1
|
Herman RA, Ayepa E, Zhang WX, Li ZN, Zhu X, Ackah M, Yuan SS, You S, Wang J. Molecular modification and biotechnological applications of microbial aspartic proteases. Crit Rev Biotechnol 2024; 44:388-413. [PMID: 36842994 DOI: 10.1080/07388551.2023.2171850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/13/2022] [Accepted: 01/07/2023] [Indexed: 02/28/2023]
Abstract
The growing preference for incorporating microbial aspartic proteases in industries is due to their high catalytic function and high degree of substrate selectivity. These properties, however, are attributable to molecular alterations in their structure and a variety of other characteristics. Molecular tools, functional genomics, and genome editing technologies coupled with other biotechnological approaches have aided in improving the potential of industrially important microbial proteases by addressing some of their major limitations, such as: low catalytic efficiency, low conversion rates, low thermostability, and less enzyme yield. However, the native folding within their full domain is dependent on a surrounding structure which challenges their functionality in substrate conversion, mainly due to their mutual interactions in the context of complex systems. Hence, manipulating their structure and controlling their expression systems could potentially produce enzymes with high selectivity and catalytic functions. The proteins produced by microbial aspartic proteases are industrially capable and far-reaching in regulating certain harmful distinctive industrial processes and the benefits of being eco-friendly. This review provides: an update on current trends and gaps in microbial protease biotechnology, exploring the relevant recombinant strategies and molecular technologies widely used in expression platforms for engineering microbial aspartic proteases, as well as their potential industrial and biotechnological applications.
Collapse
Affiliation(s)
- Richard Ansah Herman
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, P. R. China
| | - Ellen Ayepa
- Oil Palm Research Institute, Council for Scientific and Industrial Research, Kusi, Ghana
| | - Wen-Xin Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Zong-Nan Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Xuan Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Shuang-Shuang Yuan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Shuai You
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, P.R. China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, P.R. China
| |
Collapse
|
2
|
Li B, Gadahi JA, Gao W, Zhang Z, Ehsan M, Xu L, Song X, Li X, Yan R. Characterization of a novel aspartyl protease inhibitor from Haemonchus contortus. Parasit Vectors 2017; 10:191. [PMID: 28420411 PMCID: PMC5395858 DOI: 10.1186/s13071-017-2137-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/11/2017] [Indexed: 01/13/2023] Open
Abstract
Background Aspartyl protease inhibitor (API) was thought to protect intestinal parasitic nematodes from their hostile proteolytic environment. Studies on Ostertagia ostertagi, Ascaris suum and Brugia malayi indicated that aspins might play roles in nematode infection. In a recent study, proteins differentially expressed between free-living third-stage larvae (L3) and activated L3 (xL3) of Haemonchus contortus were identified by 2D-DIGE. API was found downregulated in xL3 when compared with L3. However, there was no report about the functions of H. contortus API in the parasite-host interaction. In this study, the gene encoding API from H. contortus was cloned, expressed, and part of its biological characteristics were studied. Results A DNA fragment of 681 bp was amplified by RT-PCR. Ninety one percent of the amino acid sequence was similar with that for aspin from O. ostertagi. The recombinant API protein was fusion-expressed with a molecular weight of 48 × 103. Results of Western blot showed that the recombinant API could be recognized by serum from goat infected with H. contortus. It was found that API was localized exclusively in the subcutaneous tissue and epithelial cells of the gastrointestinal tract in adult H. contortus. qRT-PCR suggested that the API gene was differentially transcribed in different life-cycle stages, with the lowest level in female adults and the highest in free-living L3 larvae. Enzyme inhibition assay indicated that the recombinant API can inhibit the activity of pepsin significantly, and the optimal reaction pH and temperature were 4.0 and 37–50 °C respectively. In vitro study showed that the recombinant API could induce goat PBMCs to express IFN-γ, IL-4 and IL-10. Conclusions A new aspartyl protease inhibitor was cloned from H. contortus and its characteristics were studied for the first time. The results indicate that API may regulate the immune response of the host and play roles in the infection. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2137-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Baojie Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Javaid Ali Gadahi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Department of Veterinary Parasitology, Sindh Agriculture University, Tandojam, Pakistan
| | - Wenxiang Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhenchao Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Muhammad Ehsan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
3
|
Entomotoxic and nematotoxic lectins and protease inhibitors from fungal fruiting bodies. Appl Microbiol Biotechnol 2015; 100:91-111. [DOI: 10.1007/s00253-015-7075-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/04/2015] [Accepted: 10/11/2015] [Indexed: 01/26/2023]
|
4
|
Que Y, Sun S, Xu L, Zhang Y, Zhu H. High-level coproduction, purification and characterisation of laccase and exopolysaccharides by Coriolus versicolor. Food Chem 2014; 159:208-13. [DOI: 10.1016/j.foodchem.2014.03.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/05/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
|
5
|
Dunaevsky YE, Popova VV, Semenova TA, Beliakova GA, Belozersky MA. Fungal inhibitors of proteolytic enzymes: classification, properties, possible biological roles, and perspectives for practical use. Biochimie 2013; 101:10-20. [PMID: 24355205 DOI: 10.1016/j.biochi.2013.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/06/2013] [Indexed: 01/10/2023]
Abstract
Peptidase inhibitors are ubiquitous regulatory proteins controlling catalytic activity of proteolytic enzymes. Interest in these proteins increased substantially after it became clear that they can be used for therapy of various important diseases including cancer, malaria, and autoimmune and neurodegenerative diseases. In this review we summarize available data on peptidase inhibitors from fungi, emphasizing their properties, biological role, and possible practical applications of these proteins in the future. A number of fungal peptidase inhibitors with unique structure and specificity of action have no sequence homology with other classes of peptidase inhibitors, thus representing new and specific candidates for therapeutic use. The main classifications of inhibitors in current use are considered. Available data on structure, mechanisms and conditions of action, and diversity of functions of peptidase inhibitors of fungi are analyzed. It is mentioned that on one side the unique properties of some inhibitors can be used for selective inhibition of peptidases responsible for initiation and development of pathogenic processes. On the other side, general inhibitory activity of other inhibitors towards peptidases of various catalytic classes might be able to provide efficient defense of transgenic plants against insect pests by overcoming compensatory synthesis of new peptidases by these pests in response to introduction of a fungal inhibitor. Together, the data analyzed in this review reveal that fungal inhibitors extend the spectrum of known peptidase inhibitors potentially suitable for use in medicine and agriculture.
Collapse
Affiliation(s)
- Y E Dunaevsky
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia.
| | - V V Popova
- Faculty of Biology, Moscow State University, Moscow 119992, Russia
| | - T A Semenova
- Faculty of Biology, Moscow State University, Moscow 119992, Russia
| | - G A Beliakova
- Faculty of Biology, Moscow State University, Moscow 119992, Russia
| | - M A Belozersky
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| |
Collapse
|
6
|
Purification an α-galactosidase from Coriolus versicolor with acid-resistant and good degradation ability on raffinose family oligosaccharides. World J Microbiol Biotechnol 2013; 30:1261-7. [DOI: 10.1007/s11274-013-1549-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 10/29/2013] [Indexed: 11/27/2022]
|