1
|
Vayá I, Gustavsson T, Markovitsi D. High-Energy Long-Lived Emitting Mixed Excitons in Homopolymeric Adenine-Thymine DNA Duplexes. Molecules 2022; 27:molecules27113558. [PMID: 35684495 PMCID: PMC9181881 DOI: 10.3390/molecules27113558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
The publication deals with polymeric pA●pT and oligomeric A20●T20 DNA duplexes whose fluorescence is studied by time-correlated single photon counting. It is shown that their emission on the nanosecond timescale is largely dominated by high-energy components peaking at a wavelength shorter than 305 nm. Because of their anisotropy (0.02) and their sensitivity to base stacking, modulated by the duplex size and the ionic strength of the solution, these components are attributed to mixed ππ*/charge transfer excitons. As high-energy long-lived excited states may be responsible for photochemical reactions, their identification via theoretical studies is an important challenge.
Collapse
Affiliation(s)
- Ignacio Vayá
- Departamento de Química, Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, 46022 Valencia, Spain;
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France;
| | - Thomas Gustavsson
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France;
| | - Dimitra Markovitsi
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France;
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
- Correspondence:
| |
Collapse
|
2
|
Vayá I, Miannay FA, Gustavsson T, Markovitsi D. High-Energy Long-Lived Excited States in DNA Double Strands. Chemphyschem 2010; 11:987-9. [DOI: 10.1002/cphc.201000027] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
3
|
Nachtigallová D, Hobza P, Ritze HH. Electronic splitting in the excited states of DNA base homodimers and -trimers: an evaluation of short-range and Coulombic interactions. Phys Chem Chem Phys 2008; 10:5689-97. [DOI: 10.1039/b806323k] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
4
|
Abstract
Excitation energy transfer in DNA has similarities to charge transfer, but the transport is of an excited state, not of mass or charge. Use of the fluorescent, modified adenine base 2-aminopurine (2AP) as an energy trap in short (3- to 20-base) single- and double-stranded DNA oligomers is reviewed. Variation of 2AP's neighboring sequence shows (1) relatively efficient transfer from adenine compared to that from cytosine and thymine, (2) efficient transfer from guanine, but only when 2AP is at the 3' end, (3) approximate equality of efficiencies for 3' to 5' and 5' to 3' directional transfer in adenine tracks. The overall, average transfer distance at room temperature is about four adenine bases or less before de-excitation. The transfer fluorescence excitation spectral shape is similar to that of the absorption spectrum of the neighboring normal bases, confirming that initial excitation of the normal bases, followed by emission from 2AP (i.e. energy transfer), is occurring. Transfer apparently may take place both along one strand and cross-strand, depending on the oligomer sequence. Efficiency increases when the temperature is decreased, rising above 50% (overall efficiency) in decamers of adenine below -60 degrees C (frozen media). Modeling of the efficiencies of transfer from the nearest several adenine neighbors of 2AP in these oligomers suggests that the nearest two neighbors transfer with near 100% efficiency. As bases in B DNA, as well as in single-stranded DNA, are separated by less than 5 A (less than the size of a base), standard Förster transfer theory should not apply. Indeed, while both theory and experiment show efficiency decreasing with donor-acceptor distance, the experimental dependence clearly disagrees with Förster 1/r6 dependence. It is not yet clear what the best theoretical approach is, but any calculation must deal accurately with the excited states of bases, including strong base-base interactions and structural fluctuations, and should reflect the increase of efficiency with temperature decrease and the relative insensitivity to strandedness (single, double). Attempts to use DNA as a molecular "fiber optic" face three primary challenges. First, reasonable efficiency over more than a base or two occurs only in adenine stretches at temperatures well below freezing. Second, transfer in these adenine tracks is efficient in both directions. Third, absorption of UV light occurs randomly, making excitation at a specific site on this "fiber optic" a challenge.
Collapse
Affiliation(s)
- Thomas M Nordlund
- Department of Physics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
5
|
Kwok WM, Ma C, Phillips DL. Femtosecond time- and wavelength-resolved fluorescence and absorption spectroscopic study of the excited states of adenosine and an adenine oligomer. J Am Chem Soc 2007; 128:11894-905. [PMID: 16953630 DOI: 10.1021/ja0622002] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
By employing broadband femtosecond Kerr-gated time-resolved fluorescence (KTRF) and transient absorption (TA) techniques, we report the first (to our knowledge) femtosecond combined time- and wavelength-resolved study on an ultraviolet-excited nucleoside and a single-stranded oligonucleotide (namely adenosine (Ado) and single-stranded adenine oligomer (dA)(20)) in aqueous solution. With the advantages of the ultrafast time resolution, the broad spectral and temporal probe window, and a high sensitivity, our KTRF and TA results enable the real time monitoring and spectral characterization of the excited-state relaxation processes of the Ado nucleoside and (dA)(20) oligonucleotide investigated. The temporal evolution of the 267 nm excited Ado KTRF spectra indicates there are two emitting components with lifetimes of approximately 0.13 ps and approximately 0.45 ps associated with the L(a) and L(b) pipi* excited states, respectively. These Ado results reveal no obvious evidence for the involvement of the npi* state along the irradiative internal conversion pathway. A distinct mechanism involving only the two pipi* states has been proposed for the ultrafast Ado deactivation dynamics in aqueous solution. The time dependence of the 267 nm excited (dA)(20) KTRF and TA spectra reveals temporal evolution from an ultrafast "A-like" state (with a approximately 0.39 ps decay time) to a relatively long-lived E(1) "excimer" (approximately 4.3 ps decay time) and an E(2) "excimer-like" (approximately 182 ps decay time) state. The "A-like" state has a spectral character closely resembling the excited state of Ado. Comparison of the spectral evolution between the results for Ado and (dA)(20) provides unequivocal evidence for the local excitation character of the initially photoexcited (dA)(20). The rapid transformation of the locally excited (dA)(20) component into the delocalized E(1) "excimer" state which then further evolves into the E(2) "excimer-like" state indicates that base stacking has a high ability to modify the excited-state deactivation pathway. This modification appears to occur by suppressing the internal conversion pathway of an individually excited base component where the stacking interaction mediates efficient interbase energy transfer and promotes formation of the collective excited states. This feature of the local excitation that is subsequently followed by rapid energy delocalization into nearby bases may occur in many base multimer systems. Our results provide an important new contribution to better understanding DNA photophysics.
Collapse
Affiliation(s)
- Wai-Ming Kwok
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong S. A. R., P. R. China
| | | | | |
Collapse
|
6
|
Emanuele E, Zakrzewska K, Markovitsi D, Lavery R, Millié P. Exciton states of dynamic DNA double helices: alternating dCdG sequences. J Phys Chem B 2007; 109:16109-18. [PMID: 16853047 DOI: 10.1021/jp051833k] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present communication deals with the excited states of the alternating DNA oligomer (dCdG)5.(dCdG)5 which correspond to the UV absorption band around 260 nm. Their properties are studied in the frame of the exciton theory, combining molecular dynamics simulations and quantum chemistry data. It is shown that the dipolar coupling undergoes important variations with the site and the helix geometry. In contrast, the energy of the monomer transitions within the double helix is not sensitive to the local environment. It is thus considered to be distributed over Gaussian curves whose maximum and width are derived from the experimental absorption spectra of nucleosides in aqueous solution. The influence of the spectral width on the excited state delocalization and the absorption spectra is much stronger than that of the oligomer plasticity. About half of the excited states are delocalized over at least two bases. Many of them result from the mixing of different monomer states and extend on both strands. The trends found in the simulated spectra, when going from non-interacting monomers to the duplex, are in agreement with experimental observations. Conformational changes enhance the diversity of the states which can be populated upon excitation at a given energy. The states with larger spatial extent are located close to the maximum of the absorption spectrum.
Collapse
Affiliation(s)
- Emanuela Emanuele
- Laboratoire Francis Perrin CEA/DSM/DRECAM/SPAM-CNRS URA 2453, CEA Saclay, 91191 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
7
|
Markovitsi D, Gustavsson T, Talbot F. Excited states and energy transfer among DNA bases in double helices. Photochem Photobiol Sci 2007; 6:717-24. [PMID: 17609764 DOI: 10.1039/b705674e] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The study of excited states and energy transfer in DNA double helices has recently gained new interest connected to the development of computational techniques and that of femtosecond spectroscopy. The present article points out contentious questions regarding the nature of the excited states and the occurrence of energy transfer and shows how they are currently approached. Using as example the polymer poly(dA) . poly(dT), composed of about 2000 adenine-thymine pairs, a model is proposed on the basis of time-resolved measurements (fluorescence decays, fluorescence anisotropy decays and fluorescence spectra, obtained with femtosecond resolution), associated to steady-state spectra. According to this qualitative model, excitation at 267 nm populates excited states that are delocalized over a few bases (excitons). Ultrafast internal conversion directs the excited state population to the lower part of the exciton band giving rise to fluorescence. Questions needing further investigations, both theoretical and experimental, are underlined with particular emphasis on delicate points related to the complexity and the plasticity of these systems.
Collapse
Affiliation(s)
- Dimitra Markovitsi
- Laboratoire Francis Perrin, CEA/DSM/DRECAM/SPAM-CNRS URA 2453, CEA/Saclay, 91191, Gif-sur-Yvette, France
| | | | | |
Collapse
|
8
|
Daniels M, Hart LP, Ho PS, Ballini JP, Vigny P, Brochon JC. Intrinsic fluorescence of B and Z forms of poly d(G-m5C)·poly d(G-m5C), a synthetic double-stranded DNA: spectra and lifetimes by the maximum entropy method. Photochem Photobiol Sci 2007; 6:883-93. [PMID: 17668119 DOI: 10.1039/b615670c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A study has been made of the fluorescence of poly d(G-m5C).poly d(G-m5C), a synthetic double-stranded DNA, in buffered neutral aqueous solution at room temperature, excited by synchrotron radiation at 280 nm and 250 nm and by a frequency-doubled pulse dye laser at 290 nm. Exciting at 280 nm, the B form shows a uni-modal UV spectrum with lambdaf(max) approximately 340 nm. The Z form has in addition a visible emission lambdaf(max) at 450 nm. The spectral positions remain unchanged on exciting at 250 nm but the relative intensities change considerably. Decay profiles have been obtained at 360 nm and 450 nm for both the B and Z forms and have been analyzed by fitting to a pseudo-continuous distribution of 100 (and occasionally 200) exponentials, ranging from 10 ps to 20 ns, by optimizing the 'entropy' of the signal (the method of maximum entropy). We find the mean lifetimes for both wavelengths of emission and for both structural forms fall into three well-separated regions in the ranges indicated tau1 approximately 0.04-0.21 ns, tau2 approximately 0.9-1.26 ns, and tau3 approximately 5.1-6.5 ns. The UV emission, from its spectral position and half-width, correlates with monomeric emission from m5C (and from C for poly d(G-C)). However the lifetime tau1 is approximately 2 orders of magnitude longer than the monomers and points to an involvement of protonated guanosine (GH+, tauf approximately 200 ps) in the overall absorption/emission sequence. In the UV the tau3 emission is predominant, with fractional time-integrated emission approximately 86% for B DNA and approximately 64% for Z. We suggest it results from exciton (stacked) absorption followed by dissociative emission. For Z DNA the visible (450 nm) emission is dominated by a tau3 species (approximately 91%) with a lifetime of 6.5 ns and we suggest it represents a hetero-excimer emission consequent upon absorption by the strongly overlapped base-stacking, which differs from that in B DNA. The weak emission corresponding to tau2 is made more apparent by scanned gated detection of the emission from laser excitation (290 nm) of single-crystal d(m5C-G)3. A central role is attributed to the tight stacking of the bases in the Z form which correlates with enhanced hypochromism at 250 nm vs. 280 nm and with the reversal of the fluorescence intensity ratios UV-visible between these wavelengths.
Collapse
Affiliation(s)
- Malcolm Daniels
- Chemistry Department & Radiation Center, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | |
Collapse
|
9
|
Saigusa H. Excited-state dynamics of isolated nucleic acid bases and their clusters. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2006. [DOI: 10.1016/j.jphotochemrev.2006.12.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Emanuele E, Markovitsi D, Millié P, Zakrzewska K. UV Spectra and Excitation Delocalization in DNA: Influence of the Spectral Width. Chemphyschem 2005; 6:1387-92. [PMID: 15940734 DOI: 10.1002/cphc.200500014] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The singlet excited states of the model DNA duplex (dA)10.(dT)10 are studied. Calculations are performed in the exciton theory framework. Molecular dynamics calculations provide the duplex geometry. The dipolar coupling is determined using atomic transition charges. The monomer transition energies are simulated by Gaussian functions resembling the absorption bands of nucleosides in aqueous solutions. Most of the excited states are found to be delocalized over at least two bases and result from the mixing of different monomer states. Their properties are only weakly affected by conformational changes of the double helix. On average, the highest oscillator strength is carried by the upper eigenstates. The duplex absorption spectra are shifted a few nanometers to higher energies with respect to the spectra of noninteracting monomers. The states with larger spatial extent are located close to the maximum of the absorption spectrum.
Collapse
Affiliation(s)
- Emanuela Emanuele
- Laboratoire Francis Perrin, CEA/DSM/DRECAM/SPAM-CNRS URA, 2453 CEA Saclay, 91191 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
11
|
Crespo-Hernández CE, Cohen B, Hare PM, Kohler B. Ultrafast Excited-State Dynamics in Nucleic Acids. Chem Rev 2004; 104:1977-2019. [PMID: 15080719 DOI: 10.1021/cr0206770] [Citation(s) in RCA: 977] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Bouvier B, Dognon JP, Lavery R, Markovitsi D, Millié P, Onidas D, Zakrzewska K. Influence of Conformational Dynamics on the Exciton States of DNA Oligomers. J Phys Chem B 2003. [DOI: 10.1021/jp036164u] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Onidas D, Markovitsi D, Marguet S, Sharonov A, Gustavsson T. Fluorescence Properties of DNA Nucleosides and Nucleotides: A Refined Steady-State and Femtosecond Investigation. J Phys Chem B 2002. [DOI: 10.1021/jp026063g] [Citation(s) in RCA: 265] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- D. Onidas
- Laboratoire Francis Perrin (CNRS URA 2453), DSM/DRECAM/SPAM, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - D. Markovitsi
- Laboratoire Francis Perrin (CNRS URA 2453), DSM/DRECAM/SPAM, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - S. Marguet
- Laboratoire Francis Perrin (CNRS URA 2453), DSM/DRECAM/SPAM, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - A. Sharonov
- Laboratoire Francis Perrin (CNRS URA 2453), DSM/DRECAM/SPAM, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - T. Gustavsson
- Laboratoire Francis Perrin (CNRS URA 2453), DSM/DRECAM/SPAM, CEA Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
14
|
Starikov E. Quantum chemistry of nucleic acids: how it could help and when it is necessary. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2002. [DOI: 10.1016/s1389-5567(02)00024-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Bouvier B, Gustavsson T, Markovitsi D, Millié P. Dipolar coupling between electronic transitions of the DNA bases and its relevance to exciton states in double helices. Chem Phys 2002. [DOI: 10.1016/s0301-0104(01)00523-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Abstract
The sequence, temperature, concentration, and solvent dependence of singlet energy transfer from normal DNA bases to the 2-aminopurine base in synthesized DNA oligomers were investigated by optical spectroscopy. Transfer was shown directly by a variable fluorescence excitation band at 260-280 nm. Adenine (A) is the most efficient energy donor by an order of magnitude. Stacks of A adjacent to 2AP act as an antenna for 2AP excitation. An interposed G, C, or T base between A and 2AP effectively blocks transfer from A to 2AP. Base stacking facilitates transfer, while base pairing reduces energy transfer slightly. The efficiency is differentially temperature dependent in single- and double-stranded oligomers and is highest below 0 degrees C in samples measured. An efficiency transition occurs well below the melting transition of a double-stranded decamer. The transfer efficiency in the duplex decamer d(CTGA[2AP]TTCAG)(2) is moderately dependent on the sample and salt concentration and is solvent dependent. Transfer at physiological temperature over more than a few bases is improbable, except along consecutive A's, indicating that singlet energy transfer is not a major factor in the localization of UV damage in DNA. These results have features in common with recently observed electron transfer from 2AP to G in oligonucleotides.
Collapse
Affiliation(s)
- D G Xu
- Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294-1170, USA
| | | |
Collapse
|
17
|
Georghiou S, Gerke LS. Excited-State Properties of Thymidine and Their Relevance to Its Heterogeneous Emission in Double-Stranded DNA. Photochem Photobiol 1999. [DOI: 10.1111/j.1751-1097.1999.tb03340.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Görner H. Photochemistry of DNA and related biomolecules: quantum yields and consequences of photoionization. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1994; 26:117-39. [PMID: 7815187 DOI: 10.1016/1011-1344(94)07068-7] [Citation(s) in RCA: 151] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The reactions of nucleic acids and constituents, which can be induced by laser UV irradiation, are described. Emphasis is placed on the quantum yields of various stable photoproducts of DNA and model compounds upon irradiation at 193, 248, 254 or 266 nm. In particular, those quantum yields and processes are discussed which involve photoionization as the initial step and occur in aqueous solution under well defined conditions, e.g. type of atmosphere. The efficiencies of some photoproducts, with respect to photoionization using irradiation at 193 or 248 nm, are presented. Radical cations of nucleobases are important sources of damage of biological substrates since they can cause lesions other than dimers and adducts, e.g. strand breakage, abasic sites, crosslinks or inactivation of plasmid and chromosomal DNA. While competing photoreactions, such as hydration, dimerization or adduct formation, diminish the selectivity of the photoionization method, a combination with model studies on pyrimidine- and purine-containing constituents of DNA has brought about an enhanced insight into the reaction mechanisms. The knowledge concerning the lethal events in plasmid and cellular DNA has been greatly improved by correlation with the chemical effects obtained by gamma-radiolysis, vacuum-UV (< 190 nm) and low-intensity irradiation at 254 nm.
Collapse
Affiliation(s)
- H Görner
- Max-Planck-Institut für Strahlenchemie, Germany
| |
Collapse
|