1
|
Velazquez Escobar F, Utesch T, Narikawa R, Ikeuchi M, Mroginski MA, Gärtner W, Hildebrandt P. Photoconversion mechanism of the second GAF domain of cyanobacteriochrome AnPixJ and the cofactor structure of its green-absorbing state. Biochemistry 2013; 52:4871-80. [PMID: 23808413 DOI: 10.1021/bi400506a] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyanobacteriochromes are members of the phytochrome superfamily. In contrast to classical phytochromes, these small photosensors display a considerable variability of electronic absorption maxima. We have studied the light-induced conversions of the second GAF domain of AnPixJ, AnPixJg2, a phycocyanobilin-binding protein from the cyanobacterium Anabaena PCC 7120, using low-temperature resonance Raman spectroscopy combined with molecular dynamics simulations. AnPixJg2 is formed biosynthetically as a red-absorbing form (Pr) and can be photoconverted into a green-absorbing form (Pg). Forward and backward phototransformations involve the same reaction sequences and intermediates of similar cofactor structures as the corresponding processes in canonical phytochromes, including a transient cofactor deprotonation. Whereas the cofactor of the Pr state shows far-reaching similarities to the Pr states of classical phytochromes, the Pg form displays significant upshifts of the methine bridge stretching frequencies concomitant to the hypsochromically shifted absorption maximum. However, the cofactor in Pg is protonated and adopts a conformation very similar to the Pfr state of classical phytochromes. The spectral differences are probably related to an increased solvent accessibility of the chromophore which may reduce the π-electron delocalization in the phycocyanobilin and thus raise the energies of the first electronic transition and the methine bridge stretching modes. Molecular dynamics simulations suggest that the Z → E photoisomerization of the chromophore at the C-D methine bridge alters the interactions with the nearby Trp90 which in turn may act as a gate, allowing the influx of water molecules into the chromophore pocket. Such a mechanism of color tuning AnPixJg2 is unique among the cyanobacteriochromes studied so far.
Collapse
Affiliation(s)
- Francisco Velazquez Escobar
- Institut für Chemie, Technische Universität Berlin , Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
2
|
Piwowarski P, Ritter E, Hofmann KP, Hildebrandt P, von Stetten D, Scheerer P, Michael N, Lamparter T, Bartl F. Light-induced activation of bacterial phytochrome Agp1 monitored by static and time-resolved FTIR spectroscopy. Chemphyschem 2010; 11:1207-14. [PMID: 20333618 DOI: 10.1002/cphc.200901008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phytochromes, which regulate many biological processes in plants, bacteria, and fungi, can exist in two stable states, Pr and Pfr, that can be interconverted by light, via a number of intermediates such as meta-Rc. Herein we employ FTIR spectroscopy to study the Pr-to-Pfr conversion of the bacteriophytochrome Agp1 from Agrobacterium tumefaciens. Static FTIR Pfr/Pr and meta-Rc/Pr difference spectra are disentangled in terms of cofactor and protein structural changes. Guided by DFT calculations on cofactor models, the chromophore conformational changes can be grouped into structural adjustments of the cofactor-protein interactions localized in the C-D dipyrrole moiety, that is, the photoisomerisation site, and in the A-B dipyrrole moiety including the protein attachment site. Whereas changes at the C and D rings appear to be largely completed in the meta-Rc state, the structural changes in the A-B unit occur during the transition from meta-Rc to Pfr, concomitant with the main protein structural changes, as demonstrated by static and time-resolved FTIR difference spectroscopy. We employ this technique to monitor, for the first time, the dynamics of the photocycle of phytochrome on the millisecond timescale. By extending the studies to genetically engineered protein variants of Agp1, we further demonstrate that H250 and D197 as well as the PHY domain are essential for formation of the Pfr state. Based on the IR spectroscopic and available crystallographic data we discuss the role of critical amino acid residues for the protein-cofactor interactions during the photoinduced reaction cycle.
Collapse
Affiliation(s)
- Patrick Piwowarski
- Institut für Medizinische Physik und Biophysik, Charité, Universitätsmedizin Berlin, Charitéplatz 1, 10098 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Schwinté P, Gärtner W, Sharda S, Mroginski MA, Hildebrandt P, Siebert F. The Photoreactions of Recombinant Phytochrome CphA from the CyanobacteriumCalothrixPCC7601: A Low-Temperature UV-Vis and FTIR Study. Photochem Photobiol 2009; 85:239-49. [DOI: 10.1111/j.1751-1097.2008.00426.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
FTIR study of the photoinduced processes of plant phytochrome phyA using isotope-labeled bilins and density functional theory calculations. Biophys J 2008; 95:1256-67. [PMID: 18390618 DOI: 10.1529/biophysj.108.131441] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fourier transform infrared spectroscopy was used to analyze the chromophore structure in the parent states Pr and Pfr of plant phytochrome phyA and the respective photoproducts lumi-R and lumi-F. The spectra were obtained from phyA adducts assembled with either uniformly or selectively isotope-labeled phytochromobilin and phycocyanobilin. The interpretation of the experimental spectra is based on the spectra of chromophore models calculated by density functional theory. Global (13)C-labeling of the tetrapyrrole allows for the discrimination between chromophore and protein bands in the Fourier transform infrared difference spectra. All infrared difference spectra display a prominent difference band attributable to a stretching mode with large contributions from the methine bridge between the inner pyrrole rings (B-C stretching). Due to mode coupling, frequencies and isotopic shifts of this mode suggest that the Pr chromophore may adopt a distorted ZZZssa or ZZZasa geometry with a twisted A-B methine bridge. The transition to lumi-R is associated with only minor changes of the amide I bands indicating limited protein structural changes during the isomerization site of the C-D methine bridge. Major protein structural changes occur upon the transition to Pfr in which the chromophore adopts a ZZEssa or ZZEasa-like state. In addition, specific interactions with the protein alter the structure of the B-C methine bridge as concluded from the substantial downshift of the respective stretching mode. These interactions are removed during the photoreaction to lumi-F (ZZE-->ZZZ), which involves only small protein structural changes.
Collapse
|
5
|
Durbeej B, Eriksson LA. Protein-bound chromophores astaxanthin and phytochromobilin: excited state quantum chemical studies. Phys Chem Chem Phys 2006; 8:4053-71. [PMID: 17028694 DOI: 10.1039/b605682b] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present an overview of excited state quantum chemical calculations aimed at elucidating controversial issues regarding the photochemistry of the protein-bound chromophores astaxanthin and phytochromobilin. In particular, we show how the application of time-dependent density functional theory and other single-reference quantum chemical excited state methods have contributed to shed new light on the origin of the >0.5 eV bathochromic shift of the electronic absorption by the carotenoid astaxanthin in the protein macromolecular complex crustacyanin, and the mechanism for C15-Z,syn --> C15-E,anti isomerization of the tetrapyrrole phytochromobilin that underlies the photoactivation of the plant photoreceptor phytochrome. Within the approximation that exciton coupling is neglected, the calculations on astaxanthin provide support for the notion that the bathochromic shift, which is responsible for the slate-blue coloration of lobster shell, is due to polarization rather than a conformational change of the chromophore in the protein-bound state. Furthermore, the polarization is attributed to a hydrogen-bonded protonated histidine residue. The calculations on phytochromobilin, in turn, suggest that a stepwise C15-Z,syn --> C15-E,syn (photochemical), C15-E,syn --> C15-E,anti (thermal) mechanism is much more favorable than a concerted, fully photochemical mechanism, and that neutral forms of the chromophore are much less likely to photoisomerize than the parent, protonated form. Accordingly, the calculations indirectly support the view that the photoactivation of phytochrome does not involve a proton transfer from the chromophore to the surrounding protein.
Collapse
Affiliation(s)
- Bo Durbeej
- Department of Chemistry, University of Siena, Via Aldo Moro 2, I-53100, Siena, Italy.
| | | |
Collapse
|
6
|
Jacobi PA, Adel Odeh IM, Buddhu SC, Cai G, Rajeswari S, Fry D, Zheng W, DeSimone RW, Guo J, Coutts LD, Hauck SI, Leung SH, Ghosh I, Pippin. D. Synthetic Studies in Phytochrome Chemistry. Synlett 2005; 19:2861-2885. [PMID: 18633455 PMCID: PMC2467512 DOI: 10.1055/s-2005-918956] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
An account is given of the author's several approaches to the synthesis of the parent chromophore of phytochrome (1), a protein-bound linear tetrapyrrole derivative that controls photomorphogenesis in higher plants. These studies culminated in enantioselective syntheses of both 2R- and 2S-phytochromobilin (4), as well as several (13)C-labeled derivatives designed to probe the site of Z,E-isomerization during photoexcitation. When reacted in vitro, synthetic 2R-4 and recombinant-derived phytochrome apoprotein N-C produced a protein-bound chromophore with identical difference spectra to naturally occurring 1.
Collapse
Affiliation(s)
- Peter A. Jacobi
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA. Fax: 603 646 3946
| | - Imad M. Adel Odeh
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA. Fax: 603 646 3946
| | - Subhas C. Buddhu
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA. Fax: 603 646 3946
| | - Guolin Cai
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA. Fax: 603 646 3946
| | - Sundaramoorthi Rajeswari
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA. Fax: 603 646 3946
| | - Douglas Fry
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA. Fax: 603 646 3946
| | - Wanjun Zheng
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA. Fax: 603 646 3946
| | - Robert W. DeSimone
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA. Fax: 603 646 3946
| | - Jiasheng Guo
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA. Fax: 603 646 3946
| | - Lisa D. Coutts
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA. Fax: 603 646 3946
| | - Sheila I. Hauck
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA. Fax: 603 646 3946
| | - Sam H. Leung
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA. Fax: 603 646 3946
| | - Indranath Ghosh
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA. Fax: 603 646 3946
| | - Douglas Pippin.
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA. Fax: 603 646 3946
| |
Collapse
|
7
|
El Bissati K, Kirilovsky D. Regulation of psbA and psaE expression by light quality in Synechocystis species PCC 6803. A redox control mechanism. PLANT PHYSIOLOGY 2001; 125:1988-2000. [PMID: 11299378 PMCID: PMC88854 DOI: 10.1104/pp.125.4.1988] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2000] [Revised: 11/30/2000] [Accepted: 01/03/2001] [Indexed: 05/17/2023]
Abstract
We investigated the influence of light of different wavelengths on the expression of the psbA gene, which encodes the D1 protein of the photosystem II and the psaE gene, which encodes the subunit Psa-E of the photosystem I, in Synechocystis sp PCC 6803. In an attempt to differentiate between a light-sensory and a redox-sensory signaling processes, the effect of orange, blue, and far-red light was studied in the wild-type and in a phycobilisome-less mutant. Transferring wild-type cells from one type of illumination to another induced changes in the redox state of the electron transport chain and in psbA and psaE expression. Blue and far-red lights (which are preferentially absorbed by the photosystem I) induced an accumulation of psbA transcripts and a decrease of the psaE mRNA level. In contrast, orange light (which is preferentially absorbed by the photosystem II) induced a large accumulation of psaE transcripts and a decrease of psbA mRNA level. Transferring mutant cells from blue to orange light (or vice versa) had no effect either on the redox state of the electron transport chain or on the levels of psbA and psaE mRNAs. Thus, light quality seems to regulate expression of these genes via a redox sensory mechanism in Synechocystis sp PCC 6803 cells. Our data suggest that the redox state of one of the electron carriers between the plastoquinone pool and the photosystem I has opposite influences on psbA and psaE expression. Its reduction induces accumulation of psaE transcripts, and its oxidation induces accumulation of psbA mRNAs.
Collapse
Affiliation(s)
- K El Bissati
- Unité Mixte de Recherche 8543, Centre National de la Recherche Scientifique, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris, France
| | | |
Collapse
|
8
|
Jacobi PA, DeSimone RW, Ghosh I, Guo J, Leung SH, Pippin D. New syntheses of the C,D-ring pyrromethenones of phytochrome and phycocyanin. J Org Chem 2000; 65:8478-89. [PMID: 11112567 DOI: 10.1021/jo005531k] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyrromethenone 7, the C,D-ring segment of phytochrome (Pr, 4), has been prepared in an efficient fashion employing three new strategies. Each of these has potential advantages for the synthesis of labeled material. Our first approach is related to the Gossauer synthesis, with the difference that strong alkali is avoided in the condensation of the C- and D-ring components 8 and 17. The key silyloxypyrrole 17 was readily prepared on multigram scales beginning with inexpensive butyrolactone (10). A second synthesis began with 2-acetylbutyrolactone (41). The key steps involved conversion of 41 to the Z-enoltriflate 42, followed by Pd(0)-catalyzed coupling with trimethylsilylacetylene, p-chlorophenylselenide ring opening, and finally, amidation to afford the ring-D synthon 45 having the proper geometry and oxidation state for conversion to 7. Sonogashira coupling of 45 with the iodopyrrole 22, followed by oxidative elimination, and F(-)-induced 5-exo-dig cyclization of the resultant pyrroloalkyne 47, then completed the synthesis. In similar fashion, we have also prepared pyrromethenone 6, the C,D-ring segment of phycocyanin (2).
Collapse
Affiliation(s)
- P A Jacobi
- Hall-Atwater Laboratories, Wesleyan University, Middletown, Connecticut 06459-0180, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Orta-Ramirez A, Merrill J, Smith D. pH Affects the Thermal Inactivation Parameters of R-Phycoerythrin from Porphyra yezoensis. J Food Sci 2000. [DOI: 10.1111/j.1365-2621.2000.tb09415.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Haeringen CJ, West JS, Davis FJ, Gilbert A, Hadley P, Pearson S, Wheldon AE, Henbest RGC. The Development of Solid Spectral Filters for the Regulation of Plant Growth. Photochem Photobiol 1998. [DOI: 10.1111/j.1751-1097.1998.tb05219.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Gorb L, Korkin A, Leszczynski J, Varnek A, Mark F, Schaffner K. Theoretical ab initio and semiempirical studies on biologically important di- and oligopyrrolic compounds. Pyrromethenone and biliverdin. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0166-1280(97)00165-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Borle F, Fehr F, Nesvadba P, Gossauer A. Formation of Fluorescent and Nonfluorescent Difluoroboron Complexes in the Reaction of BF3Etherate with 21H,24H-Bilin-1,19-dione Derivatives. Photochem Photobiol 1997. [DOI: 10.1111/j.1751-1097.1997.tb07953.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Starostzik C, Marwan W. Functional mapping of the branched signal transduction pathway that controls sporulation in Physarum polycephalum. Photochem Photobiol 1995; 62:930-3. [PMID: 8570734 DOI: 10.1111/j.1751-1097.1995.tb09158.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sporulation of starving plasmodia of Physarum polycephalum was found to be induced by far-red light, blue light or heat shock, each of which is perceived by a different input receptor system. The branched signal transduction pathway was mapped and the time-dependent formation of some of its components analyzed.
Collapse
Affiliation(s)
- C Starostzik
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | |
Collapse
|
14
|
Micura R, Grubmayr K. Ein Seryliminoester des Phycocyanobilins als neues Modell für die Chromophor-Protein-Wechselwirkung des Phytochroms. Angew Chem Int Ed Engl 1995. [DOI: 10.1002/ange.19951071621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Starostzik C, Marwan W. A photoreceptor with characteristics of phytochrome triggers sporulation in the true slime mould Physarum polycephalum. FEBS Lett 1995; 370:146-8. [PMID: 7649293 DOI: 10.1016/0014-5793(95)00820-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Phytochrome is a ubiquitous photoreceptor in plants that controls a variety of responses to light, including gene expression, differential cell growth and intracellular movement of organelles. All phytochromes analysed so far are reversibly interconverted by light between an inactive and an active conformation, each of which has a different and characteristic absorbance spectrum. Based on photophysiological measurements we provide evidence, that a photoreceptor with these unique properties of phytochrome triggers sporulation in the true slime mould Physarum polycephalum.
Collapse
Affiliation(s)
- C Starostzik
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | |
Collapse
|
16
|
van Brederode ME, Gensch T, Hoff WD, Hellingwerf KJ, Braslavsky SE. Photoinduced volume change and energy storage associated with the early transformations of the photoactive yellow protein from Ectothiorhodospira halophila. Biophys J 1995; 68:1101-9. [PMID: 7756529 PMCID: PMC1281832 DOI: 10.1016/s0006-3495(95)80284-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The photocycle of the photoactive yellow protein (PYP) isolated from Ectothiorhodospira halophila was analyzed by flash photolysis with absorption detection at low excitation photon densities and by temperature-dependent laser-induced optoacoustic spectroscopy (LIOAS). The quantum yield for the bleaching recovery of PYP, assumed to be identical to that for the phototransformation of PYP (pG), to the red-shifted intermediate, pR, was phi R = 0.35 +/- 0.05, much lower than the value of 0.64 reported in the literature. With this value and the LIOAS data, an energy content for pR of 120 kJ/mol was obtained, approximately 50% lower than for excited pG. Concomitant with the photochemical process, a volume contraction of 14 ml/photoconverted mol was observed, comparable with the contraction (11 ml/mol) determined for the bacteriorhodopsin monomer. The contraction in both cases is interpreted to arise from a protein reorganization around a phototransformed chromophore with a dipole moment different from that of the initial state. The deviations from linearity of the LIOAS data at photon densities > 0.3 photons per molecule are explained by absorption by pG and pR during the laser pulse duration (i.e., a four-level system, pG, pR, and their respective excited states). The data can be fitted either by a simple saturation process or by a photochromic equilibrium between pG and pR, similar to that established between the parent chromoprotein and the first intermediate(s) in other biological photoreceptors. This nonlinearity has important consequences for the interpretation of the data obtained from in vitro studies with powerful lasers.
Collapse
Affiliation(s)
- M E van Brederode
- Department of Microbiology, E. C. Slater Institute, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Sineshchekov VA. Photobiophysics and photobiochemistry of the heterogeneous phytochrome system. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - BIOENERGETICS 1995; 1228:125-164. [DOI: https:/doi.org/10.1016/0005-2728(94)00173-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
|
18
|
Photobiophysics and photobiochemistry of the heterogeneous phytochrome system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1995. [DOI: 10.1016/0005-2728(94)00173-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Jacobi PA, Guo J, Zheng W. An unequivocal synthesis of the ring-A,B dihydropyrromethenone of phytochrome. Tetrahedron Lett 1995. [DOI: 10.1016/0040-4039(95)00032-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Micura R, Grubmayr K. Long-wavelength absorbing derivatives of phycocyanobilin: New structural aspects of phytochrome. Bioorg Med Chem Lett 1994. [DOI: 10.1016/s0960-894x(01)80275-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|