83. [PMID: 29544855 DOI: 10.1016/j.foodres.2016.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/31/2016] [Accepted: 04/09/2016] [Indexed: 01/12/2023]
Abstract
The main goal of this study was to produce cachaça using a mixed inoculum of Saccharomyces cerevisiae and Meyerozyma caribbica and characterize the produced beverage using HPLC, GC-FID, GC-MS and sensorial analysis. Additionally, the use of MALDI-TOF as a tool to characterize and monitor pure and mixed inocula fermenting sugar cane juice was also evaluated. Vat fermentations were carried out for three consecutive batches using autoclaved 16°Brix sugar cane juice fermented by a mixed inoculum of M. caribbica 107 cells/mL and S. cerevisiae 108 cells/mL. The cachaça produced by the mixed culture of M. caribbica and S. cerevisiae showed the highest concentration of volatile compounds associated with good sensory descriptors such as ethyl hexanoate (114.11μg/L), 2-phenylethyl acetate (2.77μg/L), a-terpineol (0.45μg/L), b-citronellol (2.47μg/L), and geraniol (0.24μg/L). This beverage consequently showed greater acceptance in the sensorial analysis for taste and aroma, especially by younger panelists. The feasibility of MALDI-TOF use under studied conditions was demonstrated by the comparison of the results obtained from yeast cultivation in YPD broth, YPD agar and sugar cane juice, showing that there was no interference of sugar cane juice in protein profile. The results obtained from MALDI-TOF analysis showed that the protein extraction directly from sugar cane juice under fermentation, without the traditional plating step, allowed the distinction between mixed and pure inocula even under different M. caribbica populations and Brix degrees.
Collapse
|
10
|
Dias DR, Silva MS, Cristina de Souza A, Magalhăes-Guedes KT, Ribeiro FSDR, Schwan RF. Vinegar Production from Jabuticaba ( Myrciaria jaboticaba) Fruit Using Immobilized Acetic Acid Bacteria. Food Technol Biotechnol 2016; 54:351-359. [PMID: 27956867 DOI: 10.17113/ftb.54.03.16.4416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cell immobilization comprises the retention of metabolically active cells inside a polymeric matrix. In this study, the production of jabuticaba (Myrciaria jaboticaba) vinegar using immobilized Acetobacter aceti and Gluconobacter oxydans cells is proposed as a new method to prevent losses of jabuticaba fruit surplus. The pulp of jabuticaba was processed and Saccharomyces cerevisiae CCMA 0200 was used to ferment the must for jabuticaba wine production. Sugars, alcohols (ethanol and glycerol) and organic acids were assayed by high-performance liquid chromatography. Volatile compounds were determined by gas chromatography-flame ionization detector. The ethanol content of the produced jabuticaba wine was approx. 74.8 g/L (9.5% by volume) after 168 h of fermentation. Acetic acid fermentation for vinegar production was performed using a mixed culture of immobilized A. aceti CCT 0190 and G. oxydans CCMA 0350 cells. The acetic acid yield was 74.4% and productivity was 0.29 g/(L·h). The vinegar had particularly high concentrations of citric (6.67 g/L), malic (7.02 g/L) and succinic (5.60 g/L) acids. These organic acids give a suitable taste and flavour to the vinegar. Seventeen compounds (aldehydes, higher alcohols, terpene, acetate, diether, furans, acids, ketones and ethyl esters) were identified in the jabuticaba vinegar. In conclusion, vinegar was successfully produced from jabuticaba fruits using yeast and immobilized mixed cultures of A. aceti and G. oxydans. To the best of our knowledge, this is the first study to use mixed culture of immobilized cells for the production of jabuticaba vinegar.
Collapse
Affiliation(s)
- Disney Ribeiro Dias
- Department of Food Science, Federal University of Lavras (UFLA), University Campus,
37200-000 Lavras, MG, Brazil
| | - Monique Suela Silva
- Department of Biology, Federal University of Lavras (UFLA), University Campus,
37200-000 Lavras, MG, Brazil
| | - Angélica Cristina de Souza
- Department of Biology, Federal University of Lavras (UFLA), University Campus,
37200-000 Lavras, MG, Brazil
| | | | | | - Rosane Freitas Schwan
- Department of Biology, Federal University of Lavras (UFLA), University Campus,
37200-000 Lavras, MG, Brazil
| |
Collapse
|
11
|
Monroy YM, Rodrigues RA, Sartoratto A, Cabral FA. Extraction of bioactive compounds from cob and pericarp of purple corn ( Zea mays L.) by sequential extraction in fixed bed extractor using supercritical CO 2 , ethanol, and water as solvents. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.09.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Ribeiro LS, Duarte WF, Dias DR, Schwan RF. Fermented sugarcane and pineapple beverage produced usingSaccharomyces cerevisiaeand non-Saccharomycesyeast. JOURNAL OF THE INSTITUTE OF BREWING 2015. [DOI: 10.1002/jib.218] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Luciana Silva Ribeiro
- Department of Biology; Federal University of Lavras; Campus Universitário 37.200-000 Lavras MG Brazil
| | - Whasley Ferreira Duarte
- Department of Biology; Federal University of Lavras; Campus Universitário 37.200-000 Lavras MG Brazil
| | - Disney Ribeiro Dias
- Department of Food Science; Federal University of Lavras; Campus Universitário 37.200-000 Lavras MG Brazil
| | - Rosane Freitas Schwan
- Department of Biology; Federal University of Lavras; Campus Universitário 37.200-000 Lavras MG Brazil
| |
Collapse
|
13
|
Wu SB, Long C, Kennelly EJ. Phytochemistry and health benefits of jaboticaba, an emerging fruit crop from Brazil. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.06.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Santos CCADA, Duarte WF, Carreiro SC, Schwan RF. Inoculated fermentation of orange juice (Citrus sinensisL.) for production of a citric fruit spirit. JOURNAL OF THE INSTITUTE OF BREWING 2013. [DOI: 10.1002/jib.89] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Whasley F. Duarte
- Department of Biology; Federal University of Lavras; CP 3037 - Campus Universitário CEP 37.200-000 Lavras MG Brazil
| | - Solange Cristina Carreiro
- Department of Food Engineer; Federal University of Tocantins (UFT); Av. NS15, ALCNO 14, Bloco II, Room 22 CEP 77020-210 - Palmas TO Brazil
| | - Rosane F. Schwan
- Department of Biology; Federal University of Lavras; CP 3037 - Campus Universitário CEP 37.200-000 Lavras MG Brazil
| |
Collapse
|
15
|
Chang C, Xu G, Jiang X. Production of ethyl levulinate by direct conversion of wheat straw in ethanol media. BIORESOURCE TECHNOLOGY 2012; 121:93-99. [PMID: 22858471 DOI: 10.1016/j.biortech.2012.06.105] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 06/29/2012] [Accepted: 06/29/2012] [Indexed: 06/01/2023]
Abstract
The production of ethyl levulinate from wheat straw by direct conversion in ethanol media was investigated. Response surface methodology (RSM) was applied to optimize the effects of processing parameters, and the regression analysis was performed on the data obtained. A close agreement between the experimental results and the model predictions was achieved. The optimal conditions for ethyl levulinate production from wheat straw were acid concentration 2.5%, reaction temperature 183°C, mass ratio of liquid to solid 19.8 and reaction time 36 min. Under the optimum conditions, the yield of ethyl levulinate 17.91% was obtained, representing a theoretical yield of 51.0%. The results suggest that wheat straw can be used as potential raw materials for the production of ethyl levulinate by direct conversion in ethanol media.
Collapse
Affiliation(s)
- Chun Chang
- School of Chemical Engineering and Energy, Zhengzhou University, Science Road 100, Zhengzhou 450001, China.
| | | | | |
Collapse
|
16
|
Duarte WF, de Sousa MVF, Dias DR, Schwan RF. Effect of Co-Inoculation of Saccharomyces cerevisiae and Lactobacillus fermentum on the Quality of the Distilled Sugar Cane Beverage Cachaça. J Food Sci 2011; 76:C1307-18. [DOI: 10.1111/j.1750-3841.2011.02412.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Fortes GA, Naves SS, Godoi FF, Duarte AR, Ferri PH, Santos SC. Assessment of a Maturity Index in Jabuticaba Fruit by the Evaluation of Phenolic Compounds, Essential Oil Components, Sugar Content and Total Acidity. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/ajft.2011.974.984] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|