1
|
Werth BB, Bashir M, Chang L, Werth VP. Ultraviolet irradiation induces the accumulation of chondroitin sulfate, but not other glycosaminoglycans, in human skin. PLoS One 2011; 6:e14830. [PMID: 21829593 PMCID: PMC3150335 DOI: 10.1371/journal.pone.0014830] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 09/13/2010] [Indexed: 11/18/2022] Open
Abstract
Ultraviolet (UV) light alters cutaneous structure and function. Prior work has shown loss of dermal hyaluronan after UV-irradiation of human skin, yet UV exposure increases total glycosaminoglycan (GAG) content in mouse models. To more fully describe UV-induced alterations to cutaneous GAG content, we subjected human volunteers to intermediate-term (5 doses/week for 4 weeks) or single-dose UV exposure. Total dermal uronyl-containing GAGs increased substantially with each of these regimens. We found that UV exposure substantially increased dermal content of chondroitin sulfate (CS), but not hyaluronan, heparan sulfate, or dermatan sulfate. UV induced the accumulation of both the 4-sulfated (C4S) and 6-sulfated (C6S) isoforms of CS, but in distinct distributions. Next, we examined several CS proteoglycan core proteins and found a significant accumulation of dermal and endothelial serglycin, but not of decorin or versican, after UV exposure. To examine regulation in vitro, we found that UVB in combination with IL-1α, a cytokine upregulated by UV radiation, induced serglycin mRNA in cultured dermal fibroblasts, but did not induce the chondroitin sulfate synthases. Overall, our data indicate that intermediate-term and single-dose UVB exposure induces specific GAGs and proteoglycan core proteins in human skin in vivo. These molecules have important biologic functions and contribute to the cutaneous response to UV.
Collapse
Affiliation(s)
- Benjamin Boegel Werth
- Medical Research, Philadelphia Veterans Administration Medical Center, Philadelphia, Pennsylvania, United States of America.
| | | | | | | |
Collapse
|
2
|
Sharma MR, Werth B, Werth VP. Animal models of acute photodamage: comparisons of anatomic, cellular and molecular responses in C57BL/6J, SKH1 and Balb/c mice. Photochem Photobiol 2011; 87:690-8. [PMID: 21332482 DOI: 10.1111/j.1751-1097.2011.00911.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human cutaneous photodamage is a major medical problem that includes premature aging and fragility of the skin. Nonxenografted animal models have not been comparatively evaluated for how well they resemble the changes seen in human skin. Here, we sought to identify a suitable mouse model that recapitulates key anatomic, cellular and molecular responses observed in human skin during acute UV exposure. Adult females from three strains of mice, C57BL/6J, SKH1 and Balb/c were exposed to UVB and then evaluated 3 or 20 h after the last irradiation. Skin from UVB-exposed C57BL/6J mice showed features resembling human photodamage, including epidermal thickening, infiltration of the dermis with inflammatory cells, induction of tumor necrosis factor-α (TNF-α) mRNA, accumulation of glycosaminoglycans, particularly hyaluronan in the epidermis and loss of collagen. Hairless SKH1 mouse skin responded similarly, but without any induction of TNF-α mRNA or chondroitin sulfate. Irradiated Balb/c mice were the least similar to humans. Our results in C57BL/6J mice and to a lesser extent in SKH1 mice, show cutaneous responses to a course of UVB-irradiation that mirror those seen in human skin. Proper choice of model is critical for investigating cellular and molecular mechanisms of photodamage and photoaging.
Collapse
|
3
|
Müller G, Kramer A. In vitro action of a combination of selected antimicrobial agents and chondroitin sulfate. Chem Biol Interact 2000; 124:77-85. [PMID: 10670820 DOI: 10.1016/s0009-2797(99)00142-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chondroitin sulfate (CS), a highly anionic polymer and the most predominant sulfated glycosaminoglycan in connective tissues, was investigated regarding to its interaction with cationic disinfectants, which are used as antiinfectives in humans. Combinations of cetylpyridiniumchloride (CPC), chlorhexidine (CHex), and polyhexamethylene biguanide (PHMB) with CS, respectively, were prepared and the resulting microbicidal activity of the mixtures was tested in the quantitative suspension test without organic matter. Polyvidone-iodine and Ringer's solution were used as controls. Even precipitated, the resulting test combinations behave differently against Staphylococcus aureus, Enterococcus faecium, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans. CPC/CS demonstrated only microbicidal activity against Gram-positive bacteria, and CHex/CS was more active against Gram-negative bacteria and C. albicans. PHMB/CS, especially in combination with CS-A, only revealed an antimicrobial effect against P. aeruginosa after 60 min action. The interaction of cationic disinfectants with CS showed depending on the investigated microorganism a more or less controlled sustained release manner of the microbicidal agent from the precipitated complex, with the only exception of PHMB in combination with CS-C, which is completely neutralized. Polyvidone-iodine and Ringer's solution were not affected by CS.
Collapse
Affiliation(s)
- G Müller
- Institute of Hygiene and Environmental Medicine, University of Greifswald, Germany
| | | |
Collapse
|
4
|
Koshiishi I, Horikoshi E, Mitani H, Imanari T. Quantitative alterations of hyaluronan and dermatan sulfate in the hairless mouse dorsal skin exposed to chronic UV irradiation. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1428:327-33. [PMID: 10434051 DOI: 10.1016/s0304-4165(99)00081-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The quantitative alterations of hyaluronan and dermatan sulfate in the upper dermis (fibrous tissue) and the lower dermis (adipose tissue) of the hairless mouse skin chronically exposed to the UV irradiation as solar-simulating irradiation (lambda(max) 352 nm, UV distribution: 300-310 nm, 0.9%; 310-320 nm, 2.0%; 320-420 nm, 97.1%) were evaluated. Hyaluronan and dermatan sulfate contents in each part of dermis were determined as follows: skin sections on a glass slide prepared by histological technique were processed into the upper dermis and the lower dermis with a small surgical knife, and treated with chondroitinase ABC and ACII in the presence of bacterial collagenase. The resulting unsaturated disaccharides were determined by HPLC method. By applying this method to the UV-irradiated hairless mouse skin, it was found that the chronic UV irradiation increased dermatan sulfate in the upper dermis, whereas an increase of hyaluronan content was not statistically significant. In the lower dermis, on the contrary, both hyaluronan and dermatan sulfate contents remarkably increased as compared with the control mice. Furthermore, the histological study showed the accumulation of the collagen fibers in the lower dermis of the UV-irradiated hairless mouse skin following the disappearance of adipocytes. These findings indicate that the increases of glycosaminoglycan contents in the UV-irradiated skin are related to the accumulation of the extracellular matrix components in the lower dermis.
Collapse
Affiliation(s)
- I Koshiishi
- Faculty of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi, Inage, Chiba-shi, Chiba 263-8522, Japan.
| | | | | | | |
Collapse
|
5
|
Chaquour B, Seité S, Coutant K, Fourtanier A, Borel JP, Bellon G. Chronic UVB- and all-trans retinoic-acid-induced qualitative and quantitative changes in hairless mouse skin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1995; 28:125-35. [PMID: 7636633 DOI: 10.1016/1011-1344(94)07080-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Histochemical and ultrastructural studies have already demonstrated that chronic exposure to UV radiation induces profound alterations in all structural elements of the skin and that topical all-trans retinoic acid (tRA) can substantially correct much of the tissue damage. However, previous biochemical studies on dermal components of the extracellular matrix have led to contradictory results, particularly with regard to the effect of chronic UV exposure. The aim of our study was to investigate changes in collagen content and other dermal modifications induced by tRA in irradiated and non-irradiated hairless mouse skin. Hairless mice were exposed to increasing doses of UVB for 10 weeks (the cumulative total dose was 4.6 J cm-2). After the UV irradiation period the animals were treated with 0.05% tRA or with ethanol-polyethylene glycol vehicle alone three times a week for up to 10 weeks. Non-irradiated animals underwent the same treatments. The main clinical and histological changes induced by UVB exposure were erythema, wrinkling, keratosis and epidermal thickening. Following UVB exposure, tRA treatment did not improve the clinical aspect but increased the width of the dermal repair zone. Fibronectin, laminin and type I and VI collagens were detected by indirect immunofluorescence techniques in this zone. Type I and III collagens were quantitated in skin fragments after cyanogen bromide digestion and polyacrylamide gel electrophoresis. Under our experimental conditions, UVB irradiation alone induced neither changes in total collagen nor in type I and III collagen levels. tRA treatment of irradiated skin significantly increased both type I and III collagen levels by factors of 1.33 and 1.88 respectively. The ratio of type III to types I + III increased significantly. Topical tRA also increased collagen type levels in non-irradiated hairless mouse skin. Type I collagen increased proportionally to type III. This study leads to the conclusion that topical tRA exerts direct or indirect effects on collagen metabolism in irradiated as well as non-irradiated hairless mouse skin.
Collapse
Affiliation(s)
- B Chaquour
- Laboratoire de Biochimie, Faculté de Médecine, CNRS ERS F0017, Reims, France
| | | | | | | | | | | |
Collapse
|
6
|
Schwartz E, Kligman LH. Topical tretinoin increases the tropoelastin and fibronectin content of photoaged hairless mouse skin. J Invest Dermatol 1995; 104:518-22. [PMID: 7706770 DOI: 10.1111/1523-1747.ep12606007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Topical tretinoin treatment of photoaged hairless mice has been shown in previous studies to stimulate formation of a subepidermal zone of new connective tissue characterized by enhanced collagen synthesis. The aims of this study were to localize and/or quantify elastin, fibronectin, and glycosaminoglycans in the same model. Hairless mice (Skh-1) were irradiated thrice weekly for 10 weeks with gradually increasing doses of ultraviolet (up to 4.5 minimal erythema doses per exposure) from Westinghouse FS-40 bulbs. Mice were then treated five times a week with either 0.05% tretinoin, the ethanol:propylene glycol vehicle, or nothing for another 10 weeks. Controls included mice sacrificed after 10 weeks of ultraviolet treatment and age-matched untreated animals. The distribution of elastin and fibronectin was examined by immunofluorescence microscopy, which revealed fine fibrils in the subepidermal zone in tretinoin-treated skin. A quantitative slot-blot immunobinding assay showed that tretinoin induced a threefold higher amount of tropoelastin compared with controls. Insoluble elastin content (desmosine levels) was similar in all groups. Although fibronectin content was increased by ultraviolet radiation, tretinoin treatment induced the largest increase. In contrast, the amount of glycosaminoglycans, although increased by UVB radiation, was reduced by tretinoin treatment.
Collapse
Affiliation(s)
- E Schwartz
- Department of Dermatology, Mt. Sinai School of Medicine, New York, New York, USA
| | | |
Collapse
|
7
|
Margelin D, Fourtanier A, Thevenin T, Medaisko C, Breton M, Picard J. Alterations of proteoglycans in ultraviolet-irradiated skin. Photochem Photobiol 1993; 58:211-8. [PMID: 8415912 DOI: 10.1111/j.1751-1097.1993.tb09551.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The effect of UVB exposure on the distribution and synthesis of dermal proteoglycans was measured in the skin of hairless mice. Two groups of mice were included: one was irradiated for 10 weeks; the other was kept as control. After intraperitoneal injection of sodium 35-S-sulfate, punch biopsies were taken for histology and proteoglycans were extracted from the remaining skin with 4 M guanidinium chloride, containing 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (0.5%, weight per volume). Following proteolytic digestion, the glycosaminoglycan constituents were isolated and analyzed by quantitative cellulose acetate electrophoresis and enzymatic digestibility. Under the influence of UVB radiation, newly synthesized proteoglycans measured by 35SO4 uptake increased as much as 60%. In addition, the irradiated skin had a higher average content of proteoglycan than had control skin (4981 micrograms vs 4134 micrograms/g dry weight). This could be ascribed to an increase in heparin (1400 vs 533 micrograms/g dry weight) and heparan sulfate (472 vs 367 micrograms/g dry weight), whereas no change in the concentration of hyaluronic acid (1243 vs 1372 micrograms/g dry weight) and dermatan sulfate (1866 vs 1863 micrograms/g dry weight) was observed. The irradiated animals also exhibited a marked increase in the synthesis of heparan sulfate and heparin (62% and 71%, respectively). These results demonstrate that chronic doses of UVB altered proteoglycan metabolism through both quantitative and qualitative changes.
Collapse
Affiliation(s)
- D Margelin
- Laboratoire de biologie cellulaire, INSERM U81, Faculté de Médecine Saint-Antoine, Paris, France
| | | | | | | | | | | |
Collapse
|
8
|
Chen S, Kiss I, Tramposch KM. Effects of all-trans retinoic acid on UVB-irradiated and non-irradiated hairless mouse skin. J Invest Dermatol 1992; 98:248-54. [PMID: 1732390 DOI: 10.1111/1523-1747.ep12556066] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effects of all-trans retinoic acid (t-RA) on photodamaged and normal non-irradiated skin were examined in hairless mice (Skh:HR-1). After being exposed to increasing doses of UVB for 10 weeks (total dose = 1.4 J/cm2), the animals were then treated with 0.1% t-RA in ethanol (50 microliters, five times per week) for another 10 weeks. Several animals (the follow-up group) were further observed after the termination of the t-RA treatment to investigate if the t-RA effect was reversible. Wrinkle effacement induced by t-RA was compared with three other parameters: a) de novo collagen synthesis, b) width of the dermal repair zone, and c) epidermal thickening. Interestingly, t-RA did not stimulate collagen synthesis in animals not exposed to UVB. In the irradiated animals, the time course of wrinkle reduction correlated with the stimulation of collagen synthesis. After a synchronous initial lag phase of 4-6 weeks, the wrinkling decreased from the maximum grade of 4 to a mean grade of 1.3, whereas collagen synthesis was enhanced to 245% of the control at week 10 of t-RA treatment. In contrast, a similar lag phase was not observed for either the appearance of the dermal repair zone or epidermal thickening. In the follow-up group, upon termination of t-RA treatment, collagen synthesis returned to the control level. Wrinkle effacement and thickening of the dermal repair zone, however, did not regress, suggesting the anti-photoaging effect of t-RA was not reversible over this time frame. The correlation between the length of the lag phases for collagen synthesis and wrinkle reduction points to the possibility that collagen plays an important role in tRA-induced wrinkle effacement. Both parameters are thus important endpoints for investigating the mechanism of RA-induced repair of photodamaged skin.
Collapse
Affiliation(s)
- S Chen
- Bristol-Myers Squibb Co., Pharmaceutical Research Institute, Buffalo, NY 14213
| | | | | |
Collapse
|
9
|
|