1
|
Wille M, Grillo V, Ban de Gouvea Pedroso S, Burgess GW, Crawley A, Dickason C, Hansbro PM, Hoque MA, Horwood PF, Kirkland PD, Kung NYH, Lynch SE, Martin S, McArthur M, O’Riley K, Read AJ, Warner S, Hoye BJ, Lisovski S, Leen T, Hurt AC, Butler J, Broz I, Davies KR, Mileto P, Neave MJ, Stevens V, Breed AC, Lam TTY, Holmes EC, Klaassen M, Wong FYK. Australia as a global sink for the genetic diversity of avian influenza A virus. PLoS Pathog 2022; 18:e1010150. [PMID: 35536868 PMCID: PMC9089890 DOI: 10.1371/journal.ppat.1010150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/13/2022] [Indexed: 12/03/2022] Open
Abstract
Most of our understanding of the ecology and evolution of avian influenza A virus (AIV) in wild birds is derived from studies conducted in the northern hemisphere on waterfowl, with a substantial bias towards dabbling ducks. However, relevant environmental conditions and patterns of avian migration and reproduction are substantially different in the southern hemisphere. Through the sequencing and analysis of 333 unique AIV genomes collected from wild birds collected over 15 years we show that Australia is a global sink for AIV diversity and not integrally linked with the Eurasian gene pool. Rather, AIV are infrequently introduced to Australia, followed by decades of isolated circulation and eventual extinction. The number of co-circulating viral lineages varies per subtype. AIV haemagglutinin (HA) subtypes that are rarely identified at duck-centric study sites (H8-12) had more detected introductions and contemporary co-circulating lineages in Australia. Combined with a lack of duck migration beyond the Australian-Papuan region, these findings suggest introductions by long-distance migratory shorebirds. In addition, on the available data we found no evidence of directional or consistent patterns in virus movement across the Australian continent. This feature corresponds to patterns of bird movement, whereby waterfowl have nomadic and erratic rainfall-dependant distributions rather than consistent intra-continental migratory routes. Finally, we detected high levels of virus gene segment reassortment, with a high diversity of AIV genome constellations across years and locations. These data, in addition to those from other studies in Africa and South America, clearly show that patterns of AIV dynamics in the Southern Hemisphere are distinct from those in the temperate north.
Collapse
Affiliation(s)
- Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, Australia
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | | | | | - Graham W. Burgess
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
| | | | | | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Md. Ahasanul Hoque
- Chattogram (previously Chittagong) Veterinary and Animal Sciences University, Khulshi, Bangladesh
| | - Paul F. Horwood
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
| | - Peter D. Kirkland
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, Australia
| | - Nina Yu-Hsin Kung
- Animal Biosecurity & Welfare, Biosecurity Queensland, Department of Agriculture and Fisheries, Health Food Science Precinct, Coopers Plains, Australia
| | - Stacey E. Lynch
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Australia
| | - Sue Martin
- Department of Primary Industries, Parks, Water and Environment, Hobart, Australia
| | - Michaela McArthur
- Department of Primary Industries and Regional Development, Kensington, Australia
| | - Kim O’Riley
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Australia
| | - Andrew J. Read
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, Australia
| | - Simone Warner
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Australia
| | - Bethany J. Hoye
- Centre for Integrative Ecology, Deakin University, Geelong, Australia
| | - Simeon Lisovski
- Centre for Integrative Ecology, Deakin University, Geelong, Australia
| | - Trent Leen
- Geelong Field & Game, Geelong, Australia
- Wetlands Environmental Taskforce, Field & Game Australia, Seymour, Australia
| | - Aeron C. Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jeff Butler
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, Australia
| | - Ivano Broz
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, Australia
| | - Kelly R. Davies
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, Australia
| | - Patrick Mileto
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, Australia
| | - Matthew J. Neave
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, Australia
| | - Vicky Stevens
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, Australia
| | - Andrew C. Breed
- Department of Agriculture, Water and the Environment, Canberra, Australia
- University of Queensland, St. Lucia, Australia
| | - Tommy T. Y. Lam
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, PR China
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Geelong, Australia
| | - Frank Y. K. Wong
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, Australia
| |
Collapse
|
2
|
Elbers ARW, Gonzales JL. Efficacy of an automated laser for reducing wild bird visits to the free range area of a poultry farm. Sci Rep 2021; 11:12779. [PMID: 34140601 PMCID: PMC8211814 DOI: 10.1038/s41598-021-92267-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/08/2021] [Indexed: 11/28/2022] Open
Abstract
In the Netherlands, free-range layer farms as opposed to indoor layer farms, are at greater risk with regard to the introduction of avian influenza viruses (AIVs). Wild waterfowl are the natural reservoir hosts of AIVs, and play a major role in their transmission to poultry by contaminating free-range layer areas. The laser as a wild bird repellent has been in use since the 1970s, in particular around airfields to reduce bird-strike. The efficacy of laser for reducing wild bird numbers in and around free-range poultry areas has however not been investigated. During the autumn-winter, wild bird visits to the free-range area of a layer farm was surveilled by video-camera for a month without laser, followed by a month with laser. The automated laser (Class-III B qualification) was operated in two separate areas (i) within the poultry free-range area that directly bordered the poultry barn between 5:00 p.m. and 10:00 a.m. when poultry were absent (free-range study area, size 1.5 ha), and (ii) in surrounding grass pastures between 10:00 a.m. and 5:00 p.m. The overall (all bird species combined) efficacy of the laser for reducing the rate of wild birds visiting the free-range study area was 98.2%, and for the Orders Anseriformes and Passeriformes, respectively, was 99.7% and 96.1%. With the laser in operation, the overall exposure time of the free-range area to wild bird visits, but specifically to the Order Anseriformes, was massively reduced. It can be concluded that the Class-III B laser is highly proficient at keeping wild birds, in particular waterfowl, away from the free-range area of layer farms situated along a winter migration flyway.
Collapse
Affiliation(s)
- Armin R W Elbers
- Department of Epidemiology, Bioinformatics and Animal Studies, Wageningen Bioveterinary Research, P.O. Box 65, 8200 AB, Lelystad, The Netherlands.
| | - José L Gonzales
- Department of Epidemiology, Bioinformatics and Animal Studies, Wageningen Bioveterinary Research, P.O. Box 65, 8200 AB, Lelystad, The Netherlands
| |
Collapse
|
3
|
Reassortment and Persistence of Influenza A Viruses from Diverse Geographic Origins within Australian Wild Birds: Evidence from a Small, Isolated Population of Ruddy Turnstones. J Virol 2021; 95:JVI.02193-20. [PMID: 33627387 DOI: 10.1128/jvi.02193-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/10/2021] [Indexed: 12/28/2022] Open
Abstract
Australian lineages of avian influenza A viruses (AIVs) are thought to be phylogenetically distinct from those circulating in Eurasia and the Americas, suggesting the circulation of endemic viruses seeded by occasional introductions from other regions. However, processes underlying the introduction, evolution and maintenance of AIVs in Australia remain poorly understood. Waders (order Charadriiformes, family Scolopacidae) may play a unique role in the ecology and evolution of AIVs, particularly in Australia, where ducks, geese, and swans (order Anseriformes, family Anatidae) rarely undertake intercontinental migrations. Across a 5-year surveillance period (2011 to 2015), ruddy turnstones (Arenaria interpres) that "overwinter" during the Austral summer in southeastern Australia showed generally low levels of AIV prevalence (0 to 2%). However, in March 2014, we detected AIVs in 32% (95% confidence interval [CI], 25 to 39%) of individuals in a small, low-density, island population 90 km from the Australian mainland. This epizootic comprised three distinct AIV genotypes, each of which represent a unique reassortment of Australian-, recently introduced Eurasian-, and recently introduced American-lineage gene segments. Strikingly, the Australian-lineage gene segments showed high similarity to those of H10N7 viruses isolated in 2010 and 2012 from poultry outbreaks 900 to 1,500 km to the north. Together with the diverse geographic origins of the American and Eurasian gene segments, these findings suggest extensive circulation and reassortment of AIVs within Australian wild birds over vast geographic distances. Our findings indicate that long-term surveillance in waders may yield unique insights into AIV gene flow, especially in geographic regions like Oceania, where Anatidae species do not display regular inter- or intracontinental migration.IMPORTANCE High prevalence of avian influenza viruses (AIVs) was detected in a small, low-density, isolated population of ruddy turnstones in Australia. Analysis of these viruses revealed relatively recent introductions of viral gene segments from both Eurasia and North America, as well as long-term persistence of introduced gene segments in Australian wild birds. These data demonstrate that the flow of viruses into Australia may be more common than initially thought and that, once introduced, these AIVs have the potential to be maintained within the continent. These findings add to a growing body of evidence suggesting that Australian wild birds are unlikely to be ecologically isolated from the highly pathogenic H5Nx viruses circulating among wild birds throughout the Northern Hemisphere.
Collapse
|
4
|
Hood G, Roche X, Brioudes A, von Dobschuetz S, Fasina FO, Kalpravidh W, Makonnen Y, Lubroth J, Sims L. A literature review of the use of environmental sampling in the surveillance of avian influenza viruses. Transbound Emerg Dis 2021; 68:110-126. [PMID: 32652790 PMCID: PMC8048529 DOI: 10.1111/tbed.13633] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/05/2023]
Abstract
This literature review provides an overview of use of environmental samples (ES) such as faeces, water, air, mud and swabs of surfaces in avian influenza (AI) surveillance programs, focussing on effectiveness, advantages and gaps in knowledge. ES have been used effectively for AI surveillance since the 1970s. Results from ES have enhanced understanding of the biology of AI viruses in wild birds and in markets, of links between human and avian influenza, provided early warning of viral incursions, allowed assessment of effectiveness of control and preventive measures, and assisted epidemiological studies in outbreaks, both avian and human. Variation exists in the methods and protocols used, and no internationally recognized guidelines exist on the use of ES and data management. Few studies have performed direct comparisons of ES versus live bird samples (LBS). Results reported so far demonstrate reliance on ES will not be sufficient to detect virus in all cases when it is present, especially when the prevalence of infection/contamination is low. Multiple sample types should be collected. In live bird markets, ES from processing/selling areas are more likely to test positive than samples from bird holding areas. When compared to LBS, ES is considered a cost-effective, simple, rapid, flexible, convenient and acceptable way of achieving surveillance objectives. As a non-invasive technique, it can minimize effects on animal welfare and trade in markets and reduce impacts on wild bird communities. Some limitations of environmental sampling methods have been identified, such as the loss of species-specific or information on the source of virus, and taxonomic-level analyses, unless additional methods are applied. Some studies employing ES have not provided detailed methods. In others, where ES and LBS are collected from the same site, positive results have not been assigned to specific sample types. These gaps should be remedied in future studies.
Collapse
Affiliation(s)
- Grace Hood
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Xavier Roche
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Aurélie Brioudes
- Food and Agriculture Organization of the United NationsRegional Office for Asia and the PacificBangkokThailand
| | | | | | | | - Yilma Makonnen
- Food and Agriculture Organization of the United Nations, Sub-Regional Office for Eastern AfricaAddis AbabaEthiopia
| | - Juan Lubroth
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Leslie Sims
- Asia Pacific Veterinary Information ServicesMelbourneAustralia
| |
Collapse
|
5
|
Elbers ARW, Gonzales JL. Quantification of visits of wild fauna to a commercial free-range layer farm in the Netherlands located in an avian influenza hot-spot area assessed by video-camera monitoring. Transbound Emerg Dis 2020; 67:661-677. [PMID: 31587498 PMCID: PMC7079184 DOI: 10.1111/tbed.13382] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 01/19/2023]
Abstract
Free-range poultry farms have a high risk of introduction of avian influenza viruses (AIV), and it is presumed that wild (water) birds are the source of introduction. There is very scarce quantitative data on wild fauna visiting free-range poultry farms. We quantified visits of wild fauna to a free-range area of a layer farm, situated in an AIV hot-spot area, assessed by video-camera monitoring. A total of 5,016 hr (209 days) of video recordings, covering all 12 months of a year, were analysed. A total of 16 families of wild birds and five families of mammals visited the free-range area of the layer farm. Wild birds, except for the dabbling ducks, visited the free-range area almost exclusively in the period between sunrise and the moment the chickens entered the free-range area. Known carriers of AIV visited the outdoor facility regularly: species of gulls almost daily in the period January-August; dabbling ducks only in the night in the period November-May, with a distinct peak in the period December-February. Only a small fraction of visits of wild fauna had overlap with the presence of chickens at the same time in the free-range area. No direct contact between chickens and wild birds was observed. It is hypothesized that AIV transmission to poultry on free-range poultry farms will predominantly take place via indirect contact: taking up AIV by chickens via wild-bird-faeces-contaminated water or soil in the free-range area. The free-range poultry farmer has several possibilities to potentially lower the attractiveness of the free-range area for wild (bird) fauna: daily inspection of the free-range area and removal of carcasses and eggs; prevention of forming of water pools in the free-range facility. Furthermore, there are ways to scare-off wild birds, for example use of laser equipment or trained dogs.
Collapse
Affiliation(s)
- Armin R. W. Elbers
- Department of Bacteriology and EpidemiologyWageningen Bioveterinary ResearchLelystadThe Netherlands
| | - José L. Gonzales
- Department of Bacteriology and EpidemiologyWageningen Bioveterinary ResearchLelystadThe Netherlands
| |
Collapse
|
6
|
Detection and characterisation of coronaviruses in migratory and non-migratory Australian wild birds. Sci Rep 2018; 8:5980. [PMID: 29654248 PMCID: PMC5899083 DOI: 10.1038/s41598-018-24407-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/26/2018] [Indexed: 12/18/2022] Open
Abstract
We evaluated the presence of coronaviruses by PCR in 918 Australian wild bird samples collected during 2016–17. Coronaviruses were detected in 141 samples (15.3%) from species of ducks, shorebirds and herons and from multiple sampling locations. Sequencing of selected positive samples found mainly gammacoronaviruses, but also some deltacoronaviruses. The detection rate of coronaviruses was improved by using multiple PCR assays, as no single assay could detect all coronavirus positive samples. Sequencing of the relatively conserved Orf1 PCR amplicons found that Australian duck gammacoronaviruses were similar to duck gammacoronaviruses around the world. Some sequenced shorebird gammacoronaviruses belonged to Charadriiformes lineages, but others were more closely related to duck gammacoronaviruses. Australian duck and heron deltacoronaviruses belonged to lineages with other duck and heron deltacoronaviruses, but were almost 20% different in nucleotide sequence to other deltacoronavirus sequences available. Deltacoronavirus sequences from shorebirds formed a lineage with a deltacoronavirus from a ruddy turnstone detected in the United States. Given that Australian duck gammacoronaviruses are highly similar to those found in other regions, and Australian ducks rarely come into contact with migratory Palearctic duck species, we hypothesise that migratory shorebirds are the important vector for moving wild bird coronaviruses into and out of Australia.
Collapse
|
7
|
Avian viral surveillance in Victoria, Australia, and detection of two novel avian herpesviruses. PLoS One 2018; 13:e0194457. [PMID: 29570719 PMCID: PMC5865735 DOI: 10.1371/journal.pone.0194457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/02/2018] [Indexed: 12/11/2022] Open
Abstract
Viruses in avian hosts can pose threats to avian health and some have zoonotic potential. Hospitals that provide veterinary care for avian patients may serve as a site of exposure of other birds and human staff in the facility to these viruses. They can also provide a useful location to collect samples from avian patients in order to examine the viruses present in wild birds. This study aimed to investigate viruses of biosecurity and/or zoonotic significance in Australian birds by screening samples collected from 409 birds presented to the Australian Wildlife Health Centre at Zoos Victoria’s Healesville Sanctuary for veterinary care between December 2014 and December 2015. Samples were tested for avian influenza viruses, herpesviruses, paramyxoviruses and coronaviruses, using genus- or family-wide polymerase chain reaction methods coupled with sequencing and phylogenetic analyses for detection and identification of both known and novel viruses. A very low prevalence of viruses was detected. Columbid alphaherpesvirus 1 was detected from a powerful owl (Ninox strenua) with inclusion body hepatitis, and an avian paramyxovirus most similar to Avian avulavirus 5 was detected from a musk lorikeet (Glossopsitta concinna). Two distinct novel avian alphaherpesviruses were detected in samples from a sulphur-crested cockatoo (Cacatua galerita) and a tawny frogmouth (Podargus strigoides). Avian influenza viruses and avian coronaviruses were not detected. The clinical significance of the newly detected viruses remains undetermined. Further studies are needed to assess the host specificity, epidemiology, pathogenicity and host-pathogen relationships of these novel viruses. Further genome characterization is also indicated, and would be required before these viruses can be formally classified taxonomically. The detection of these viruses contributes to our knowledge on avian virodiversity. The low level of avian virus detection, and the absence of any viruses with zoonotic potential, suggests low risk to biosecurity and human health.
Collapse
|
8
|
Singh M, Toribio JA, Scott AB, Groves P, Barnes B, Glass K, Moloney B, Black A, Hernandez-Jover M. Assessing the probability of introduction and spread of avian influenza (AI) virus in commercial Australian poultry operations using an expert opinion elicitation. PLoS One 2018; 13:e0193730. [PMID: 29494696 PMCID: PMC5832321 DOI: 10.1371/journal.pone.0193730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/16/2018] [Indexed: 11/26/2022] Open
Abstract
The objective of this study was to elicit experts' opinions and gather estimates on the perceived probability of introduction and spread of avian influenza (AI) virus in the Australian broiler and layer industry. Using a modified Delphi method and a 4-step elicitation process, 11 experts were asked to give initial individual estimates for the various pathways and practices in the presented scenarios using a questionnaire. Following this, a workshop was conducted to present group averages of estimates and discussion was facilitated to obtain final individual estimates. For each question, estimates for all experts were combined using a discrete distribution, with weights allocated representing the level of expertise. Indirect contact with wild birds either via a contaminated water source or fomites was considered the most likely pathway of introduction of low pathogenic avian influenza (LPAI) on poultry farms. Presence of a water body near the poultry farm was considered a potential pathway for introduction only when the operation type was free range and the water body was within 500m distance from the shed. The probability that LPAI will mutate to highly pathogenic avian influenza (HPAI) was considered to be higher in layer farms. Shared personnel, equipment and aerosol dispersion were the most likely pathways of shed to shed spread of the virus. For LPAI and HPAI spread from farm to farm, shared pick-up trucks for broiler and shared egg trays and egg pallets for layer farms were considered the most likely pathways. Findings from this study provide an insight on most influential practices on the introduction and spread of AI virus among commercial poultry farms in Australia, as elicited from opinions of experts. These findings will be used to support parameterization of a modelling study assessing the risk of AI introduction and spread among commercial poultry farms in Australia.
Collapse
Affiliation(s)
- Mini Singh
- The University of Sydney, Sydney School of Veterinary Science, Faculty of Science, Sydney, NSW, Australia
| | - Jenny-Ann Toribio
- The University of Sydney, Sydney School of Veterinary Science, Faculty of Science, Sydney, NSW, Australia
| | - Angela Bullanday Scott
- The University of Sydney, Sydney School of Veterinary Science, Faculty of Science, Sydney, NSW, Australia
| | - Peter Groves
- The University of Sydney, Sydney School of Veterinary Science, Faculty of Science, Sydney, NSW, Australia
| | - Belinda Barnes
- Quantitative Sciences, Department of Agriculture and Water Resources, Canberra, ACT, Australia
| | - Kathryn Glass
- Research School of Population Health, Australian National University, Canberra, ACT, Australia
| | - Barbara Moloney
- NSW Department of Primary Industries, Orange, NSW, Australia
| | - Amanda Black
- NSW Department of Primary Industries, Menangle, NSW, Australia
| | - Marta Hernandez-Jover
- Graham Centre for Agricultural Innovation (An alliance between Charles Sturt University and NSW Department of Primary Industries), Charles Sturt University, School of Animal and Veterinary Sciences, Locked Bag 588, Wagga Wagga, NSW, Australia
- School of Animal and Veterinary Sciences, Charles Sturt University, School of Animal and Veterinary Sciences, Locked Bag 588, Wagga Wagga, NSW, Australia
| |
Collapse
|
9
|
Grillo VL, Arzey KE, Hansbro PM, Hurt AC, Warner S, Bergfeld J, Burgess GW, Cookson B, Dickason CJ, Ferenczi M, Hollingsworth T, Hoque M, Jackson RB, Klaassen M, Kirkland PD, Kung NY, Lisovski S, O'Dea MA, O'Riley K, Roshier D, Skerratt LF, Tracey JP, Wang X, Woods R, Post L. Avian influenza in Australia: a summary of 5 years of wild bird surveillance. Aust Vet J 2016; 93:387-93. [PMID: 26503532 DOI: 10.1111/avj.12379] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 05/20/2015] [Accepted: 05/25/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Avian influenza viruses (AIVs) are found worldwide in numerous bird species, causing significant disease in gallinaceous poultry and occasionally other species. Surveillance of wild bird reservoirs provides an opportunity to add to the understanding of the epidemiology of AIVs. METHODS This study examined key findings from the National Avian Influenza Wild Bird Surveillance Program over a 5-year period (July 2007-June 2012), the main source of information on AIVs circulating in Australia. RESULTS The overall proportion of birds that tested positive for influenza A via PCR was 1.9 ± 0.1%, with evidence of widespread exposure of Australian wild birds to most low pathogenic avian influenza (LPAI) subtypes (H1-13, H16). LPAI H5 subtypes were found to be dominant and widespread during this 5-year period. CONCLUSION Given Australia's isolation, both geographically and ecologically, it is important for Australia not to assume that the epidemiology of AIV from other geographic regions applies here. Despite all previous highly pathogenic avian influenza outbreaks in Australian poultry being attributed to H7 subtypes, widespread detection of H5 subtypes in wild birds may represent an ongoing risk to the Australian poultry industry.
Collapse
Affiliation(s)
- V L Grillo
- Wildlife Health Australia, Mosman, New South Wales, Australia.
| | - K E Arzey
- Virology Laboratory, Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Camden, NSW, Australia
| | - P M Hansbro
- Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute and University of Newcastle, Newcastle, NSW, Australia
| | - A C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, North Melbourne, VIC, Australia
| | - S Warner
- Department of Economic Development, Jobs, Transport and Resource, Bundoora, VIC, Australia
| | - J Bergfeld
- Australian Animal Health Laboratory, CSIRO Animal Food and Health Sciences, Geelong, VIC, Australia
| | - G W Burgess
- One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - B Cookson
- Australian Government Department of Agriculture, Cairns, QLD, Australia
| | - C J Dickason
- Biosecurity SA, Primary Industries & Regions, Adelaide, SA, Australia
| | - M Ferenczi
- Centre for Integrative Ecology, Deakin University, Geelong, VIC, Australia
| | | | - Mda Hoque
- One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - R B Jackson
- Department of Primary Industries, Parks, Water and Environment, Launceston, TAS, Australia
| | - M Klaassen
- Centre for Integrative Ecology, Deakin University, Geelong, VIC, Australia
| | - P D Kirkland
- Virology Laboratory, Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Camden, NSW, Australia
| | - N Y Kung
- Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, QLD, Australia
| | - S Lisovski
- Centre for Integrative Ecology, Deakin University, Geelong, VIC, Australia
| | - M A O'Dea
- Department of Agriculture and Food, South Perth, WA, Australia
| | - K O'Riley
- Department of Economic Development, Jobs, Transport and Resource, Bundoora, VIC, Australia
| | - D Roshier
- Centre for Integrative Ecology, Deakin University, Geelong, VIC, Australia
| | - L F Skerratt
- One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - J P Tracey
- Vertebrate Pest Research Unit, New South Wales Department of Primary Industries, Forest Road, Orange, NSW, Australia
| | - X Wang
- Department of Economic Development, Jobs, Transport and Resource, Bundoora, VIC, Australia
| | - R Woods
- Wildlife Health Australia, Mosman, New South Wales, Australia
| | - L Post
- Australian Government Department of Agriculture, Canberra, ACT, Australia
| |
Collapse
|
10
|
Pearson HE, Lapidge SJ, Hernández-Jover M, Toribio JALML. Pathogen Presence in European Starlings Inhabiting Commercial Piggeries in South Australia. Avian Dis 2016; 60:430-6. [PMID: 27309283 DOI: 10.1637/11304-101815-reg] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The majority of bacterial diarrhea-causing illnesses in domestic pigs result from infection with Escherichia coli, Salmonella spp., or Campylobacter spp. These bacterial enteropathogens also correspond with the most-common bacteria isolated from wild birds. Additionally, viral pathogens such as avian influenza virus (AIV), West Nile virus (WNV, including Kunjin disease), and Newcastle disease virus (NDV) may also be carried and transmitted by birds in Australia. Introduced European starlings (Sturnus vulgarus) are one of the most-frequently reported birds on piggeries in Australia. The presence of the three bacterial pathogens, Salmonella spp., Campylobacter spp., and Escherichia coli , as well as the three viral pathogens AIV, WNV, and NDV, were evaluated in starlings captured on four commercial piggeries in South Australia. A total of 473 starlings were captured on the four piggeries in 2008 and 2009. A cloacal swab was taken from each bird and cultured for bacterial identification, with follow-up serotyping of any positives, whilst fifty samples were analyzed by PCR for the three target viral pathogens. There was no AIV, WNV, or NDV detected in the 50 starlings sampled. Escherichia coli was found to be present in the starling populations on all four piggeries whilst Salmonella spp. and Campylobacter jejuni were found to be present only in the starling population sampled on one piggery. Serotyping identified pig-pathogenic strains of the bacteria. The prevalence of these production-limiting bacterial pathogens in starlings, coupled with the large starling populations often found inside piggeries during daylight hours in the summer months, presents a disease transmission risk and jeopardizes piggery disease management. Removal of starlings from agricultural enterprises (as shown by international studies), or prevention of starling access to animal feed and water, could substantially reduce the risk of transmission of enterobacterial pathogens from starlings to livestock.
Collapse
Affiliation(s)
- Hayley E Pearson
- A Faculty of Veterinary Science, School of Life and Environmental Sciences, University of Sydney, 425 Werombi Road, Camden, New South Wales, 2570, Australia.,B Massey University, Institute of Veterinary and Biomedical Sciences, Private Bag 11222, Palmerston North, 4442, New Zealand.,C Invasive Animal Cooperative Research Centre, University of Canberra, Canberra, Australian Capital Territory, 2601, Australia
| | - Steven J Lapidge
- C Invasive Animal Cooperative Research Centre, University of Canberra, Canberra, Australian Capital Territory, 2601, Australia.,D South Australian Research and Development Institute, Plant Research Centre, Waite Campus, 2b Hartley Grove, Urrbrae, South Australia, 5064, Australia
| | - Marta Hernández-Jover
- A Faculty of Veterinary Science, School of Life and Environmental Sciences, University of Sydney, 425 Werombi Road, Camden, New South Wales, 2570, Australia.,E Graham Centre for Agricultural Research (NSW Department of Primary Industries and Charles Sturt University), School of Animal and Veterinary Sciences, Booroma Street, Wagga Wagga, New South Wales, 2678, Australia
| | - Jenny-Ann L M L Toribio
- A Faculty of Veterinary Science, School of Life and Environmental Sciences, University of Sydney, 425 Werombi Road, Camden, New South Wales, 2570, Australia
| |
Collapse
|
11
|
Dalziel AE, Peck HA, Hurt AC, Cooke J, Cassey P. Proposed Surveillance for Influenza A in Feral Pigs. ECOHEALTH 2016; 13:410-4. [PMID: 27174429 DOI: 10.1007/s10393-016-1126-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 04/03/2016] [Accepted: 04/08/2016] [Indexed: 06/05/2023]
Abstract
Pigs carry receptors for both avian- and human-adapted influenza viruses and have previously been proposed as a mixing and amplification vessel for influenza. Until now, there has been no investigation of influenza A viruses within feral pigs in Australia. We collected samples from feral pigs in Ramsar listed wetlands of South Australia and demonstrated positive antibodies to influenza A viruses. We propose feral pigs, and their control programs, as an available resource for future surveillance for influenza A viruses.
Collapse
Affiliation(s)
- Antonia E Dalziel
- Benham Laboratories, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Heidi A Peck
- World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute, Melbourne, VIC, 3000, Australia
| | - Aeron C Hurt
- World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute, Melbourne, VIC, 3000, Australia
| | - Julie Cooke
- Diagnostic and Surveillance Response Laboratory, Australian Animal Health Laboratory, CSIRO (Commonwealth Scientific and Industrial Research Organisation), Geelong, VIC, 3220, Australia
| | - Phillip Cassey
- Benham Laboratories, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
12
|
Curran JM, Ellis TM, Robertson ID. Serological Surveillance of Wild Waterfowl in Northern Australia for Avian Influenza Virus Shows Variations in Prevalence and a Cyclical Periodicity of Infection. Avian Dis 2016; 59:492-7. [PMID: 26629622 DOI: 10.1637/11113-043015-reg] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The virological surveillance of 3582 wild waterfowl in northern Australia from 2004 to 2009 for avian influenza virus (AIV) found an apparent prevalence (AP) of 1% (31 of 2989 cloacal swabs; 95% CI: 0.71%-1.47%) using a Taqman Type A real-time reverse transcription polymerase chain reaction test and no viral isolations from 593 swabs tested by the embryonating chicken egg culture method. From serological testing using a nucleoprotein competitive enzyme-linked immunosorbent assay for AIV antibody, 1131 of 3645 sera had ≥ 40% inhibition, indicating an apparent seroprevalence of 31% (95% CI: 29.5%-32.6%). This value suggests that the low AP from virological testing does not reflect the dynamics of AIV infection in these populations. Spatiotemporal and species variations in seroprevalence were found at wetland sampling sites, with consistently higher values at Kununurra in Western Australia (AP = 39%, 95% CI: 36.9%-41.4%) compared to other locations. At Kununurra, seroprevalence values had a two-year cyclical periodicity and suggest this location is a hotspot of AIV activity. From hemagglutination inhibition (HI) testing using multiple subtype antigens, the highest AP of HI reactions were to H6 and H5 subtypes. The phenomenon of cyclic periodicity in NP seroprevalence at Kununurra is hypothesized as being related to the prevalent H6 subtype that may have either become predominant or cycled back into a mostly AIV naïve flock. The inclusion of serological testing provided insight into the dynamics of AIV infection in wild birds such as species risk profiles and spatiotemporal patterns, important epidemiological information for a risk-based approach to surveillance.
Collapse
Affiliation(s)
- John M Curran
- College of Veterinary Medicine, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia
| | - Trevor M Ellis
- College of Veterinary Medicine, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia
| | - Ian D Robertson
- College of Veterinary Medicine, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia
| |
Collapse
|
13
|
Ferenczi M, Beckmann C, Warner S, Loyn R, O'Riley K, Wang X, Klaassen M. Avian influenza infection dynamics under variable climatic conditions, viral prevalence is rainfall driven in waterfowl from temperate, south-east Australia. Vet Res 2016; 47:23. [PMID: 26852115 PMCID: PMC4744453 DOI: 10.1186/s13567-016-0308-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 11/05/2015] [Indexed: 11/10/2022] Open
Abstract
Understanding Avian Influenza Virus (AIV) infection dynamics in wildlife is crucial because of possible virus spill over to livestock and humans. Studies from the northern hemisphere have suggested several ecological and environmental drivers of AIV prevalence in wild birds. To determine if the same drivers apply in the southern hemisphere, where more irregular environmental conditions prevail, we investigated AIV prevalence in ducks in relation to biotic and abiotic factors in south-eastern Australia. We sampled duck faeces for AIV and tested for an effect of bird numbers, rainfall anomaly, temperature anomaly and long-term ENSO (El-Niño Southern Oscillation) patterns on AIV prevalence. We demonstrate a positive long term effect of ENSO-related rainfall on AIV prevalence. We also found a more immediate response to rainfall where AIV prevalence was positively related to rainfall in the preceding 3-7 months. Additionally, for one duck species we found a positive relationship between their numbers and AIV prevalence, while prevalence was negatively or not affected by duck numbers in the remaining four species studied. In Australia largely non-seasonal rainfall patterns determine breeding opportunities and thereby influence bird numbers. Based on our findings we suggest that rainfall influences age structures within populations, producing an influx of immunologically naïve juveniles within the population, which may subsequently affect AIV infection dynamics. Our study suggests that drivers of AIV dynamics in the northern hemisphere do not have the same influence at our south-east Australian field site in the southern hemisphere due to more erratic climatological conditions.
Collapse
Affiliation(s)
- Marta Ferenczi
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3220, Australia.
| | - Christa Beckmann
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3220, Australia.
| | - Simone Warner
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research, AgriBio, Centre for AgriBiosciences, 5 Ring Road, Bundoora, VIC, 3083, Australia.
| | - Richard Loyn
- Department of Sustainability and Environment, Arthur Rylah Institute for Environmental Research, Heidelberg, VIC, Australia. .,Eco Insights, 4 Roderick Close, Viewbank, VIC, 3084, Australia.
| | - Kim O'Riley
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research, AgriBio, Centre for AgriBiosciences, 5 Ring Road, Bundoora, VIC, 3083, Australia. Kim.O'
| | - Xinlong Wang
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research, AgriBio, Centre for AgriBiosciences, 5 Ring Road, Bundoora, VIC, 3083, Australia.
| | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3220, Australia.
| |
Collapse
|
14
|
Arnal A, Vittecoq M, Pearce-Duvet J, Gauthier-Clerc M, Boulinier T, Jourdain E. Laridae: A neglected reservoir that could play a major role in avian influenza virus epidemiological dynamics. Crit Rev Microbiol 2015; 41:508-19. [DOI: 10.3109/1040841x.2013.870967] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Muzyka D, Pantin-Jackwood M, Starick E, Fereidouni S. Evidence for genetic variation of Eurasian avian influenza viruses of subtype H15: the first report of an H15N7 virus. Arch Virol 2015; 161:605-12. [PMID: 26650037 DOI: 10.1007/s00705-015-2629-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 09/25/2015] [Indexed: 11/29/2022]
Abstract
Since the first detection of H15 avian influenza viruses (AIVs) in Australia in 1979, only seven H15 strains have been reported. A new H15 AIV was detected in Ukraine in 2010, carrying the unique HA-NA subtype combination H15N7. This virus replicated efficiently in chicken eggs, and antisera against it reacted strongly with the homologous antigen, but with lower titers when using the reference Australian antigen. The amino acid motifs of the HA cleavage site and receptor-binding site were different from those in the Australian viruses. The new virus, together with an H15 virus from Siberia from 2008, constitutes a new clade of H15 AIV isolates.
Collapse
Affiliation(s)
- Denys Muzyka
- National Scientific Center, Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine
| | - Mary Pantin-Jackwood
- Southeast Poultry Research Laboratory, Agricultural Research Service, USDA, Athens, GA, USA
| | - Elke Starick
- Friedrich Loeffler Institute, Greifswald, Insel Riems, Germany
| | - Sasan Fereidouni
- Friedrich Loeffler Institute, Greifswald, Insel Riems, Germany. .,WESCA Wildlife Network, Greifswald, Germany. .,University of Veterinary Medicine Vienna, Research Institute of Wildlife Ecology, Vienna, Austria.
| |
Collapse
|
16
|
Hoque MA, Burgess GW, Cheam AL, Skerratt LF. Epidemiology of avian influenza in wild aquatic birds in a biosecurity hotspot, North Queensland, Australia. Prev Vet Med 2015; 118:169-81. [DOI: 10.1016/j.prevetmed.2014.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 11/29/2022]
|
17
|
Evaluating the risk of avian influenza introduction and spread among poultry exhibition flocks in Australia. Prev Vet Med 2014; 118:128-41. [PMID: 25496909 DOI: 10.1016/j.prevetmed.2014.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 11/16/2014] [Accepted: 11/17/2014] [Indexed: 11/22/2022]
Abstract
Some practices undertaken by poultry exhibitors, such as allowing wild birds to contact domestic birds, the high frequency of bird movements and the lack of appropriate isolation for incoming birds, pose a risk for disease introduction and spread. The aim of the current study was to quantitatively assess the probability of introduction of low pathogenic avian influenza (LPAI) viruses from wild waterfowl into poultry exhibition flocks and the subsequent spread to other poultry flocks. Exposure and consequence assessments, using scenario trees and Monte Carlo stochastic simulation modelling, were conducted to identify potential pathways of introduction and spread and calculate the probabilities of these pathways occurring. Input parameters were estimated from two recently conducted cross-sectional studies among poultry exhibitors in Australia (Dusan et al., 2010; Hernández-Jover et al., 2013) and other scientific literature. According to reported practices of poultry exhibitors and the LPAI prevalence in wild birds in Australia, this assessment estimates a median (5-95%) probability of exposure of a bird kept by a poultry exhibitor of 0.004 (0.003-0.005). Due to the higher susceptibility of infection of turkeys and waterfowl, this probability is higher in flocks keeping these bird species than in those keeping chickens or pigeons only. Similarly, once exposure has occurred, establishment of infection and subsequent spread are more likely in those flocks keeping waterfowl and turkeys than in those keeping chicken and pigeons only. Spread through movement of birds is the most likely pathway of spread, followed by contaminated fomites, wild birds and airborne spread. The median probability of LPAI spread through movement of birds in flocks keeping waterfowl and turkeys was estimated to be 0.280 (0.123-0.541) and 0.230 (0.104-0.421), respectively. A lower probability was estimated for chicken (0.087; 0.027-0.202) and pigeon (0.0003; 3.0×10(-5)-0.0008) flocks. The sensitivity analysis indicates that the prevalence of LPAI in wild waterfowl and the probability of contact of domestic birds with wild waterfowl are the most influential parameters on the probability of exposure; while the probability of spread is mostly influenced by the probability of movement of birds and the probability of the exhibitor detecting and reporting LPAI. To minimize the potential risk of AI introduction and spread, poultry exhibitors should prevent contact of domestic birds with wild birds, and implement appropriate biosecurity practices. In addition, adequate extension services are required to improve exhibitors' abilities to recognize diseases and reporting behaviour.
Collapse
|
18
|
Fereidouni SR, Harder TC, Globig A, Starick E. Failure of productive infection of Mallards (Anas platyrhynchos) with H16 subtype of avian influenza viruses. Influenza Other Respir Viruses 2014; 8:613-6. [PMID: 25205059 PMCID: PMC4262275 DOI: 10.1111/irv.12275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2014] [Indexed: 11/28/2022] Open
Abstract
Background Mallard ducks and other waterfowl represent the most important reservoirs of low pathogenic avian influenza viruses (LPAIV). In addition, mallards are the most abundant duck species in Eurasia that migrate over long distances. Despite extended wild bird monitoring studies over the past decade in many Eurasian countries and investigating hundreds of thousands of wild bird samples, no mallard duck was found to be positive for avian influenza virus of subtype H16 in faecal, cloacal or oropharyngeal samples. Just three cases of H16 infections in Anseriformes species were described worldwide. In contrast, H16 viruses have been repeatedly isolated from birds of the Laridae family. Objective Here, we tested the hypothesis that mallards are less permissive to infection with H16 viruses. Methods Groups of mallard ducks of different age were inoculated via the oculo-nasal-oral route with different infectious doses of an H16N3 AIV. Results The ducks did not show any clinical symptoms, and no virus shedding was evident from cloacal and respiratory routes after experimental infection as shown by negative RT-qPCR results. In addition, all serum samples taken on days 8, 21 and 24 post-inoculation were negative by competitive NP-ELISA. Conclusions This study provided evidence that mallards are resistant to infection with H16N3 LPAIV.
Collapse
|
19
|
Curran JM, Ellis TM, Robertson ID. Surveillance of Charadriiformes in Northern Australia Shows Species Variations in Exposure to Avian Influenza Virus and Suggests Negligible Virus Prevalence. Avian Dis 2014; 58:199-204. [DOI: 10.1637/10634-080913] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Abdelwhab EM, Veits J, Mettenleiter TC. Prevalence and control of H7 avian influenza viruses in birds and humans. Epidemiol Infect 2014; 142:896-920. [PMID: 24423384 PMCID: PMC9151109 DOI: 10.1017/s0950268813003324] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/21/2013] [Accepted: 12/04/2013] [Indexed: 01/20/2023] Open
Abstract
The H7 subtype HA gene has been found in combination with all nine NA subtype genes. Most exhibit low pathogenicity and only rarely high pathogenicity in poultry (and humans). During the past few years infections of poultry and humans with H7 subtypes have increased markedly. This review summarizes the emergence of avian influenza virus H7 subtypes in birds and humans, and the possibilities of its control in poultry. All H7Nx combinations were reported from wild birds, the natural reservoir of the virus. Geographically, the most prevalent subtype is H7N7, which is endemic in wild birds in Europe and was frequently reported in domestic poultry, whereas subtype H7N3 is mostly isolated from the Americas. In humans, mild to fatal infections were caused by subtypes H7N2, H7N3, H7N7 and H7N9. While infections of humans have been associated mostly with exposure to domestic poultry, infections of poultry have been linked to wild birds or live-bird markets. Generally, depopulation of infected poultry was the main control tool; however, inactivated vaccines were also used. In contrast to recent cases caused by subtype H7N9, human infections were usually self-limiting and rarely required antiviral medication. Close genetic and antigenic relatedness of H7 viruses of different origins may be helpful in development of universal vaccines and diagnostics for both animals and humans. Due to the wide spread of H7 viruses and their zoonotic importance more research is required to better understand the epidemiology, pathobiology and virulence determinants of these viruses and to develop improved control tools.
Collapse
Affiliation(s)
- E M Abdelwhab
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Biology, Greifswald - Insel Riems, Germany
| | - J Veits
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Biology, Greifswald - Insel Riems, Germany
| | - T C Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Biology, Greifswald - Insel Riems, Germany
| |
Collapse
|
21
|
Teske L, Ryll M, Rautenschlein S. Epidemiological investigations on the role of clinically healthy racing pigeons as a reservoir for avian paramyxovirus-1 and avian influenza virus. Avian Pathol 2013; 42:557-65. [DOI: 10.1080/03079457.2013.852157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
The recent establishment of North American H10 lineage influenza viruses in Australian wild waterfowl and the evolution of Australian avian influenza viruses. J Virol 2013; 87:10182-9. [PMID: 23864623 DOI: 10.1128/jvi.03437-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza A H10N7 virus with a hemagglutinin gene of North American origin was detected in Australian chickens and poultry abattoir workers in New South Wales, Australia, in 2010 and in chickens in Queensland, Australia, on a mixed chicken and domestic duck farm in 2012. We investigated their genomic origins by sequencing full and partial genomes of H10 viruses isolated from wild aquatic birds and poultry in Australia and analyzed them with all available avian influenza virus sequences from Oceania and representative viruses from North America and Eurasia. Our analysis showed that the H10N7 viruses isolated from poultry were similar to those that have been circulating since 2009 in Australian aquatic birds and that their initial transmission into Australia occurred during 2007 and 2008. The H10 viruses that appear to have developed endemicity in Australian wild aquatic birds were derived from several viruses circulating in waterfowl along various flyways. Their hemagglutinin gene was derived from aquatic birds in the western states of the United States, whereas the neuraminidase was closely related to that from viruses previously detected in waterfowl in Japan. The remaining genes were derived from Eurasian avian influenza virus lineages. Our analysis of virological data spanning 40 years in Oceania indicates that the long-term evolutionary dynamics of avian influenza viruses in Australia may be determined by climatic changes. The introduction and long-term persistence of avian influenza virus lineages were observed during periods with increased rainfall, whereas bottlenecks and extinction were observed during phases of widespread decreases in rainfall. These results extend our understanding of factors affecting the dynamics of avian influenza and provide important considerations for surveillance and disease control strategies.
Collapse
|
23
|
Hernández-Jover M, Schemann K, Toribio JAL. A cross-sectional study on biosecurity practices and communication networks of poultry exhibition in Australia. Prev Vet Med 2013; 110:497-509. [DOI: 10.1016/j.prevetmed.2012.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/07/2012] [Accepted: 12/26/2012] [Indexed: 10/27/2022]
|
24
|
Hoque MA, Burgess GW, Greenhil AR, Hedlefs R, Skerratt LF. Causes of morbidity and mortality of wild aquatic birds at Billabong Sanctuary, Townsville, North Queensland, Australia. Avian Dis 2012; 56:249-56. [PMID: 22545556 DOI: 10.1637/9863-072611-case.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Infectious diseases are common causes of significant morbidity and mortality events of wild aquatic birds (WABs) worldwide. Reports of Australian events are infrequent. A 3-yr passive surveillance program investigating the common causes of morbidity and mortality of WABs was conducted at Billabong Sanctuary near Townsville, North Queensland, from April 2007 to March 2010. Forty-two carcasses were obtained and evaluated by clinico-pathologic, histologic, bacteriologic, and virologic (molecular) examinations. Morbidity and mortality were sporadic and more commonly observed in chicks and juvenile birds in April than other months of the year. Morbid birds were frequently unable to walk. Hemorrhagic lesions and infiltration of lymphocytes in various organs were the most common findings in dead birds. Identified bacterial diseases that could cause bird mortality were colibacillosis, pasteurellosis, and salmonellosis. Salmonella serotypes Virchow and Hvittingfoss were isolated from an Australian white ibis (Threskiornis molucca) chick and two juvenile plumed whistling ducks (Dendrocygna eytoni) in April 2007. These strains have been previously isolated from humans in North Queensland. A multiplex real time reverse transcriptase-PCR (rRT-PCR) detected Newcastle disease viral RNA (class 2 type) in one adult Australian pelican (Pelecanus conspicillatus) and a juvenile plumed whistling duck. No avian influenza viral RNA was detected from any sampled birds by the rRT-PCR for avian influenza. This study identified the public health importance of Salmonella in WABs but did not detect the introduction of the high pathogenicity avian influenza H5N1 virus in the population. A successful network was established between the property owner and the James Cook University research team through which dead birds, with accompanying information, were readily obtained for analysis. There is an opportunity for establishing a long-term passive disease surveillance program for WABs in North Queensland, an important region in Australian biosecurity, thus potentially significantly benefitting public health in the region and the country.
Collapse
Affiliation(s)
- M A Hoque
- School of Veterinary and Biomedical Science, James Cook University, Townsville, Queensland 4811, Australia.
| | | | | | | | | |
Collapse
|
25
|
Evidence for limited exchange of avian influenza viruses between seaducks and dabbling ducks at Alaska Peninsula coastal lagoons. Arch Virol 2011; 156:1813-21. [PMID: 21766196 DOI: 10.1007/s00705-011-1059-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/23/2011] [Indexed: 10/18/2022]
Abstract
Avian influenza virus (AIV) prevalence and sequence data were analyzed for Steller's eiders (Polysticta stelleri) to assess the role of this species in transporting virus genes between continents and maintaining a regional viral reservoir with sympatric northern pintails (Anas acuta). AIV prevalence was 0.2% at Izembek Lagoon and 3.9% at Nelson Lagoon for Steller's eiders and 11.2% for northern pintails at Izembek Lagoon. Phylogenetic analysis of 13 AIVs from Steller's eiders revealed that 4.9% of genes were of Eurasian origin. Seven subtypes were detected, including two also observed in northern pintails. No AIV strains were highly similar (> 99%) at all gene segments between species; however, highly similar individual genes were detected. The proportion of highly similar genes was greater within rather than between species. Steller's eiders likely transport AIV genes between continents through long-distance migratory movements. Differences in AIV prevalence, subtype distribution, and the proportion of highly similar genes suggest limited AIV exchange between Steller's eiders and northern pintails at Alaska Peninsula coastal lagoons during autumn.
Collapse
|
26
|
Hoye BJ, Munster VJ, Nishiura H, Klaassen M, Fouchier RAM. Surveillance of wild birds for avian influenza virus. Emerg Infect Dis 2011; 16:1827-34. [PMID: 21122209 PMCID: PMC3294547 DOI: 10.3201/eid1612.100589] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
TOC Summary: A targeted, hypothesis-based approach and local surveys over broad geographic areas are needed. Recent demand for increased understanding of avian influenza virus in its natural hosts, together with the development of high-throughput diagnostics, has heralded a new era in wildlife disease surveillance. However, survey design, sampling, and interpretation in the context of host populations still present major challenges. We critically reviewed current surveillance to distill a series of considerations pertinent to avian influenza virus surveillance in wild birds, including consideration of what, when, where, and how many to sample in the context of survey objectives. Recognizing that wildlife disease surveillance is logistically and financially constrained, we discuss pragmatic alternatives for achieving probability-based sampling schemes that capture this host–pathogen system. We recommend hypothesis-driven surveillance through standardized, local surveys that are, in turn, strategically compiled over broad geographic areas. Rethinking the use of existing surveillance infrastructure can thereby greatly enhance our global understanding of avian influenza and other zoonotic diseases.
Collapse
Affiliation(s)
- Bethany J Hoye
- Netherlands Institute for Ecology, Nieuwersluis, the Netherlands.
| | | | | | | | | |
Collapse
|
27
|
Hansbro PM, Warner S, Tracey JP, Arzey KE, Selleck P, O'Riley K, Beckett EL, Bunn C, Kirkland PD, Vijaykrishna D, Olsen B, Hurt AC. Surveillance and analysis of avian influenza viruses, Australia. Emerg Infect Dis 2011; 16:1896-904. [PMID: 21122219 PMCID: PMC3294589 DOI: 10.3201/eid1612.100776] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We investigated carriage of avian influenza viruses by wild birds in Australia, 2005-2008, to assess the risks to poultry industries and human health. We collected 21,858 (7,357 cloacal, 14,501 fecal) samples and detected 300 viruses, representing a detection rate of ≈1.4%. Rates were highest in autumn (March-May) and differed substantially between bird types, areas, and years. We typed 107 avian influenza viruses and identified 19 H5, 8 H7, and 16 H9 (40% of typed viruses). All were of low pathogenicity. These viruses formed clearly different phylogenetic clades to lineages from Eurasia or North America, suggesting the potential existence of Australian lineages. H7 viruses were similar to highly pathogenic H7 strains that caused outbreaks in poultry in Australia. Several periods of increased detection rates (numbers or subtypes of viruses) were identified. This study demonstrates the need for ongoing surveillance to detect emerging pathogenic strains and facilitate prevention of outbreaks.
Collapse
Affiliation(s)
- Philip M Hansbro
- The University of Newcastle, Newcastle, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Li, XH, Tian, HD, Heiner, M, Li DM. Global Occurrence and Spread of Highly Pathogenic Avian Influenza Virus of the Subtype H5N1. Avian Dis 2011; 55:21-8. [DOI: 10.1637/9306-031710-reg.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Avian biology, the human influence on global avian influenza transmission, and performing surveillance in wild birds. Anim Health Res Rev 2010; 11:35-41. [PMID: 20591212 DOI: 10.1017/s1466252310000058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This paper takes a closer look at three interrelated areas of study: avian host biology, the role of human activities in virus transmission, and the surveillance activities centered on avian influenza in wild birds. There are few ecosystems in which birds are not found. Correspondingly, avian influenza viruses are equally global in distribution, relying on competent avian hosts. The immune systems, annual cycles, feeding behaviors, and migration patterns of these hosts influence the ecology of the disease. Decreased biodiversity has also been linked to heightened disease transmission in several disease systems, and it is evident that active destruction and modification of wetland environments for human use is impacting avian populations drastically. Legal and illegal trade in wild birds present a significant risk for introduction and maintenance of exotic diseases. After the emergence of HPAI H5N1 in Hong Kong in 1996 and the ensuing geographic spread of outbreaks after 2003, both infected countries and those at risk of introduction began intensifying avian influenza surveillance efforts. Several techniques for sampling wild birds for influenza viruses have been applied. Benefits, problems, and biases exist for each method. The wild bird avian influenza surveillance programs taking place across the continents are now scaling back due to the rise of other spending priorities; hopefully the lessons learned from this work will be preserved and will inform future research and disease outbreak response priorities.
Collapse
|
30
|
East IJ, Ainsworth C, Warner S, Dunowska M, Azuolas JK. Seroconversion to avian influenza virus in free-range chickens in the Riverland region of Victoria. Aust Vet J 2010; 88:290-3. [DOI: 10.1111/j.1751-0813.2010.00601.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Krauss S, Stallknecht DE, Negovetich NJ, Niles LJ, Webby RJ, Webster RG. Coincident ruddy turnstone migration and horseshoe crab spawning creates an ecological 'hot spot' for influenza viruses. Proc Biol Sci 2010; 277:3373-9. [PMID: 20630885 DOI: 10.1098/rspb.2010.1090] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Since 1985, avian influenza virus surveillance has been conducted annually from mid-May to early June in charadriiform species from the families Scolopacidae and Laridae (shorebirds and gulls) at Delaware Bay in the northeast United States. The mass migrations of shorebirds, gulls and horseshoe crabs (Limulus polyphemus) coincide at that time, and large numbers of migrating birds pause at Delaware Bay to feed on horseshoe crab eggs deposited at the high-tide line. Influenza viruses are consistently isolated from charadriiform birds at Delaware Bay, at an overall rate approximately 17 times the combined rate of isolation at all other surveillance sites worldwide (490 isolates/9474 samples, 5.2% versus 49 isolates per 15,848 samples, 0.3%, respectively; Proportion test, p < 0.0001). The likelihood of isolating influenza viruses at Delaware Bay is dependent on the presence of ruddy turnstone (Arenaria interpres) at the sampling site (G-test of independence, p < 0.001). The convergence of host factors and environmental factors results in a unique ecological 'hot spot' for influenza viruses in Charadriiformes.
Collapse
Affiliation(s)
- Scott Krauss
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
32
|
Ramey AM, Pearce JM, Flint PL, Ip HS, Derksen DV, Franson JC, Petrula MJ, Scotton BD, Sowl KM, Wege ML, Trust KA. Intercontinental reassortment and genomic variation of low pathogenic avian influenza viruses isolated from northern pintails (Anas acuta) in Alaska: Examining the evidence through space and time. Virology 2010; 401:179-89. [DOI: 10.1016/j.virol.2010.02.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 01/20/2010] [Accepted: 02/04/2010] [Indexed: 11/27/2022]
|
33
|
Tracey JP. Risk-based surveillance of avian influenza in Australia's wild birds. WILDLIFE RESEARCH 2010. [DOI: 10.1071/wr09152] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context. The epidemiology of avian influenza and the ecology of wild birds are inextricably linked. An understanding of both is essential in assessing and managing the risks of highly pathogenic avian influenza (HPAI). Aims. This project investigates the abundance, movements and breeding ecology of Australia’s Anseriformes in relation to the prevalence of low-pathogenicity avian influenza (LPAI) and provides risk profiles to improve the efficiency and relevance of wild-bird surveillance. Methods. Generalised linear models and analysis of variance were used to examine the determinants of Anseriformes abundance and movements in Australia, and the observed prevalence of LPAI in Australia (n = 33 139) and overseas (n = 93 344). Risk profiles were developed using poultry density, estimated LPAI prevalence, the abundance of Anseriformes, and the probability of Anseriformes moving from areas of HPAI epizootics. Key results. Analysis of Australian wild-bird surveillance data strongly supports other studies that have found the prevalence of LPAI in wild birds to be much lower (1%) in Australia than that in other countries (4.7%). LPAI prevalence was highly variable among sampling periods and locations and significantly higher in dabbling ducks than in other functional groups. Trends in Anseriformes movements, abundance and breeding are also variable, and correlated with rainfall, which could explain low prevalence and the failure to detect seasonal differences in LPAI in wild birds. Virus prevalence of faecal samples was significantly lower, whereas collecting faecal samples was 3–5 times less expensive and logistically simpler, than that of cloacal samples. Overall priority areas for on-going surveillance are provided for Australia. Conclusions. Previous surveillance has occurred in high-priority areas, with the exception of Mareeba (North Queensland), Brisbane and Darwin, and has provided valuable information on the role of wild birds in maintaining avian influenza viruses. However, several practical considerations need to be addressed for future surveillance. Implications. Long-term surveillance studies in wild birds in priority areas are required, which incorporate information on bird abundance, age, behaviour, breeding and movements, particularly for dabbling ducks. This is important to validate trends of LPAI prevalence, in understanding the main determinants for virus spread and persistence, and in predicting and managing future epizootics of HPAI in Australia.
Collapse
|
34
|
Pearce JM, Ramey AM, Ip HS, Gill RE. Limited evidence of trans-hemispheric movement of avian influenza viruses among contemporary North American shorebird isolates. Virus Res 2009; 148:44-50. [PMID: 19995585 DOI: 10.1016/j.virusres.2009.12.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 11/30/2009] [Accepted: 12/02/2009] [Indexed: 11/15/2022]
Abstract
Migratory routes of gulls, terns, and shorebirds (Charadriiformes) are known to cross hemispheric boundaries and intersect with outbreak areas of highly pathogenic avian influenza (HPAI). Prior assessments of low pathogenic avian influenza (LPAI) among species of this taxonomic order found some evidence for trans-hemispheric movement of virus genes. To specifically clarify the role of shorebird species in the trans-hemispheric movement of influenza viruses, assess the temporal variation of Eurasian lineages observed previously among North American shorebirds, and evaluate the necessity for continued sampling of these birds for HPAI in North America, we conducted a phylogenetic analysis of >700 contemporary sequences isolated between 2000 and 2008. Evidence for trans-hemispheric reassortment among North American shorebird LPAI gene segments was lower (0.88%) than previous assessments and occurred only among eastern North American isolates. Furthermore, half of the reassortment events occurred in just two isolates. Unique phylogenetic placement of these samples suggests secondary infection and or involvement of other migratory species, such as gulls. Eurasian lineages observed in North American shorebirds before 2000 were not detected among contemporary samples, suggesting temporal variation of LPAI lineages. Results suggest that additional bird migration ecology and virus phylogenetics research is needed to determine the exact mechanisms by which shorebirds in eastern North America become infected with LPAI that contain Eurasian lineage genes. Because of the low prevalence of avian influenza in non-eastern North America sites, thousands more shorebirds will need to be sampled to sufficiently examine genetic diversity and trans-hemispheric exchange of LPAI viruses in these areas. Alternatively, other avian taxa with higher virus prevalence could serve as surrogates to shorebirds for optimizing regional surveillance programs for HPAI through the LPAI phylogenetic approach.
Collapse
Affiliation(s)
- John M Pearce
- Alaska Science Center, U.S. Geological Survey, Anchorage, AK 99508, USA.
| | | | | | | |
Collapse
|
35
|
Jackson A. In this issue - July 2009. Aust Vet J 2009. [DOI: 10.1111/j.1751-0813.2009.00454.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Hamilton SA, East IJ, Toribio JA, Garner MG. Are the Australian poultry industries vulnerable to large outbreaks of highly pathogenic avian influenza? Aust Vet J 2009; 87:165-74. [DOI: 10.1111/j.1751-0813.2009.00423.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|