1
|
Perkins R, Williamson C, Lavaud J, Mouget JL, Campbell DA. Time-dependent upregulation of electron transport with concomitant induction of regulated excitation dissipation in Haslea diatoms. PHOTOSYNTHESIS RESEARCH 2018; 137:377-388. [PMID: 29663190 PMCID: PMC6182385 DOI: 10.1007/s11120-018-0508-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 04/11/2018] [Indexed: 06/01/2023]
Abstract
Photoacclimation by strains of Haslea "blue" diatom species H. ostrearia and H. silbo sp. nov. ined. was investigated with rapid light curves and induction-recovery curves using fast repetition rate fluorescence. Cultures were grown to exponential phase under 50 µmol m-2 s-1 photosynthetic available radiation (PAR) and then exposed to non-sequential rapid light curves where, once electron transport rate (ETR) had reached saturation, light intensity was decreased and then further increased prior to returning to near growth light intensity. The non-sequential rapid light curve revealed that ETR was not proportional to the instantaneously applied light intensity, due to rapid photoacclimation. Changes in the effective absorption cross sections for open PSII reaction centres (σPSII') or reaction centre connectivity (ρ) did not account for the observed increases in ETR under extended high light. σPSII' in fact decreased as a function of a time-dependent induction of regulated excitation dissipation Y(NPQ), once cells were at or above a PAR coinciding with saturation of ETR. Instead, the observed increases in ETR under extended high light were explained by an increase in the rate of PSII reopening, i.e. QA- oxidation. This acceleration of electron transport was strictly light dependent and relaxed within seconds after a return to low light or darkness. The time-dependent nature of ETR upregulation and regulated NPQ induction was verified using induction-recovery curves. Our findings show a time-dependent induction of excitation dissipation, in parallel with very rapid photoacclimation of electron transport, which combine to make ETR independent of short-term changes in PAR. This supports a selective advantage for these diatoms when exposed to fluctuating light in their environment.
Collapse
Affiliation(s)
- R Perkins
- School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff, Wales, CF10 3AT, UK.
| | - C Williamson
- School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff, Wales, CF10 3AT, UK
- Schools of Biological and Geographical Sciences, University of Bristol, 12 Berkeley Square, Bristol, BS8 1SS, UK
| | - J Lavaud
- UMI 3376 Takuvik, CNRS/Université Laval, Département de Biologie-Pavillon Alexandre Vachon, Québec, QC, G1V 0A6, Canada
| | - J-L Mouget
- Mer-Molécules-Santé (MMS), FR CNRS 3473 IUML, Le Mans Université, Av. O. Messiaen, 72085, Le Mans Cedex 9, France
| | - D A Campbell
- Department of Biology, Mount Allison University, Sackville, NB, E4L3M7, Canada
| |
Collapse
|
2
|
Xin CP, Yang J, Zhu XG. A model of chlorophyll a fluorescence induction kinetics with explicit description of structural constraints of individual photosystem II units. PHOTOSYNTHESIS RESEARCH 2013; 117:339-354. [PMID: 23912704 DOI: 10.1007/s11120-013-9894-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/11/2013] [Indexed: 06/02/2023]
Abstract
Chlorophyll a fluorescence induction (FI) kinetics, in the microseconds to the second range, reflects the overall performance of the photosynthetic apparatus. In this paper, we have developed a novel FI model, using a rule-based kinetic Monte Carlo method, which incorporates not only structural and kinetic information on PSII, but also a simplified photosystem I. This model has allowed us to successfully simulate the FI under normal or different treatment conditions, i.e., with different levels of measuring light, under 3-(3',4'-dichlorophenyl)-1,1-dimethylurea treatment, under 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone treatment, and under methyl viologen treatment. Further, using this model, we have systematically studied the mechanistic basis and factors influencing the FI kinetics. The results of our simulations suggest that (1) the J step is caused by the two-electron gate at the Q B site; (2) the I step is caused by the rate limitation of the plastoquinol re-oxidation in the plastoquinone pool. This new model provides a framework for exploring impacts of modifying not only kinetic but also structural parameters on the FI kinetics.
Collapse
Affiliation(s)
- Chang-Peng Xin
- CAS Key Laboratory of Computational Biology, CAS-MPG (Chinese Academy of Sciences-German Max Planck Society) Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | | |
Collapse
|
3
|
Lazár D. The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:9-30. [PMID: 32689211 DOI: 10.1071/fp05095] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 08/18/2005] [Indexed: 05/24/2023]
Abstract
Chlorophyll a fluorescence rise caused by illumination of photosynthetic samples by high intensity of exciting light, the O-J-I-P (O-I1-I2-P) transient, is reviewed here. First, basic information about chlorophyll a fluorescence is given, followed by a description of instrumental set-ups, nomenclature of the transient, and samples used for the measurements. The review mainly focuses on the explanation of particular steps of the transient based on experimental and theoretical results, published since a last review on chlorophyll a fluorescence induction [Lazár D (1999) Biochimica et Biophysica Acta 1412, 1-28]. In addition to 'old' concepts (e.g. changes in redox states of electron acceptors of photosystem II (PSII), effect of the donor side of PSII, fluorescence quenching by oxidised plastoquinone pool), 'new' approaches (e.g. electric voltage across thylakoid membranes, electron transport through the inactive branch in PSII, recombinations between PSII electron acceptors and donors, electron transport reactions after PSII, light gradient within the sample) are reviewed. The K-step, usually detected after a high-temperature stress, and other steps appearing in the transient (the H and G steps) are also discussed. Finally, some applications of the transient are also mentioned.
Collapse
Affiliation(s)
- Dušan Lazár
- Palacký University, Faculty of Science, Department of Experimental Physics, Laboratory of Biophysics, tř. Svobody 26, 771 46 Olomouc, Czech Republic. Email
| |
Collapse
|
4
|
Lazár D. Chlorophyll a fluorescence rise induced by high light illumination of dark-adapted plant tissue studied by means of a model of photosystem II and considering photosystem II heterogeneity. J Theor Biol 2003; 220:469-503. [PMID: 12623282 DOI: 10.1006/jtbi.2003.3140] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chlorophyll a fluorescence rise (FLR) measured in vivo in dark-adapted plant tissue immediately after the onset of high light continuous illumination shows complex O-K-J-I-P transient. The steps typically appear at about 400 micros (K), 2 ms (J), 30 ms (I), and 200 - 500 ms (P) and a transient decrease of fluorescence to local minima (dips D) can be observed after the K, J, and I steps. As the FLR reflects a function of photosystem II (PSII) and to more understand the FLR, a PSII reactions model was formulated comprising equilibrium of excited states among all light harvesting and reaction centre pigments and P680, reversible radical pair formation and the donor and acceptor side functions. Such a formulated model is the most detailed and complex model of PSII reactions used so far for simulations of the FLR. By varying of selected model parameters (rate constants and initial conditions) several conclusions can be made as for the origin of and changes in shape of the theoretical FLR and compare them with in-literature-reported results. For homogeneous population of PSII and using standard in-literature-reported values of the model parameters, the simulated FLR is characterized by reaching the minimal fluorescence F(0) at about 3 ns after the illumination is switched on lasting to about 1 micros, followed by fluorescence rise to a plateau located at about 2 ms and subsequent fluorescence rise to a global maximum that is reached at about 60 ms. Varying of the values of rate constants of fast processes that can compete for utilization of the excited states with fluorescence emission does not change qualitatively the shape of the FLR. However, primary photochemistry of PSII (the charge separation, recombination and stabilization), non-radiative loss of excited states in light harvesting antennae and excited states quenching by oxidized plastoquisnone (PQ) molecules from the PQ pool seem to be the main factors controlling the maximum quantum yield of PSII photochemistry as expressed by the F(V)/F(M) ratio. The appearance of the plateau at about 2 ms in the FLR is affected by several factors: the height of the plateau in the FLR increases when the fluorescence quenching by oxidized P680(+) is not considered in the simulations or when the electron transfer from Q(A)(-) to Q(B)((-)) is slowed down whereas the height of the plateau decreases and its position is shifted to shorter times when OEC is initially in higher S state. The plateau at about 2 ms is changed into the local fluorescence maximum followed by a dip when the fluorescence quenching by oxidized PQ molecules or the charge recombination between P680(+) and Q(A)(-) is not considered in the simulations or when all OEC is initially in the S(0) state or when the S -state transitions of OEC are slowed down. Slowing down of the S -state transitions of OEC as well as of the electron transfer from Q(A)(-) to Q(B)((-)) also causes a decrease of maximal fluorescence level. In the case of full inhibition of the S -state transitions of OEC as well as in the case of full inhibition of the electron donation to P680(+) by Y(Z), the local fluorescence maximum becomes the global fluorescence maximum. Assuming homogeneous PSII population, theoretical FLR curve that only far resembles experimentally measured O-J-I-P transient at room temperature can be simulated when slowly reducing PQ pool is considered. Assuming heterogeneous PSII population (i.e. the alpha/beta and the Q(B) -reducing/Q(B)-non-reducing heterogeneity and heterogeneity in size of the PQ pool and rate of its reduction) enables to simulate the FLR with two steps between minimal and maximal fluorescence whose relative heights are in agreement with the experiments but not their time positions. A cause of this discrepancy is discussed as well as different approaches to the definition of fluorescence signal during the FLR.
Collapse
Affiliation(s)
- Dusan Lazár
- Laboratory of Biophysics, Faculty of Science, Palackỳ University, tr. Svobody 26, 771 46 Olomouc, Czech Republic.
| |
Collapse
|
5
|
|
6
|
Semin BK, Ivanov LI, Rubin AB, Carpentier R. pH-Dependent Extraction of Ca 2+ from Photosystem II Membranes and Thylakoid Membranes: Indication of a Ca 2+-Sensitive Site on the Acceptor Side of Photosystem II. Photochem Photobiol 1998. [DOI: 10.1111/j.1751-1097.1998.tb02511.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Falk S, Bruce D, Huner NP. Photosynthetic performance and fluorescence in relation to antenna size and absorption cross-sections in rye and barley grown under normal and intermittent light conditions. PHOTOSYNTHESIS RESEARCH 1994; 42:145-155. [PMID: 24306502 DOI: 10.1007/bf02187125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/1994] [Accepted: 08/09/1994] [Indexed: 06/02/2023]
Abstract
The size of the Photosystem II light harvesting antenna and the absorption cross-sections of PS I (σPSI) and PS II (σPSII) were examined in relation to photosynthetic performance fluorescence. Wild-type (WT) rye (Secale cereale) and barley (Hordeurn vulgare) as well as the barley chlorophyllb-less chlorina F2 mutant were grown under control and intermittent light (IML) conditions. (σPSII) in control barley F2 was similar to IML grown WT rye and barley, which, in turn was 2.5 to 3.5 times smaller than for control WT plants. In contrast, σPSI was similar for all control plants. This was 2.5 to 4 times larger than for IML-grown WT plants. IML-grown barley mutant plants had the smallest absorption cross-sections. Photosynthetic light response curves revealed that the barley chlorina F2-mutant had rates of oxygen evolution on a per leaf area basis that were only slightly lower than control WT rye and barley while IML-grown plants had strongly reduced photosynthetic performance. Convexity (Θ) for control barley chlorina F2-mutants was equal to the WT controls (0.6-0.7), while all IML-grown plants had a Θ of 0. This indicates that, in contrast to control barley mutants, IML-plants were limited by PS II turn-over rates at all irradiances. However, on a per leaf Chl-basis the IML-grown plants exhibited the highest photosynthetic rates. Thus, the comparatively poor photosynthetic rates for IML-grown plants on a per leaf area basis were not due to less efficient photosynthetic reaction centers, but may rather be due to an increased limitation from PS II turn-over and a reduction in the number of reaction centers per leaf area.
Collapse
Affiliation(s)
- S Falk
- Department of Plant Sciences, University of Western Ontario, N6A 5B7, London, Ontario, Canada
| | | | | |
Collapse
|
8
|
Dynamics of photosynthetic membrane composition and function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1991. [DOI: 10.1016/s0005-2728(05)80225-7] [Citation(s) in RCA: 350] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Henrysson T, Sundby C. Characterization of photosystem II in stroma thylakoid membranes. PHOTOSYNTHESIS RESEARCH 1990; 25:107-117. [PMID: 24420277 DOI: 10.1007/bf00035459] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/1989] [Accepted: 02/26/1990] [Indexed: 06/03/2023]
Abstract
The functional state of the PS II population localized in the stroma exposed non-appressed thylakoid region was investigated by direct analysis of the PS II content of isolated stroma thylakoid vesicles. This PS II population, possessing an antenna size typical for PS IIβ, was found to have a fully functional oxygen evolving capacity in the presence of an added quinone electron acceptor such as phenyl-p-benzoquinone. The sensitivity to DCMU for this PS II population was the same as for PS II in control thylakoids. However, under more physiological conditions, in the absence of an added quinone acceptor, no oxygen was evolved from stroma thylakoid vesicles and their PS II centers were found to be incapable to pass electrons to PS I and to yield NADPH. By comparison of the effect of a variety of added quinone acceptors with different midpoint potentials, it is concluded that the inability of PS II in the stroma thylakoid membranes to contribute to NADPH formation probably is due to that QA of this population is not able to reduce PQ, although it can reduce some artificial acceptors like phenyl-p-benzoquinone. These data give further support to the notion of a discrete PS II population in the non-appressed stroma thylakoid region, PS IIβ, having a higher midpoint potential of QA than the PS II population in the appressed thylakoid region, PS IIα. The physiological significance of a PS II population that does not produce any NADPH is discussed.
Collapse
Affiliation(s)
- T Henrysson
- Department of Plant Biochemistry, University of Lund, P.O. Box 124, S-221 00, LUND, Sweden
| | | |
Collapse
|
10
|
Ort DR, Whitmarsh J. Inactive photosystem II centers: A resolution of discrepencies in photosystem II quantitation. PHOTOSYNTHESIS RESEARCH 1990; 23:101-104. [PMID: 24420998 DOI: 10.1007/bf00030069] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/1988] [Accepted: 01/01/1989] [Indexed: 06/03/2023]
Abstract
The abundance of photosystem II in chloroplast thylakoid membranes has been a contentious issue because different techniques give quite different estimates of photosystem II titer. This discrepancy led in turn to disagreements regarding the stoichiometry of photosystem II to photosystem I in these membranes. We believe that the discrepancy in photosystem II quantitation is resolved by evidence which shows that a large population of photosystem II centers with negligible turnover rates are present in isolated thylakoid membranes as well as in normally developed leaves of healthy plants.
Collapse
Affiliation(s)
- D R Ort
- USDA Agricultural Research Service, University of Illinois, 289 Morrill Hall, 505 S. Goodwin Ave., 61801, Urbana, IL, USA
| | | |
Collapse
|
11
|
Leibl W, Breton J, Deprez J, Trissl HW. Photoelectric study on the kinetics of trapping and charge stabilization in oriented PS II membranes. PHOTOSYNTHESIS RESEARCH 1989; 22:257-275. [PMID: 24424815 DOI: 10.1007/bf00048304] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Excitation energy trapping and charge separation in Photosystem II were studied by kinetic analysis of the fast photovoltage detected in membrane fragments from peas with picosecond excitation. With the primary quinone acceptor oxidized the photovoltage displayed a biphasic rise with apparent time constants of 100-300 ps and 550±50 ps. The first phase was dependent on the excitation energy whereas the second phase was not. We attribute these two phases to trapping (formation of P-680(+) Phe(-)) and charge stabilization (formation of P-680(+) QA (-)), respectively. A reversibility of the trapping process was demonstrated by the effect of the fluorescence quencher DNB and of artificial quinone acceptors on the apparent rate constants and amplitudes. With the primary quinone acceptor reduced a transient photoelectric signal was observed and attributed to the formation and decay of the primary radical pair. The maximum concentration of the radical pair formed with reduced QA was about 30% of that measured with oxidized QA. The recombination time was 0.8-1.2 ns.The competition between trapping and annihilation was estimated by comparison of the photovoltage induced by short (30 ps) and long (12 ns) flashes. These data and the energy dependence of the kinetics were analyzed by a reversible reaction scheme which takes into account singlet-singlet annihilation and progressive closure of reaction centers by bimolecular interaction between excitons and the trap. To put on firmer grounds the evaluation of the molecular rate constants and the relative electrogenicity of the primary reactions in PS II, fluorescence decay data of our preparation were also included in the analysis. Evidence is given that the rates of radical pair formation and charge stabilization are influenced by the membrane potential. The implications of the results for the quantum yield are discussed.
Collapse
Affiliation(s)
- W Leibl
- Universität Osnabrück, Fachbereich Biologie/Chemie, Biophysik, Barbarastr. 11, D-4500, Osnabrück, FRG
| | | | | | | |
Collapse
|
12
|
Hsu BD, Lee YS, Jang YR. A method for analysis of fluorescence induction curve from DCMU-poisoned chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1989. [DOI: 10.1016/s0005-2728(89)80199-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Chow W, Hope A, Anderson JM. Oxygen per flash from leaf disks quantifies Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1989. [DOI: 10.1016/s0005-2728(89)80408-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|