1
|
Szundi I, Funatogawa C, Guo Y, Yan ECY, Kliger DS. Protein Sequence and Membrane Lipid Roles in the Activation Kinetics of Bovine and Human Rhodopsins. Biophys J 2017; 113:1934-1944. [PMID: 29117518 DOI: 10.1016/j.bpj.2017.08.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/26/2017] [Accepted: 08/28/2017] [Indexed: 12/17/2022] Open
Abstract
Rhodopsin is a G protein-coupled receptor found in the rod outer segments in the retina, which triggers a visual response under dim light conditions. Recently, a study of the late, microsecond-to-millisecond kinetics of photointermediates of the human and bovine rhodopsins in their native membranes revealed a complex, double-square mechanism of rhodopsin activation. In this kinetic scheme, the human rhodopsin exhibited more Schiff base deprotonation than bovine rhodopsin, which could arise from the ∼7% sequence difference between the two proteins, or from the difference between their membrane lipid environments. To differentiate between the effects of membrane and protein structure on the kinetics, the human and bovine rhodopsins were inserted into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine lipid nanodiscs and the kinetics of activation at 15°C and pH 8.7 was investigated by time-resolved absorption spectroscopy and global kinetic analysis. For both proteins, the kinetics in nanodiscs shows the characteristics observed in the native membranes, and is described by a multisquare model with Schiff base deprotonation at the lumirhodopsin I intermediate stage. The results indicate that the protein sequence controls the extent of Schiff base deprotonation and accumulation of intermediates, and thus plays the main role in the different activation kinetics observed between human and bovine rhodopsins. The membrane lipid does have a minor role by modulating the timing of the kinetics, with the nanodisc environment leading to an earlier Schiff base deprotonation.
Collapse
Affiliation(s)
- Istvan Szundi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California
| | - Chie Funatogawa
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California
| | - Ying Guo
- Department of Chemistry, Yale University, New Haven, Connecticut
| | - Elsa C Y Yan
- Department of Chemistry, Yale University, New Haven, Connecticut
| | - David S Kliger
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California.
| |
Collapse
|
2
|
Funatogawa C, Szundi I, Kliger DS. A Comparison between the Photoactivation Kinetics of Human and Bovine Rhodopsins. Biochemistry 2016; 55:7005-7013. [DOI: 10.1021/acs.biochem.6b00953] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chie Funatogawa
- Department of Chemistry and
Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Istvan Szundi
- Department of Chemistry and
Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - David S. Kliger
- Department of Chemistry and
Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| |
Collapse
|
3
|
Köhler J, Quast T, Buback J, Fischer I, Brixner T, Nuernberger P, Geiß B, Mager J, Lambert C. Ultrafast charge-transfer dynamics of donor-substituted truxenones. Phys Chem Chem Phys 2012; 14:11081-9. [DOI: 10.1039/c2cp41061c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Chen E, Goldbeck RA, Kliger DS. Nanosecond time-resolved polarization spectroscopies: tools for probing protein reaction mechanisms. Methods 2010; 52:3-11. [PMID: 20438842 PMCID: PMC2934884 DOI: 10.1016/j.ymeth.2010.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/26/2010] [Accepted: 04/27/2010] [Indexed: 11/25/2022] Open
Abstract
Polarization methods, introduced in the 1800s, offered one of the earliest ways to examine protein structure. Since then, many other structure-sensitive probes have been developed, but circular dichroism (CD) remains a powerful technique because of its versatility and the specificity of protein structural information that can be explored. With improvements in time resolution, from millisecond to picosecond CD measurements, it has proven to be an important tool for studying the mechanism of folding and function in many biomolecules. For example, nanosecond time-resolved CD (TRCD) studies of the sub-microsecond events of reduced cytochrome c folding have provided direct experimental evidence of kinetic heterogeneity, which is an inherent property of the diffusional nature of early folding dynamics on the energy landscape. In addition, TRCD has been applied to the study of many biochemical processes, such as ligand rebinding in hemoglobin and myoglobin and signaling state formation in photoactive yellow protein and prototropin 1 LOV2. The basic approach to TRCD has also been extended to include a repertoire of nanosecond polarization spectroscopies: optical rotatory dispersion (ORD), magnetic CD and ORD, and linear dichroism. This article will discuss the details of the polarization methods used in this laboratory, as well as the coupling of time-resolved ORD with the temperature-jump trigger so that protein folding can be studied in a larger number of proteins.
Collapse
Affiliation(s)
- Eefei Chen
- Department of Chemistry & Biochemistry University of California Santa Cruz Santa Cruz, California 95064
| | - Robert A. Goldbeck
- Department of Chemistry & Biochemistry University of California Santa Cruz Santa Cruz, California 95064
| | - David S. Kliger
- Department of Chemistry & Biochemistry University of California Santa Cruz Santa Cruz, California 95064
| |
Collapse
|
5
|
Epps J, Lewis JW, Szundi I, Kliger DS. Lumi I --> Lumi II: the last detergent independent process in rhodopsin photoexcitationt. Photochem Photobiol 2007; 82:1436-41. [PMID: 16553464 DOI: 10.1562/2006-02-01-ra-792] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Time-resolved absorbance difference spectra were collected at delays from 1 to 128 micros after photolysis of membrane and detergent suspensions of rhodopsin at 20 degrees C. Fitting both sets of data with two exponential decays plus a constant showed a similar fast process (lifetime 11 micros in membrane, 12 micros in 5% dodecyl maltoside) with a small but similar spectral change. This demonstrates that the Lumi I - Lumi II process, previously characterized in detergent suspensions, has similar properties in membrane without significant effect of detergent. The slower exponential process detected in the data is quite different in membrane compared to detergent solubilized samples, showing that the pronounced effect of detergent on the later rhodopsin photointermediates begins fairly abruptly near 20 micros. Besides affecting the late processes, the data collected here shows that detergent induces a small blue shift in the 1 micros difference spectrum (the Lumi I minus rhodopsin difference spectrum). The blue shift is similar to one induced by chloride ion in the E181Q rhodopsin mutant and may indicate that the ionization state of Glu181 in rhodopsin is affected by detergent.
Collapse
Affiliation(s)
- Jacqueline Epps
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | | | | | | |
Collapse
|
6
|
Szundi I, Lewis JW, Kliger DS. Effect of Digitonin on the Rhodopsin Meta I-Meta II Equilibrium¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2005.tb01455.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Epps J, Lewis JW, Szundi I, Kliger DS. Lumi I → Lumi II: The Last Detergent Independent Process in Rhodopsin Photoexcitation. Photochem Photobiol 2006. [DOI: 10.1111/j.1751-1097.2006.tb09796.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Lozier RH, Nagle JF. Comment on “An Apparent General Solution for the Kinetic Models of the Bacteriorhodopsin Photocycles”. J Phys Chem B 2006; 110:15041-2; discussion 15043-4. [PMID: 16869621 DOI: 10.1021/jp055960s] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Richard H Lozier
- Department of Physics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | | |
Collapse
|
9
|
Szundi I, Ruprecht JJ, Epps J, Villa C, Swartz TE, Lewis JW, Schertler GF, Kliger DS. Rhodopsin photointermediates in two-dimensional crystals at physiological temperatures. Biochemistry 2006; 45:4974-82. [PMID: 16605265 PMCID: PMC2556952 DOI: 10.1021/bi0524619] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bovine rhodopsin photointermediates formed in two-dimensional (2D) rhodopsin crystal suspensions were studied by measuring the time-dependent absorbance changes produced after excitation with 7 ns laser pulses at 15, 25, and 35 degrees C. The crystalline environment favored the Meta I(480) photointermediate, with its formation from Lumi beginning faster than it does in rhodopsin membrane suspensions at 35 degrees C and its decay to a 380 nm absorbing species being less complete than it is in the native membrane at all temperatures. Measurements performed at pH 5.5 in 2D crystals showed that the 380 nm absorbing product of Meta I(480) decay did not display the anomalous pH dependence characteristic of classical Meta II in the native disk membrane. Crystal suspensions bleached at 35 degrees C and quenched to 19 degrees C showed that a rapid equilibrium existed on the approximately 1 s time scale, which suggests that the unprotonated predecessor of Meta II in the native membrane environment (sometimes called MII(a)) forms in 2D rhodopsin crystals but that the non-Schiff base proton uptake completing classical Meta II formation is blocked there. Thus, the 380 nm absorbance arises from an on-pathway intermediate in GPCR activation and does not result from early Schiff base hydrolysis. Kinetic modeling of the time-resolved absorbance data of the 2D crystals was generally consistent with such a mechanism, but details of kinetic spectral changes and the fact that the residuals of exponential fits were not as good as are obtained for rhodopsin in the native membrane suggested the photoexcited samples were heterogeneous. Variable fractional bleach due to the random orientation of linearly dichroic crystals relative to the linearly polarized laser was explored as a cause of heterogeneity but was found unlikely to fully account for it. The fact that the 380 nm product of photoexcitation of rhodopsin 2D crystals is on the physiological pathway of receptor activation suggests that determination of its structure would be of interest.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gebhard F.X. Schertler
- Alternate corresponding author: MRC Laboratory of Molecular Biology, Cambridge CB2 2QH UK, Telephone: 0044 1223 402328,
| | | |
Collapse
|
10
|
Szundi I, Lewis JW, Kliger DS. Effect of Digitonin on the Rhodopsin Meta I–Meta II Equilibrium¶. Photochem Photobiol 2005. [DOI: 10.1562/2005-02-10-ra-437r.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
van Stokkum IHM, Lozier RH. Target Analysis of the Bacteriorhodopsin Photocycle Using a Spectrotemporal Model. J Phys Chem B 2002. [DOI: 10.1021/jp0127723] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ivo H. M. van Stokkum
- Department of Physics Applied Computer Science, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Richard H. Lozier
- Department of Physics Applied Computer Science, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Esquerra RM, Goldbeck RA, Reaney SH, Batchelder AM, Wen Y, Lewis JW, Kliger DS. Multiple geminate ligand recombinations in human hemoglobin. Biophys J 2000; 78:3227-39. [PMID: 10827999 PMCID: PMC1300904 DOI: 10.1016/s0006-3495(00)76859-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The geminate ligand recombination reactions of photolyzed carbonmonoxyhemoglobin were studied in a nanosecond double-excitation-pulse time-resolved absorption experiment. The second laser pulse, delayed by intervals as long as 400 ns after the first, provided a measure of the geminate kinetics by rephotolyzing ligands that have recombined during the delay time. The peak-to-trough magnitude of the Soret band photolysis difference spectrum measured as a function of the delay between excitation pulses showed that the room temperature kinetics of geminate recombination in adult human hemoglobin are best described by two exponential processes, with lifetimes of 36 and 162 ns. The relative amounts of bimolecular recombination to T- and R-state hemoglobins and the temperature dependence of the submicrosecond kinetics between 283 and 323 K are also consistent with biexponential kinetics for geminate recombination. These results are discussed in terms of two models: geminate recombination kinetics modulated by concurrent protein relaxation and heterogeneous kinetics arising from alpha and beta chain differences.
Collapse
Affiliation(s)
- R M Esquerra
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, 95064, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Lewis JW, Kliger DS. Absorption spectroscopy in studies of visual pigments: spectral and kinetic characterization of intermediates. Methods Enzymol 2000; 315:164-78. [PMID: 10736701 DOI: 10.1016/s0076-6879(00)15842-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- J W Lewis
- Department of Chemistry and Biochemistry, University of California, Santa Cruz 95064, USA
| | | |
Collapse
|
14
|
Borucki B, Otto H, Heyn MP. Reorientation of the Retinylidene Chromophore in the K, L, and M Intermediates of Bacteriorhodopsin from Time-Resolved Linear Dichroism: Resolving Kinetically and Spectrally Overlapping Intermediates of Chromoproteins. J Phys Chem B 1999. [DOI: 10.1021/jp990679x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Berthold Borucki
- Biophysics Group, Physics Department, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Harald Otto
- Biophysics Group, Physics Department, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Maarten P. Heyn
- Biophysics Group, Physics Department, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| |
Collapse
|
15
|
Groma GI, Bogomolni RA, Stoeckenius W. The photocycle of bacteriorhodopsin at high pH and ionic strength. I. Effects of pH and buffer on the absorption kinetics. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1319:59-68. [PMID: 9107316 DOI: 10.1016/s0005-2728(96)00116-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A fitting analysis resolved the kinetics in the microsecond to second time range of the absorption changes in the bacteriorhodopsin photocycle at pH = 8.0-9.5 in 3 M KCl into seven exponential components. The time constants and/or amplitudes of all components are strongly pH-dependent. In the pH range studied, the logarithms of the pH-dependent time constants varied linearly with pH. The maximum absolute value of the corresponding slopes was 0.4, in contrast with the theoretically expected value of 1 for unidirectional reactions coupled directly to proton exchange with the bulk phase. This indicates that the extracted macroscopic rate constants are not identical to the microscopic rate constants for the elementary photocycle reaction steps. Unexpected differences were found in the kinetic parameters in CHES and borate buffers.
Collapse
Affiliation(s)
- G I Groma
- Department of Chemistry and Biochemistry, University of California, Santa Cruz 95064, USA.
| | | | | |
Collapse
|
16
|
Chen E, Goldbeck RA, Kliger DS. Nanosecond time-resolved spectroscopy of biomolecular processes. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1997; 26:327-55. [PMID: 9241422 DOI: 10.1146/annurev.biophys.26.1.327] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Over the past two decades, nanosecond absorption and vibrational spectroscopies have developed into powerful tools for monitoring the secondary, tertiary, and quaternary structural relaxations of biological macromolecules under near-physiological conditions of solvent and temperature. Observed through such methods, the dynamic response of a biomolecule to photoinitiated excursions from equilibrium can reveal valuable information about the structure-function relationship, information beyond that obtained from the static structures provided by X-ray crystallography, nuclear magnetic resonance spectroscopy, and other steady-state methods. Most recently, the development of ultra-sensitive polarization techniques for absorption spectroscopy has greatly enhanced the amount of time-resolved structural information that can be obtained from the broadened electronic spectra of biomolecules. This review examines nanosecond absorption, vibrational, and polarized absorption methods, and their applications to protein function and folding, emphasizing the complementary nature of information obtained from electronic and vibrational spectra measured on the nanosecond time scale.
Collapse
Affiliation(s)
- E Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz 95064, USA
| | | | | |
Collapse
|
17
|
Ghelichkhani E, Goldbeck RA, Lewis JW, Kliger DS. Nanosecond time-resolved absorption studies of human oxyhemoglobin photolysis intermediates. Biophys J 1996; 71:1596-604. [PMID: 8874033 PMCID: PMC1233626 DOI: 10.1016/s0006-3495(96)79362-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The time-resolved spectra of photoproducts from ligand photodissociation of oxyhemoglobin are measured in the Soret spectral region for times from 10 ns to 320 microseconds after laser photolysis. Four processes are detected at a heme concentration of 80 microM: a 38-ns geminate recombination, a 137-ns tertiary relaxation, and two bimolecular processes for rebinding of molecular oxygen. The pseudo-first-order rate constants for rebinding to the alpha and beta subunits of hemoglobin are 3.2 x 10(4) s-1 (31 microseconds lifetime) and 9.4 x 10(4) s-1 (11 microseconds lifetime), respectively. The significance of kinetic measurements made at different heme concentrations is discussed in terms of the equilibrium compositions of hemoglobin tetramer and dimer mixtures. The rebinding rate constants for alpha and beta chains are observed to be about two times slower in the dimer than in the tetramer, a finding that appears to support the observation of quaternary enhancement in equilibrium ligand binding by hemoglobin tetramers.
Collapse
Affiliation(s)
- E Ghelichkhani
- Department of Chemistry and Biochemistry, University of California, Santa Cruz 95064, USA
| | | | | | | |
Collapse
|
18
|
Abstract
An improved K absorption spectrum in the visible is obtained from previous photocycle data for the D96N mutant of bacteriorhodopsin, and the previously obtained M absorption spectrum in the visible and the fraction cycling are confirmed at 25 degrees C. Data at lower temperatures are consistent with negligible temperature dependence in the spectra from 5 degrees C to 25 degrees C. Detailed analysis strongly indicates that there are two intermediates in addition to the first intermediate K and the last intermediate M. Assuming two of the intermediates have the same spectrum and using the L spectrum obtained previously, the best kinetic model with four intermediates that fits the time course of the intermediates is rather unusual, with two L's on a cul-de-sac. However, a previously proposed, more conventional model with five intermediates, including two L's with the same spectra and two M's with the same spectra, also fits the time course of the intermediates nearly as well. A new criterion that tests an individual proposed spectrum against data is also proposed.
Collapse
Affiliation(s)
- J F Nagle
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
19
|
Hofrichter J, Ansari A, Jones CM, Deutsch RM, Sommer JH, Henry ER. Ligand binding and conformational changes measured by time-resolved absorption spectroscopy. Methods Enzymol 1994; 232:387-415. [PMID: 8057870 DOI: 10.1016/0076-6879(94)32056-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- J Hofrichter
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | |
Collapse
|
20
|
Ansari A, Szabo A. Theory of photoselection by intense light pulses. Influence of reorientational dynamics and chemical kinetics on absorbance measurements. Biophys J 1993; 64:838-51. [PMID: 8471729 PMCID: PMC1262398 DOI: 10.1016/s0006-3495(93)81445-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The theory of absorbance measurements on a system (e.g., chromophore(s) in a protein) that undergoes a sequence of reactions initiated by a linearly polarized light pulse is developed for excitation pulses of arbitrary intensity. This formalism is based on a set of master equations describing the time evolution of the orientational distribution function of the various species resulting from excitation, reorientational dynamics, and chemical kinetics. For intense but short excitation pulses, the changes in absorbance (for arbitrary polarization directions of the excitation and probe pulses) and the absorption anisotropy are expressed in terms of reorientational correlation functions. The influence of the internal motions of the chromophore as well as the overall motions of the molecules is considered. When the duration of the excitation pulse is long compared to the time-scale of internal motions but comparable to the overall correlation time of the molecule that is reorienting isotropically, the problem of calculating the changes in absorbance is reduced to the solution of a set of first-order coupled differential equations. Emphasis is placed on obtaining explicit results for quantities that are measured in photolysis and fluorescence experiments so as to facilitate the analysis of experimental data.
Collapse
Affiliation(s)
- A Ansari
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
21
|
Ansari A, Jones CM, Henry ER, Hofrichter J, Eaton WA. Photoselection in polarized photolysis experiments on heme proteins. Biophys J 1993; 64:852-68. [PMID: 8471730 PMCID: PMC1262399 DOI: 10.1016/s0006-3495(93)81446-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Polarized photolysis experiments have been performed on the carbon monoxide complex of myoglobin to assess the effects of photoselection on the kinetics of ligand rebinding and to investigate the reorientational dynamics of the heme plane. The results are analyzed in terms of the optical theory developed in the preceding paper by Ansari and Szabo. Changes in optical density arising from rotational diffusion of the photoselected population produce large deviations from the true geminate ligand rebinding curves if measurements are made with only a single polarization. The apparent ligand rebinding curves are significantly distorted even at photolysis levels greater than 90%. These deviations are eliminated by obtaining isotropically-averaged optical densities from measurements using both parallel and perpendicular polarizations of the probe pulse. These experiments also yield the optical anisotropy, which gives a novel method for accurately determining the degree of photolysis, as well as important information on the reorientational dynamics of the heme plane. The correlation time for the overall rotational diffusion of the molecule is obtained from the decay of the anisotropy. The anisotropy prior to rotational diffusion is lower than that predicted for a rigidly attached, perfectly circular absorber, corresponding to an apparent order parameter of S = 0.95 +/- 0.02. Polarized absorption data on single crystals suggest that the decreased anisotropy results more from internal motions of the heme plane which take place on time scales shorter than the duration of the laser pulse (10 ns) than from out-of-plane polarized transitions.
Collapse
Affiliation(s)
- A Ansari
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
22
|
Goldbeck RA, Kliger DS. Nanosecond time-resolved absorption and polarization dichroism spectroscopies. Methods Enzymol 1993; 226:147-77. [PMID: 8277864 DOI: 10.1016/0076-6879(93)26009-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- R A Goldbeck
- Department of Chemistry and Biochemistry, University of California, Santa Cruz 95064
| | | |
Collapse
|
23
|
Thorgeirsson TE, Lewis JW, Wallace-Williams SE, Kliger DS. Photolysis of rhodopsin results in deprotonation of its retinal Schiff's base prior to formation of metarhodopsin II. Photochem Photobiol 1992; 56:1135-44. [PMID: 1337214 DOI: 10.1111/j.1751-1097.1992.tb09738.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Absorption changes following photolysis of bovine rhodopsin in mildly sonicated membrane suspensions are monitored at 25 degrees C. Difference spectra collected at 17 times between 1 microsecond and 75 ms following excitation are analyzed globally using singular value decomposition and non-linear least-squares fitting techniques. The results are not consistent with the simple scheme: Lumirhodopsin-->Metarhodopsin I<-->Metarhodopsin II, but indicate that an intermediate with a deprotonated Schiff's base is formed nearly simultaneously with metarhodopsin I upon the decay of Lumirhodopsin.
Collapse
Affiliation(s)
- T E Thorgeirsson
- Department of Chemistry and Biochemistry, University of California, Santa Cruz 95064
| | | | | | | |
Collapse
|
24
|
Abstract
Much progress has been made in recent years toward understanding the interactions between various proteins responsible for visual transduction which are initiated by an activated state of visual pigments. However, the changes which take place in the visual pigments themselves to convert them to the activated state are more poorly understood. Many spectroscopic techniques have been applied to this problem in recent years and considerable progress has been made. A major goal of these efforts is to understand at which stages protein change occurs and to characterize its structural features. In the visual system evidence is accumulating, for example, that chromophore independent protein change begins immediately prior to lumirhodopsin formation. Considerable insight has been gained recently into the early intermediates of visual transduction and the stage is set to achieve similar understanding of the later intermediates leading to rhodopsin's activated state.
Collapse
Affiliation(s)
- J W Lewis
- Department of Chemistry and Biochemistry, University of California, Santa Cruz 95064
| | | |
Collapse
|