1
|
Mahendra CK, Tan LTH, Lee WL, Yap WH, Pusparajah P, Low LE, Tang SY, Chan KG, Lee LH, Goh BH. Angelicin-A Furocoumarin Compound With Vast Biological Potential. Front Pharmacol 2020; 11:366. [PMID: 32372949 PMCID: PMC7176996 DOI: 10.3389/fphar.2020.00366] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Angelicin, a member of the furocoumarin group, is related to psoralen which is well known for its effectiveness in phototherapy. The furocoumarins as a group have been studied since the 1950s but only recently has angelicin begun to come into its own as the subject of several biological studies. Angelicin has demonstrated anti-cancer properties against multiple cell lines, exerting effects via both the intrinsic and extrinsic apoptotic pathways, and also demonstrated an ability to inhibit tubulin polymerization to a higher degree than psoralen. Besides that, angelicin too demonstrated anti-inflammatory activity in inflammatory-related respiratory and neurodegenerative ailments via the activation of NF-κB pathway. Angelicin also showed pro-osteogenesis and pro-chondrogenic effects on osteoblasts and pre-chondrocytes respectively. The elevated expression of pro-osteogenic and chondrogenic markers and activation of TGF-β/BMP, Wnt/β-catenin pathway confirms the positive effect of angelicin bone remodeling. Angelicin also increased the expression of estrogen receptor alpha (ERα) in osteogenesis. Other bioactivities, such as anti-viral and erythroid differentiating properties of angelicin, were also reported by several researchers with the latter even displaying an even greater aptitude as compared to the commonly prescribed drug, hydroxyurea, which is currently on the market. Apart from that, recently, a new application for angelicin against periodontitis had been studied, where reduction of bone loss was indirectly caused by its anti-microbial properties. All in all, angelicin appears to be a promising compound for further studies especially on its mechanism and application in therapies for a multitude of common and debilitating ailments such as sickle cell anaemia, osteoporosis, cancer, and neurodegeneration. Future research on the drug delivery of angelicin in cancer, inflammation and erythroid differentiation models would aid in improving the bioproperties of angelicin and efficacy of delivery to the targeted site. More in-depth studies of angelicin on bone remodeling, the pro-osteogenic effect of angelicin in various bone disease models and the anti-viral implications of angelicin in periodontitis should be researched. Finally, studies on the binding of angelicin toward regulatory genes, transcription factors, and receptors can be done through experimental research supplemented with molecular docking and molecular dynamics simulation.
Collapse
Affiliation(s)
- Camille Keisha Mahendra
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Subang Jaya, Malaysia
| | - Loh Teng Hern Tan
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Subang Jaya, Malaysia
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Wai Leng Lee
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Wei Hsum Yap
- School of Biosciences, Taylor's University, Subang Jaya, Malaysia
| | - Priyia Pusparajah
- Medical Health and Translational Research Group, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Liang Ee Low
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Siah Ying Tang
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Subang Jaya, Malaysia
- Advanced Engineering Platform, Monash University Malaysia, Subang Jaya, Malaysia
| | - Kok Gan Chan
- International Genome Centre, Jiangsu University, Zhenjiang, China
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Learn Han Lee
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Subang Jaya, Malaysia
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Subang Jaya, Malaysia
| |
Collapse
|
2
|
Hui-Yi S, Ching-Chuan K, Jim-Tong H, Shin-Ru S, Sui-Yuan C, Chun-Chen L, John T.-A. H, Prashanth Kumar A, Yu-Sheng C, Hsing-Pang H. An Efficient, Mild and Scalable Synthesis of Bioactive Compounds Containing the Angelicin Scaffold. J CHIN CHEM SOC-TAIP 2012. [DOI: 10.1002/jccs.201200233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
3
|
Pokrovskii OI, Markoliya AA, Lepeshkin FD, Kuvykin IV, Parenago OO, Gonchukov SA. Extraction of linear furocoumarins from Ammi Majus seeds by means of supercritical fluid extraction and supercritical fluid chromatography. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2010. [DOI: 10.1134/s1990793109080065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Vera N, Popich S, Luna L, Cravero R, González Sierra M, Bardón A. Toxicity and Synergism in the Feeding Deterrence of Some Coumarins onSpodoptera frugiperdaSmith (Lepidoptera: Noctuidae). Chem Biodivers 2006; 3:21-6. [PMID: 17193211 DOI: 10.1002/cbdv.200690002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The phagodepression activity of five coumarins (= 2H-1-benzopyran-2-ones), 6-hydroxy-7-isoprenyloxycoumarin (1), 6-methoxy-7-isoprenyloxycoumarin (2), 6,7-methylenedioxycoumarin (3), 5-methoxy-6,7-methylenedioxycoumarin (4), and 6-methoxy-7-(2-hydroxyethoxy)coumarin (5), from the Argentine native herb Pterocaulon polystachyum, was tested against Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae. Two analogs, scopoletin (6) and 2-methoxy-2-methyl-3,4,5,6,7,8-hexahydro-3H-chromen-5-one (7), synthesized in our laboratory, were also evaluated for comparison. The compounds were added to an artificial diet at doses ranging from 50 to 200 microg per g of diet. Natural coumarins induced 100% of phagodepression when 200 microg were added per g of diet. Binary equimolar mixtures of the natural coumarins were phagodepressors against S. frugiperda surpassing the expected additive responses, indicating that these compounds can act synergistically against S. frugiperda larvae. Compounds 1 and 3 (non-methoxylated coumarins), and the equimolar mixture of both, displayed the strongest phagodepression. Additionally, 50 microg/g of 1 and 3 incorporated to the larval diet caused 80 and 50% of pupal mortality, respectively, while a 100 microg/g dose of compounds 2, 4, 6, and 7 produced 60, 50, 10, and 80% pupal mortality, respectively. Larval growing rate during the early larval instars was significantly reduced by treatments with the methylenedioxycoumarins 3 and 4. Coincidentally, the larval period duration was significantly increased by the latter compounds.
Collapse
Affiliation(s)
- Nancy Vera
- Departamento de Química Orgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000 Tucumán, Argentina
| | | | | | | | | | | |
Collapse
|
5
|
Chen T, Voelk E, Platz MS, Goodrich RP. Photochemical and photophysical studies of 3-amino-6-iodoacridine and the inactivation of lambda phage. Photochem Photobiol 1996; 64:622-31. [PMID: 8863468 DOI: 10.1111/j.1751-1097.1996.tb03115.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The photochemistry and photophysics of 3-amino-6-iodoacridine (Acr-I) was studied. Photolysis (350 nm) of Acr-I (free base) generates products consistent with a free radical intermediate in methanol, benzene and carbon tetrachloride. The Acr-I hydrochloride is shown to bind to calf thymus DNA and to the self-complementary dinucleotide cytidylyl-(3'-5')-guanosine (CpG) miniduplex in a manner similar to that of proflavine (Acr-NH2), a known DNA intercalator. The Acr-I is shown to more efficiently nick supercoiled plasmid DNA pBR322 upon 350 nm or 420 nm photolysis than Acr-NH2. The efficiency of Acr-I-sensitized DNA nicking is not oxygen dependent. Photolysis of the Acr-I/(CpG)2 complex leads to cleavage of the dinucleotide and to cytidine base release by selective damage to a specific ribose moiety. Dinucleotide cleavage occurs equally well in the presence or absence of oxygen, thereby eliminating a singlet oxygen- or peroxyl radical-mediated process. Photolysis of Acr-I in the presence of a mononucleotide (GMP) or a non-self-complementary dinucleotide (uridylyl-[3'-5']-cytidine-UpC) does not lead to fragmentation and base release. Similarly, photolysis of the Acr-NH2/(CpG)2 complex does not lead to fragmentation and base release. The data indicate that photolysis of an iodinated intercalator bound to CpG or plasmid DNA generates an intercalated aryl radical and that the reactive intermediate initiates a sequence of reactions that efficiently nick nucleic acids. The inactivation of lambda phage sensitized by Acr-I with UV (350 nm) light is oxygen independent but with visible (420 nm) light is strongly oxygen dependent. The Acr-I fluoresces more intensely when excited at 446 than at 376 nm. Thus, UV photolysis may lead to C-I bond homolysis and free radical formation, a process that is not energetically feasible with visible light. The results demonstrate the difficulty of extrapolating model studies involving simple molecules and DNA to understanding the mechanism of viral inactivation with a particular sensitizer.
Collapse
Affiliation(s)
- T Chen
- Department of Chemistry, Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
6
|
Abstract
Synthetic isopimpinellin (5,8-dimethoxypsoralen), confirmed to contain as impurities only trace quantities at most of psoralen, bergapten (5-methoxypsoralen) and xanthotoxin (8-methoxypsoralen), is not phototoxic when tested in a chick skin bioassay system. These findings are at variance with earlier studies showing isopimpinellin to be phototoxic against chick skin and support the conclusion that isopimpinellin is photobiologically inactive. As recently proposed by others, the several reports of isopimpinellin photoactivity are most likely attributable to contamination by small amounts of highly active psoralens such as bergapten or xanthotoxin.
Collapse
Affiliation(s)
- G W Ivie
- ARS/USDA, College Station, TX 77845, USA.
| | | |
Collapse
|
7
|
Spatial, temporal, and environmental limits on xanthotoxin induction in wild parsnip foliage. CHEMOECOLOGY 1994. [DOI: 10.1007/bf01259971] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Chen X, Kagan J. Photosensitized cleavage and cross-linking of pBR322 DNA with khellin and visnagin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1993; 20:183-9. [PMID: 8271118 DOI: 10.1016/1011-1344(93)80149-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The naturally occurring furanochromones khellin and visnagin have received considerable attention, largely because of their vasodilatory properties and of their ability (particularly that of khellin) to induce skin pigmentation upon ultraviolet light treatment of patients suffering from vitiligo. There are conflicting statements in the literature on whether or not they are capable of cross-linking DNA photochemically. Supercoiled and linear pBR322 DNA was used to probe this reaction. The results showed that both khellin and, to a greater extent, visnagin photosensitized DNA cross-linking. In addition, both photosensitizers induced extensive DNA cleavage.
Collapse
Affiliation(s)
- X Chen
- Department of Chemistry, University of Illinois at Chicago 60607-7061
| | | |
Collapse
|
9
|
Oroskar AA, Gasparro FP, Peak MJ. Relaxation of supercoiled DNA by aminomethyl trimethylpsoralen and UV photons: action spectrum. Photochem Photobiol 1993; 57:648-54. [PMID: 8506393 DOI: 10.1111/j.1751-1097.1993.tb02931.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
An action spectrum for the relaxation of supercoiled plasmid DNA (induction of the first single-strand break) by photoactivated 4'-aminomethyl-4,5',8-trimethylpsoralen (AMT) has been determined using monochromatic UV photons from 254 to 405 nm. The spectrum of AMT-induced plasmid DNA relaxation fits closely with the absorbance spectrum of AMT in the spectral region between 313 nm and 405 nm but deviates at wavelengths shorter than 313 nm. This assay also reveals that the psoralen photosensitization reaction with DNA also produces piperidine-labile sites. Addition of mannitol and azide partially quenches the supercoil relaxation reaction, evidence for a role of Type II photosensitization pathway.
Collapse
Affiliation(s)
- A A Oroskar
- Biological and Medical Research Division, Argonne National Laboratory, IL 60439-4833
| | | | | |
Collapse
|
10
|
Abstract
Sunlight provides the energy required for all biochemical, physiological and developmental processes necessary for plant growth, reproduction and survival. The role of light in photosynthesis and photomorphogenesis has been appreciated for some time; however, the role of light in plant defence is a comparatively recent realization. Between 75-100 photosensitizers or phototoxins, molecules that become toxic in the presence of light, have been extracted from higher plant tissues. These biologically-active compounds have diverse biosynthetic origins and belong to at least 15 different phytochemical classes (i.e. acetophenones, acetylenes, benzophenanthrenes, β-carbolines, coumarins, extended quinones, furanochromones, furanocoumarins, furanoquinolines, isoquinolines, lignans, pterocarpans, quinolines, sesquiterpenes and thiophenes). Of more than 100 angiosperm families assayed, phototoxins and/or phototoxic activity have been reported in c. 40 families representing 32 orders and 8 subclasses of the Magnoliophyta. Most of these allelochemicals are acute toxins with little organism-specificity. As such, they are effective biocides capable of killing a wide-range of potentially harmful organisms including: viruses, pathogenic bacteria and fungi, nematodes and herbivorous insects, as well as competing plant species. This review focuses on the phytochemistry, taxonomic occurrence and toxicological consequences of phototoxic metabolites in flowering plants. The available information suggests that phototoxic phytochemicals: (i) are broad-spectrum allelochemicals capable of protecting plants against a variety of detrimental organisms in nature, (ii) represent a successful defensive strategy in both primitive and advanced plant taxa, and (iii) may be an effective defence under a variety of photoenvironmental conditions. CONTENTS Summary 401 I. Introduction 401 II. Chemistry/biochemistry of plant photosensitizers 402 III. Botanical distribution of photosensitizers 403 IV. Toxicology 405 V. Biological activity/defensive role of photosensitizers 408 VI. Concluding remarks 413 References 415.
Collapse
Affiliation(s)
- Kelsey R Downum
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA and Fairchild Tropical Garden, 10901 Old Cutler Road, Miami, FL 33156, USA
| |
Collapse
|
11
|
|
12
|
Lee K, Berenbaum MR. Ecological aspects of antioxidant enzymes and in Three Papilio Species. BIOCHEM SYST ECOL 1992. [DOI: 10.1016/0305-1978(92)90054-h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Bordin F, Dall'Acqua F, Guiotto A. Angelicins, angular analogs of psoralens: chemistry, photochemical, photobiological and phototherapeutic properties. Pharmacol Ther 1991; 52:331-63. [PMID: 1820581 DOI: 10.1016/0163-7258(91)90031-g] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Angelicin and some of its derivatives are naturally occuring compounds which show interesting photobiological properties. In this review various aspects of angelicin and its derivatives have been reported. The natural occurrence and the chemical synthesis both of naturally occurring and synthetic angelicins have been reviewed. Photochemical and photophysical properties of angelicins have been considered with particular reference to the capacity to generate active forms of oxygen, photoreactions with nucleic acids, proteins and unsaturated fatty acids. Photobiological effects have been considered: skin phototoxicity, antiproliferative effects, genotoxicity, ability to induce hemolysis in erythrocytes, inactivation of prokaryotic and eukaryotic microorganism and of viruses. The ability of some angelicins to induce photocarcinogenesis has been reviewed as well as in the activity as photochemotherapeutic agents.
Collapse
Affiliation(s)
- F Bordin
- Department of Pharmaceutical Science of Padua University, Centro di Studio sulla Chimica del Farmaco e dei Prodotti Biologicamente Attivi del C.N.R., Italy
| | | | | |
Collapse
|
14
|
Abstract
Many bioactive phytochemicals have been shown in recent years to be photosensitizers, i.e. their toxic activities against viruses, micro-organisms, insects or cells are dependent on or are augmented by light of certain wavelengths. These activities are often selective, and this has led to the concept of therapeutic prospects in the control of infectious diseases, pests and cancer. Reaction mechanisms commonly involve singlet oxygen and radicals, which are thought to cause photodamage to membranes or macromolecules. The main classes of plant photosensitizers reviewed here are polyyines (acetylenes, thiophenes and related compounds); furanyl compounds; beta-carbolines and other alkaloids; and complex quinones. We propose that within each group of phytochemicals there are several representatives that merit further study for therapeutic abilities in appropriate animal models.
Collapse
Affiliation(s)
- J B Hudson
- Division of Medical Microbiology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
15
|
Comparison of furanocoumarin concentrations of greenhouse-grownRuta chalepensis with outdoor plants later transferred to a greenhouse. J Chem Ecol 1991; 17:21-7. [DOI: 10.1007/bf00994419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/1990] [Accepted: 08/09/1990] [Indexed: 10/26/2022]
|
16
|
Berenbaum MR, Lee K. Toxicity of nonhost phototoxins to parsnip webworms(Lepidoptera: Oecophoridae). CHEMOECOLOGY 1990. [DOI: 10.1007/bf01241647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Kang HK, Shin EJ, Shim SC. Mechanistic studies on the [2 + 2] photocycloaddition reaction of khellin. J Photochem Photobiol A Chem 1990. [DOI: 10.1016/1010-6030(90)85023-p] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Seasonal changes of furanocoumarin concentrations in leaves ofHeracleum lanatum. J Chem Ecol 1990; 16:1623-34. [DOI: 10.1007/bf01014095] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/1989] [Accepted: 09/18/1989] [Indexed: 10/25/2022]
|
19
|
Abstract
Many antiviral compounds obtained from plants are photosensitizers, i.e., their biological properties are dependent upon or augmented by light of specific wavelengths, commonly long wave ultraviolet, UVA. Three groups of chemically distinct plant photosensitizers have been investigated in some detail in regard to antiviral properties. These are (a) thiophenes and polyacetylenes; (b) furyl compounds; (c) certain alkaloids. Some of the thiophenes and their acetylenic derivatives possess extremely potent phototoxic activities toward membrane-containing viruses. These activities are markedly affected by the chemical structures of these compounds. Inactivated virus retains its integrity, however, and penetrates cells, but does not replicate. Their mechanism of action is believed to occur via singlet-oxygen damage to the membranes, although other targets cannot be ruled out. In contrast, the antiviral activities of plant furyl compounds (such as psoralens and furanochromones) appear to depend on UVA-mediated covalent adduct formation with the viral genomes. Some of the photoactive beta-carboline alkaloids also have impressive antiviral activities, especially against viruses with single-stranded genomes. These and other types of alkaloids appear to work by mechanisms that do not require covalent bonding to nucleic acids, and may also involve other target molecules as well. Some of these compounds have potent antiviral activities at concentrations well below cytotoxic levels, and accordingly should be tested in animal models.
Collapse
Affiliation(s)
- J B Hudson
- Division of Medical Microbiology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
20
|
|