1
|
Lanuza F, Zamora-Ros R, Petermann-Rocha F, Martínez-Sanguinetti MA, Troncoso-Pantoja C, Labraña AM, Leiva-Ordoñez AM, Nazar G, Ramírez-Alarcón K, Ulloa N, Lasserre-Laso N, Parra-Soto S, Martorell M, Villagrán M, Garcia-Diaz DF, Andrés-Lacueva C, Celis-Morales C. Advances in Polyphenol Research from Chile: A Literature Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2009508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- F Lanuza
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
- Centro de Epidemiología Cardiovascular y Nutricional (EPICYN), Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - R Zamora-Ros
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - F Petermann-Rocha
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | - C Troncoso-Pantoja
- Centro de Investigación en Educación y Desarrollo (CIEDE-UCSC), Departamento de Salud Pública, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - AM Labraña
- Departamento de Nutrición y Dietética, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - AM Leiva-Ordoñez
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - G Nazar
- Departamento de Psicología, Facultad de Ciencias Sociales, y Centro de Vida Saludable. Universidad de Concepción, Concepción, Chile
| | - K Ramírez-Alarcón
- Departamento de Nutrición y Dietética, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - N Ulloa
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, y Centro de Vida Saludable, Universidad de Concepción, Concepción, Chile
| | - N Lasserre-Laso
- Escuela de Nutrición y Dietética, Facultad de Salud, Universidad Santo Tomás, Los Ángeles, Chile
| | - S Parra-Soto
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - M Martorell
- Departamento de Nutrición y Dietética, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - M Villagrán
- Department of Basic Science, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - DF Garcia-Diaz
- Department of Nutrition, School of Medicine, University of Chile, Independencia, 1027 Santiago, Chile
| | - C Andrés-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - C Celis-Morales
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Centro de Investigación en Fisiología del Ejercicio (CIFE), Universidad Mayor, Santiago, Chile
- Laboratorio de Rendimiento Humano, Grupo de Estudio en Educación, Actividad Física y Salud (GEEAFyS), Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
2
|
Natural Antioxidants from Endemic Leaves in the Elaboration of Processed Meat Products: Current Status. Antioxidants (Basel) 2021; 10:antiox10091396. [PMID: 34573028 PMCID: PMC8466473 DOI: 10.3390/antiox10091396] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 02/01/2023] Open
Abstract
During the last few years, consumers' demand for animal protein and healthier meat products has increased considerably. This has motivated researchers of the meat industry to create products that present healthier components while maintaining their safety, sensory characteristics, and shelf life. Concerning this, natural plant extracts have gained prominence because they can act as antioxidants and antimicrobials, increasing the stability and shelf life of processed meat products. It has been observed that the leaves of plant species (Moringa oleifera, Bidens pilosa, Eugenia uniflora, Olea europea, Prunus cerasus, Ribes nigrum, etc.) have a higher concentration and variety of polyphenols than other parts of the plants, such as fruits and stems. In Chile, there are two native berries, maqui (Aristotelia chilensis) and murtilla (Ugni molinae Turcz), that that stand out for their high concentrations of polyphenols. Recently, their polyphenols have been characterized, demonstrating their potential antioxidant and antimicrobial action and their bioactive action at cellular level. However, to date, there is little information on their use in the elaboration of meat products. Therefore, the objective of this review is to compile the most current data on the use of polyphenols from leaves of native plants in the elaboration of meat products and their effect on the oxidation, stability, and organoleptic characteristics during the shelf life of these products.
Collapse
|
3
|
Vega-Galvez A, Rodríguez A, Stucken K. Antioxidant, functional properties and health-promoting potential of native South American berries: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:364-378. [PMID: 32608511 DOI: 10.1002/jsfa.10621] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/13/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Nowadays berries are globally recognized to be among the healthiest foods because they contain diverse and abundant bioactive compounds. Among these are phenolic acids, flavonoids, and anthocyanins, which are known to have beneficial health effects. South America, particularly southern Chile, is covered by a diversity of insufficiently studied and underexploited native berry species. In this review we summarize all the available literature on the phenolic composition, antioxidant activity, bioaccessibility, and biological activity of five native South American berries: calafate, maqui, murta, arrayán, and chequén. The potential of these native berries for promoting human health and as source of bioactive substances is remarkable. Bioactive compounds, mainly anthocyanins, and in less abundance flavonoids and phenolic acids, show strong antioxidant effects. Some of these constituents are bioaccessible and bioavailable, and exert anticancer, antimicrobial, and anti-inflammatory activities as well as inhibitory effects against enzymes involved in metabolic syndromes. Given the potential of native South American berries to promote health, more work is still needed to understand fully the potential beneficial effects of the consumption of these berries on human health. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Antonio Vega-Galvez
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, La Serena, Chile
| | - Angela Rodríguez
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, La Serena, Chile
| | - Karina Stucken
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, La Serena, Chile
| |
Collapse
|
4
|
Fredes C, Parada A, Salinas J, Robert P. Phytochemicals and Traditional Use of Two Southernmost Chilean Berry Fruits: Murta ( Ugni molinae Turcz) and Calafate ( Berberis buxifolia Lam.). Foods 2020; 9:foods9010054. [PMID: 31935880 PMCID: PMC7023186 DOI: 10.3390/foods9010054] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 12/30/2022] Open
Abstract
Murta and calafate have been traditionally used by indigenous and rural peoples of Chile. Research on murta and calafate has gained interest due to their attractive sensory properties as well as a global trend in finding new fruits with potential health benefits. The objective of this review was to summarize the potential use of murta and calafate as sources of nutraceuticals regarding both the traditional and the up-to-date scientific knowledge. A search of historical documents recorded in the Digital National Library as well as scientific articles in the Web of Science database were performed using combinations of keywords with the botanical nomenclature. Peer-reviewed scientific articles did meet the inclusion criteria (n = 38) were classified in phytochemicals (21 papers) and biological activity (17 papers). Murta and calafate are high oxygen radical absorbance capacity (ORAC)-value fruits and promising sources of natural antioxidants, antimicrobial, and vasodilator compounds with nutraceutical potential. The bioactivity of anthocyanin metabolites in murta and calafate must continue to be studied in order to achieve adequate information on the biological activity and health-promoting effects derived for the consumption of murta and calafate fruit.
Collapse
Affiliation(s)
- Carolina Fredes
- Departamento Ciencias de la Salud, Carrera de Nutrición y Dietética, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (C.F.); (A.P.)
| | - Alejandra Parada
- Departamento Ciencias de la Salud, Carrera de Nutrición y Dietética, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (C.F.); (A.P.)
| | - Jaime Salinas
- Instituto Forestal, Sede Coyhaique, Coyhaique 5951840, Chile;
| | - Paz Robert
- Departamento Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380492, Chile
- Correspondence: ; Tel.: +56-229-781-666
| |
Collapse
|
5
|
Beneficial effects of murtilla extract and madecassic acid on insulin sensitivity and endothelial function in a model of diet-induced obesity. Sci Rep 2019; 9:599. [PMID: 30679477 PMCID: PMC6345770 DOI: 10.1038/s41598-018-36555-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023] Open
Abstract
Infusions of murtilla leaves exhibit antioxidant, analgesic, and anti-inflammatory properties. Several compounds that are structurally similar to madecassic acid (MA), a component of murtilla leaf extract (ethyl acetate extract, EAE), have been shown to inhibit protein tyrosine phosphatase 1B (PTP1P). The aim of this study was to evaluate if EAE and two compounds identified in EAE (MA and myricetin [MYR]) could have a beneficial effect on systemic and vascular insulin sensitivity and endothelial function in a model of diet-induced obesity. Experiments were performed in 5-week-old male C57BL6J mice fed with a standard (LF) or a very high-fat diet (HF) for 4 weeks and treated with EAE, MA, MYR, or the vehicle as control (C). EAE significantly inhibited PTP1B. EAE and MA, but not MYR, significantly improved systemic insulin sensitivity in HF mice and vascular relaxation to Ach in aorta segments, due to a significant increase of eNOS phosphorylation and enhanced nitric oxide availability. EAE, MA, and MYR also accounted for increased relaxant responses to insulin in HF mice, thus evidencing that the treatments significantly improved aortic insulin sensitivity. This study shows for the first time that EAE and MA could constitute interesting candidates for treating insulin resistance and endothelial dysfunction associated with obesity.
Collapse
|
6
|
Evaluating the clinical importance of bacterial degradation of therapeutic agents in the lower intestine of adults using adult fecal material. Eur J Pharm Sci 2018; 125:142-150. [PMID: 30273661 DOI: 10.1016/j.ejps.2018.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/15/2018] [Accepted: 09/25/2018] [Indexed: 11/23/2022]
Abstract
PURPOSE Optimize adult fecal material composition for evaluating the clinical importance of bacterial degradation of therapeutic agents in the lower intestine (distal small intestine, D-SI and proximal colon, P-COL). Evaluate the usefulness of optimized fecal material in the evaluation of bacterial degradation of five model highly permeable drugs: two nitroreductase substrates (nitrendipine and nimodipine), three drugs for which published data indicate no impact of bacterial degradation on in vivo performance (levodopa, budesonide and rivaroxaban) and one prodrug (sulfasalazine, an azoreductase substrate) from which a locally acting on the mucosa of the lower intestine drug is derived (mesalamine). METHODS 30 min and 95 min were used as point estimates of maximum bacterial degradation half-lives for bacterial degradation in D-SI or in P-COL, respectively, to be clinically important, i.e. for at least 20% reduction in absorption from D-SI or P-COL to occur. Optimization of fecal material was based on recently reported degradation profiles of metronidazole (a nitroreductase substrate) and olsalazine (an azoreductase substrate) in the lower intestine of healthy adults which are clinically important. Model compounds were tested in optimized fecal materials and data were evaluated vs. existing in vivo data in adults. RESULTS Simulated ileal bacteria (SIB) consisted of 5.5% (w/v) stools in normal saline and simulated colonic bacteria (SCoB) consisted of 8.3% (w/v) stools in normal saline. For all model compounds, data in SIB and SCoB were in line with available information in adults. [Degradation half-life in SIB/Degradation half-life in SCoB] ≈ [Stool content in SCoB/Stool content in SIB] ≈ 1.5, i.e. bacterial degradation in SIB could be predicted from bacterial degradation in SCoB. CONCLUSION Data in SCoB only are useful for evaluating whether bacterial degradation in P-COL and in D-SI is likely to be clinically important for orally administered, highly permeable drugs or prodrugs which act locally after bacterial degradation. The usefulness of this approach in cases where enzymes other than nitroreductases or azoreductases are involved requires further confirmation.
Collapse
|
7
|
López de Dicastillo C, Bustos F, Valenzuela X, López-Carballo G, Vilariño JM, Galotto MJ. Chilean berry Ugni molinae Turcz. fruit and leaves extracts with interesting antioxidant, antimicrobial and tyrosinase inhibitory properties. Food Res Int 2017; 102:119-128. [PMID: 29195930 DOI: 10.1016/j.foodres.2017.09.073] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 12/24/2022]
Abstract
The knowledge of the biological properties of fruits and leaves of murta (Ugni molinae Turcz.) has been owned by native Chilean culture. The present study investigated the phenolic content, the antioxidant, antimicrobial and anti-tyrosinase activities of different murta fruit and leaves extracts to approach their uses on future food, pharmaceutical and cosmetic applications. Extractions of murta fruit and leaves were carried out under water, ethanol and ethanol 50%. Phenolic content of these extracts was measured through Folin Ciocalteu test and the antioxidant power by four different antioxidant systems (ORAC, FRAP, DPPH and TEAC assays) owing to elucidate the main mechanism of antioxidant. Some flavonoids, such as rutin, isoquercitrin and quercitrin hydrate were identified and quantified through HPLC analysis. Antimicrobial activity was determined measuring minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) values against Escherichia coli and Listeria monocytogenes, and the effect of these extracts on L. monocytogenes was confirmed by flow cytometry. Highest contents of polyphenol compounds were obtained in hydroalcoholic extracts (28±1mggallicacid/g dry fruit, and 128±6mggallicacid/g dry leaves). The same trend was found for the values of biological properties: hydroalcoholic extracts showed the strongest activities. Leaves presented higher antioxidant, antimicrobial and anti-tyrosinase properties than murta fruit. Highest antioxidant activity values according to ORAC, FRAP, TEAC and DPPH were 80±8mgTrolox/g, 70±2mgTrolox/g, 87±8mgTrolox/g and 110±12mgTrolox/g, respectively, for murta fruit samples, and 280±10mgTrolox/g, 192±4mgTrolox/g, 286±13mgTrolox/g and 361±13mgTrolox/g, respectively, for murta leaves. These activities were confirmed by HPLC analysis that revealed highest presence of analyzed compounds on leaves hydroalcoholic extract. Regarding to antimicrobial analysis, hydroalcoholic leaves extract presented the highest activity presenting the lowest MIC value for L. monocytogenes (0.07mg/mL). This extract also performed the highest anti-tyrosinase activity (CE50 values of 1.6±0.3 (g/L) and 8.9±1.2 (g/L) for leaves and fruit, respectively).
Collapse
Affiliation(s)
- Carol López de Dicastillo
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Food Packaging Laboratory (LABEN-CHILE), Department of Science and Food Technology, Faculty of Technology, University of Santiago de Chile, Santiago, Chile.
| | - Fernanda Bustos
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Food Packaging Laboratory (LABEN-CHILE), Department of Science and Food Technology, Faculty of Technology, University of Santiago de Chile, Santiago, Chile
| | - Ximena Valenzuela
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Food Packaging Laboratory (LABEN-CHILE), Department of Science and Food Technology, Faculty of Technology, University of Santiago de Chile, Santiago, Chile
| | - Gracia López-Carballo
- Packaging Lab, Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Spain
| | - Jose M Vilariño
- Centro de Investigacións Tecnolóxicas (CIT), Universidad de A Coruña, Campus de Esteiro s/n, 15403 Ferrol, Spain
| | - Maria Jose Galotto
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Food Packaging Laboratory (LABEN-CHILE), Department of Science and Food Technology, Faculty of Technology, University of Santiago de Chile, Santiago, Chile
| |
Collapse
|
8
|
Peña-Cerda M, Arancibia-Radich J, Valenzuela-Bustamante P, Pérez-Arancibia R, Barriga A, Seguel I, García L, Delporte C. Phenolic composition and antioxidant capacity of Ugni molinae Turcz. leaves of different genotypes. Food Chem 2016; 215:219-27. [PMID: 27542470 DOI: 10.1016/j.foodchem.2016.07.159] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/17/2016] [Accepted: 07/28/2016] [Indexed: 11/28/2022]
Abstract
Ugni molinae Turcz. is a native shrub of Chile, known for its edible berries and its leaves, which have been the focus of recent attention, as a good source of phenolic compounds to be used in cosmetics and food products. The aim of this study was to assess the differences in the phenolic composition and antioxidant capacity of the ethanolic extracts from the leaves of 10 genotypes of U. molinae, that were cultivated under the same soil, climate and agronomical management. Antioxidant activity was assessed by complementary methods (ORAC-Fl, FRAP and DPPH assay), phenolic composition of each extract was analyzed by LC-MS. Phenolic and flavonoid total contents were determined by Folin-Ciocalteu and AlCl3 methods. Significative differences were found by these methods, and ellagitannins, gallic acid derivatives and flavonols were identified as responsible for these differences, showing the influence of the genotype on the phenolic composition of U. molinae leaves.
Collapse
Affiliation(s)
- Marcelo Peña-Cerda
- Laboratorio de Productos Naturales, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 8380492, Santos Dumont 964, Santiago, Chile.
| | - Jorge Arancibia-Radich
- Laboratorio de Productos Naturales, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 8380492, Santos Dumont 964, Santiago, Chile.
| | - Paula Valenzuela-Bustamante
- Laboratorio de Productos Naturales, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 8380492, Santos Dumont 964, Santiago, Chile.
| | - Rodrigo Pérez-Arancibia
- Laboratorio de Productos Naturales, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 8380492, Santos Dumont 964, Santiago, Chile.
| | - Andrés Barriga
- Unidad de Espectrometría de Masa, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 8380492, Sergio Livingstone 1007, Santiago, Chile.
| | - Ivette Seguel
- Instituto Nacional de Investigaciones Agropecuarias (INIA, Carillanca, Chile), PO Box 58-D, Temuco, Chile.
| | - Lorena García
- Advanced Center for Chronic Diseases (ACCDis), Departamento de Bioquímica y Biología Molécular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 8380492, Sergio Livingstone 1007, Santiago, Chile.
| | - Carla Delporte
- Laboratorio de Productos Naturales, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 8380492, Santos Dumont 964, Santiago, Chile.
| |
Collapse
|
9
|
Chacón-Fuentes M, Parra L, Rodriguez-Saona C, Seguel I, Ceballos R, Quiroz A. Domestication in Murtilla (Ugni molinae) Reduced Defensive Flavonol Levels but Increased Resistance Against a Native Herbivorous Insect. ENVIRONMENTAL ENTOMOLOGY 2015; 44:627-37. [PMID: 26313969 DOI: 10.1093/ee/nvv040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/03/2015] [Indexed: 05/19/2023]
Abstract
Plant domestication can have negative consequences for defensive traits against herbivores, potentially reducing the levels of chemical defenses in plants and consequently their resistance against herbivores. We characterized and quantified the defensive flavonols from multiple cultivated ecotypes with wild ancestors of murtilla, Ugni molinae Turcz, an endemic plant from Chile, at different times of the year, and examined their effects on a native insect herbivore, Chilesia rudis Butler (Lepidoptera: Arctiidae). We hypothesized that domestication results in a decrease in flavonol levels in U. molinae plants, and that this negatively affected C. rudis performance and preference. Ethanolic extracts were made from leaves, stems, and fruit of murtilla plants for flavonol analysis. Flavonols identified were kaempferol, quercetin, rutin, and quercetin 3-D-β-glucoside, the last two being the most abundant. More interestingly, we showed differences in flavonol composition between wild and cultivated U. molinae that persisted for most of the year. Relative amounts of all four flavonols were higher in wild U. molinae leaves; however, no differences were found in the stem and fruit between wild and cultivated plants. In choice and no-choice assays, C. rudis larvae gained more mass on, and consumed more leaf material of, wild as compared with cultivated U. molinae plants. Moreover, when applied to leaves, larvae ate more leaf material with increasing concentrations of each flavonol compound. Our study demonstrates that domestication in U. molinae reduced the amount of flavonols in leaves as well as the performance and preference of C. rudis, indicating that these compounds stimulate feeding of C. rudis.
Collapse
Affiliation(s)
- Manuel Chacón-Fuentes
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile. Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile
| | - Leonardo Parra
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
| | - Cesar Rodriguez-Saona
- Phillip E. Marucci Center for Blueberry and Cranberry Research and Extension, Rutgers-The State University of New Jersey, 125A Lake Oswego Rd., Chatsworth, NJ 08019
| | - Ivette Seguel
- Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación Carillanca, Temuco, Chile
| | - Ricardo Ceballos
- Laboratorio de Ecología Química, Instituto de Investigaciones Agropecuarias, CRI-Quilamapu, Av. Vicente Mendez 515, Casilla 426, Chillán, Chile
| | - Andres Quiroz
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile.
| |
Collapse
|