1
|
Crucilla SJ, Ding D, Lozano GG, Szostak JW, Sasselov DD, Kufner CL. UV-driven self-repair of cyclobutane pyrimidine dimers in RNA. Chem Commun (Camb) 2023; 59:13603-13606. [PMID: 37899697 DOI: 10.1039/d3cc04013e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Nucleic acids can be damaged by ultraviolet (UV) irradiation, forming structural photolesions such as cyclobutane-pyrimidine-dimers (CPD). In modern organisms, sophisticated enzymes repair CPD lesions in DNA, but to our knowledge, no RNA-specific enzymes exist for CPD repair. Here, we show for the first time that RNA can protect itself from photolesions by an intrinsic UV-induced self-repair mechanism. This mechanism, prior to this study, has exclusively been observed in DNA and is based on charge transfer from CPD-adjacent bases. In a comparative study, we determined the quantum yields of the self-repair of the CPD-containing RNA sequence, GAU = U to GAUU (0.23%), and DNA sequence, d(GAT = T) to d(GATT) (0.44%), upon 285 nm irradiation via UV/Vis spectroscopy and HPLC analysis. After several hours of irradiation, a maximum conversion yield of ∼16% for GAU = U and ∼33% for d(GAT = T) was reached. We examined the dynamics of the intermediate charge transfer (CT) state responsible for the self-repair with ultrafast UV pump - IR probe spectroscopy. In the dinucleotides GA and d(GA), we found comparable quantum yields of the CT state of ∼50% and lifetimes on the order of several hundred picoseconds. Charge transfer in RNA strands might lead to reactions currently not considered in RNA photochemistry and may help understanding RNA damage formation and repair in modern organisms and viruses. On the UV-rich surface of the early Earth, these self-stabilizing mechanisms likely affected the selection of the earliest nucleotide sequences from which the first organisms may have developed.
Collapse
Affiliation(s)
- Sarah J Crucilla
- Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA 02138, USA.
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Dian Ding
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Gabriella G Lozano
- Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA 02138, USA.
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Dimitar D Sasselov
- Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA 02138, USA.
| | - Corinna L Kufner
- Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA 02138, USA.
| |
Collapse
|
2
|
Abstract
Damage to RNA from ultraviolet light, oxidation, chlorination, nitration, and akylation can include chemical modifications to nucleobases as well as RNA-RNA and RNA-protein crosslinking. In vitro studies have described a range of possible damage products, some of which are supported as physiologically relevant by in vivo observations in normal growth, stress conditions, or disease states. Damage to both messenger RNA and noncoding RNA may have functional consequences, and work has begun to elucidate the role of RNA turnover pathways and specific damage recognition pathways in clearing cells of these damaged RNAs.
Collapse
|
3
|
Casati P, Walbot V. Crosslinking of ribosomal proteins to RNA in maize ribosomes by UV-B and its effects on translation. PLANT PHYSIOLOGY 2004; 136:3319-32. [PMID: 15466230 PMCID: PMC523391 DOI: 10.1104/pp.104.047043] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Ultraviolet-B (UV-B) photons can cause substantial cellular damage in biomolecules, as is well established for DNA. Because RNA has the same absorption spectrum for UV as DNA, we have investigated damage to this cellular constituent. In maize (Zea mays) leaves, UV-B radiation damages ribosomes by crosslinking cytosolic ribosomal proteins S14, L23a, and L32, and chloroplast ribosomal protein L29 to RNA. Ribosomal damage accumulated during a day of UV-B exposure correlated with a progressive decrease in new protein production; however, de novo synthesis of some ribosomal proteins is increased after 6 h of UV-B exposure. After 16 h without UV-B, damaged ribosomes were eliminated and translation was restored to normal levels. Ribosomal protein S6 and an S6 kinase are phosphorylated during UV-B exposure; these modifications are associated with selective translation of some ribosomal proteins after ribosome damage in mammalian fibroblast cells and may be an adaptation in maize. Neither photosynthesis nor pigment levels were affected significantly by UV-B, demonstrating that the treatment applied is not lethal and that maize leaf physiology readily recovers.
Collapse
Affiliation(s)
- Paula Casati
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA.
| | | |
Collapse
|
8
|
Berry SJ. RNA synthesis and storage during insect oogenesis. DEVELOPMENTAL BIOLOGY (NEW YORK, N.Y. : 1985) 1985; 1:351-84. [PMID: 2481469 DOI: 10.1007/978-1-4615-6814-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- S J Berry
- Department of Biology, Hall-Atwater and Shanklin Laboratories, Wesleyan University, Middletown, Connecticut 06457
| |
Collapse
|
9
|
von Brunn A, Kalthoff K. Photoreversible inhibition by ultraviolet light of germ line development in Smittia sp. (Chironomidae, Diptera). Dev Biol 1983; 100:426-39. [PMID: 6653880 DOI: 10.1016/0012-1606(83)90236-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pole cell formation in embryos of the parthenogenetic midge, Smittia sp., can be delayed or inhibited by irradiation of the posterior egg pole with ultraviolet light (uv). This leaves the schedule of nuclear divisions and chromosome eliminations virtually unaffected. However, uv irradiation delays the precocious migration to the posterior pole of one nucleus, which normally becomes included in the first pole cell. This effect is photoreversible, i.e., mitigated by application of blue light after uv. Photoreversibility indicates that a nucleic acid component is involved as an effective target. During normal development of Smittia a number of chromosomes are eliminated during mitosis V, not only from somatic nuclei but also in the germ line. In the latter, this mitosis takes place during the first gonial division in the larva. After uv irradiation, the first pole cell nucleus has undergone supernumerary mitoses before pole cell formation and, as a result, is driven into mitosis V precociously as the pole cell divides. This is frequently associated with chromosome elimination from pole cells, which in turn is correlated with subsequent disappearance of already formed pole cells. Adults derived from embryos without pole cells do not form ovaries. Pole cell formation, pole cell preservation, and ovary development are separately inhibited by uv, and inhibition of each step is photoreversible. The results are discussed in the context of germ cell determination, protection against chromosome elimination, and the role of chromosomes limited to the germ line.
Collapse
|
10
|
Brown PM, Kalthoff K. Inhibition by ultraviolet light of pole cell formation in Smittia sp (Chironomidae, Diptera): action spectrum and photoreversibility. Dev Biol 1983; 97:113-22. [PMID: 6682387 DOI: 10.1016/0012-1606(83)90069-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The formation of pole cells (primordial germ cells) in Smittia sp can be inhibited by ultraviolet (uv) irradiation without causing significant mortality. Until 70 min after egg deposition, pole cells are suppressed by low uv doses applied to the posterior pole region. Microbeam irradiation of a target area including the oosome inhibits pole cell formation; this is not observed after irradiation of other target areas. The action spectrum for uv inhibition of pole cells shows a distinct peak at 260 nm; its shape suggests that a nucleic acid-protein complex acts as an effective target. Independent evidence for the involvement of a nucleic acid moiety is derived from the fact that uv inhibition of pole cell formation is photoreversible. The results are discussed in the context of pole cell determination by localized cytoplasmic components.
Collapse
|
14
|
Double abdomen induction with low UV-doses inSmittia spec. (Chironomidae, diptera): Sensitive period and complete photoreversibility. ACTA ACUST UNITED AC 1981; 190:49-54. [DOI: 10.1007/bf00868703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/1980] [Accepted: 10/17/1980] [Indexed: 10/26/2022]
|