1
|
Dillon J, Skonieczna M, Mandal K, Paik D. The Photochemical Attachment of the O-Glucoside of 3-Hydroxykynurenine to α-Crystallin: A Model for Lenticular Aging. Photochem Photobiol 2008. [DOI: 10.1111/j.1751-1097.1999.tb03282.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Rousseva LA, Gaillard ER, Paik DC, Merriam JC, Ryzhov V, Garland DL, Dillon JP. Oxindolealanine in age-related human cataracts. Exp Eye Res 2007; 85:861-8. [DOI: 10.1016/j.exer.2007.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 08/23/2007] [Accepted: 08/28/2007] [Indexed: 11/29/2022]
|
3
|
Kopylova LV, Snytnikova OA, Chernyak EI, Morozov SV, Tsentalovich YP. UV filter decomposition. A study of reactions of 4-(2-aminophenyl)-4-oxocrotonic acid with amino acids and antioxidants present in the human lens. Exp Eye Res 2007; 85:242-9. [PMID: 17574242 DOI: 10.1016/j.exer.2007.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 04/23/2007] [Accepted: 04/24/2007] [Indexed: 11/16/2022]
Abstract
Deamination of UV filters, such as kynurenine (KN), in the human lens results in protein modification. Thermal reactions of the product of kynurenine deamination, 4-(2-aminophenyl)-4-oxocrotonic acid (CKA), with amino acids (histidine, lysine, methionine, tryptophan, tyrosine, cysteine) and antioxidants (ascorbate, NADH, glutathione reduced) were studied. The rate constants of the reactions under physiological conditions were measured. The rate constants of CKA addition to cysteine k(Cys)=36+/-4M(-1)s(-1) and to glutathione k(GSH)=2.1+/-0.2M(-1)s(-1) are 4-5 orders of magnitude higher than the rate constants of CKA reactions with the other amino acids and antioxidants. The Arrhenius parameters for k(Cys) and k(GSH) were determined: A(GSH)=(1.8+/-0.7)x10(5)M(-1)s(-1), E(GSH)=29.2+/-5.6kJmol(-1), A(Cys)=(2.7+/-0.9)x10(8)M(-1)s(-1), E(Cys)=40.4+/-5.7kJmol(-1). The large difference in frequency factors for k(Cys) and k(GSH) is attributed to steric hindrance, peculiar to the bulky GSH molecule.
Collapse
Affiliation(s)
- Lyudmila V Kopylova
- International Tomography Center, Institutskaya 3a, Novosibirsk 630090, Russia
| | | | | | | | | |
Collapse
|
4
|
Kessel L, Kalinin S, Nagaraj RH, Larsen M, Johansson LBÅ. Time-resolved and Steady-state Fluorescence Spectroscopic Studies of the Human Lens with Comparison to Argpyrimidine, Pentosidine and 3-OH-kynurenine¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0760549trassf2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Kinetics and mechanism of reactions of photoexcited kynurenine with molecules of some natural compounds. Russ Chem Bull 2007. [DOI: 10.1007/s11172-007-0109-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
6
|
Snytnikova O, Sherin P, Tsentalovich Y. Biphotonic ionization of kynurenine and 3-hydroxykynurenine. J Photochem Photobiol A Chem 2007. [DOI: 10.1016/j.jphotochem.2006.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Tsentalovich YP, Snytnikova OA, Forbes MDE, Chernyak EI, Morozov SV. Photochemical and thermal reactivity of kynurenine. Exp Eye Res 2006; 83:1439-45. [PMID: 16963024 DOI: 10.1016/j.exer.2006.07.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 07/17/2006] [Accepted: 07/25/2006] [Indexed: 11/23/2022]
Abstract
The thermal and photochemical reactivity of kynurenine (KN), a tryptophan metabolite found in human lenses, has been studied in aqueous solution. The decarboxylation reaction of KN, resulting in the formation of 4-hydroxyquinoline, is reported for the first time. Rate constants for KN deamination and decarboxylation were determined in the temperature range 50-90 degrees C. The quantum yields for KN photodecomposition under argon were measured to be Phi Ar=(2.0+/-0.2) x 10(-5) and under oxygen Phi O2=(1.1+/-0.1) x 10(-4).
Collapse
Affiliation(s)
- Yuri P Tsentalovich
- Department of Multispin Coordination Compounds, International Tomography Center, Institutskaya 3a, Novosibirsk, Russia.
| | | | | | | | | |
Collapse
|
8
|
Kessel L, Kalinin S, Soroka V, Larsen M, Johansson LBA. Impact of UVR-A on whole human lenses, supernatants of buffered human lens homogenates, and purified argpyrimidine and 3-OH-kynurenine. ACTA ACUST UNITED AC 2005; 83:221-7. [PMID: 15799737 DOI: 10.1111/j.1600-0420.2005.00388.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Yellow chromophores and fluorescent compounds accumulate in the lens with age. Some of these compounds are photochemically active. The present study aimed to examine the photochemical effect of ultraviolet radiation-A (UVR-A) on the human lens. METHODS Intact human lenses and supernatants of buffered lens homogenates were exposed to UVR-A. The effect of UVR-A was evaluated by time-resolved and steady-state fluorescence spectroscopy, visual evaluation of colour and protein gel electrophoresis. RESULTS Intact lenses exposed to UVR-A showed no changes in time-resolved or steady-state fluorescence properties but the yellow coloration was visibly attenuated. The supernatants of buffered lens homogenates exposed to UVR-A demonstrated a reduction in time-resolved and steady-state fluorescent properties and protein cross-linking. CONCLUSIONS Exposure of the intact lens to UVR-A causes chromophore bleaching without affecting fluorescence, indicating that non-fluorescent chromophores have been destroyed. After homogenization, both chromophores and fluorophores from the lens suffer damage and proteins aggregate. This indicates that powerful mechanisms of protection against UVR-A found in the intact lens are disturbed by homogenization of the lens, suggesting that isolated lens proteins cannot be used as a model system for studying cataractogenesis. Hypothetically, the protective mechanism could be related to the rigidly packed three-dimensional structure of the lens proteins or to the abundance of antioxidative and free radical scavenging defence systems.
Collapse
Affiliation(s)
- Line Kessel
- Department of Ophthalmology. Herlev Hospital. University of Copenhagen, Herlev, Denmark.
| | | | | | | | | |
Collapse
|
9
|
Abstract
Age-related cataract is the leading cause of world blindness. Until recently, the biochemical mechanisms that result in human cataract formation have remained a mystery. In the case of nuclear cataract, it is becoming apparent that changes that take place within the lens at middle age may be ultimately responsible. The centre of the lens contains proteins that were synthesised prior to birth and while these crystallins are remarkably stable, it appears that an antioxidant environment may be necessary in order for them to remain soluble and for lens transparency. Once an internal barrier to the movement of small molecules, such as antioxidants, develops in the normal lens at middle age, the long-lived proteins in the lens centre become susceptible both to covalent attachment of reactive molecules, such as UV filters, and to oxidation. These processes of protein modification may, over time, lead inevitably to lens opacification and cataract.
Collapse
Affiliation(s)
- R J W Truscott
- Australian Cataract Research Foundation, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
| |
Collapse
|
10
|
Abstract
Light damage to the retina occurs through three general mechanisms involving thermal, mechanical, or photochemical effects. The particular mechanism activated depends on the wavelength and exposure duration of the injuring light. The transitions between the various light damage mechanism may overlap to some extent. Energy confinement is a key concept in understanding or predicting the type of damage mechanism produced by a given light exposure. As light energy (either from a laser or an incoherent source) is deposited in the retina, its penetration through, and its absorption in, various tissue compartments is determined by its wavelength. Strongly absorbing tissue components will tend to "concentrate" the light energy. The effect of absorbed light energy largely depends on the rate of energy deposition, which is correlated with the exposure duration. If the rate of energy deposition is too low to produce an appreciable temperature increase in the tissue, then any resulting tissue damage necessarily occurs because of chemical (oxidative) reactions induced by absorption of energetic photons (photochemical damage). If the rate of energy deposition is faster than the rate of thermal diffusion (thermal confinement), then the temperature of the exposed tissue rises. If a critical temperature is reached (typically about 10 degrees C above basal), then thermal damage occurs. If the light energy is deposited faster than mechanical relaxation can occur (stress confinement), then a thermoelastic pressure wave is produced, and tissue is disrupted by shear forces or by cavitation-nonlinear effects. Very recent evidence suggests that ultrashort laser pulses can produce tissue damage through nonlinear and photochemical mechanisms; the latter because of two-photon excitation of cellular chromophores. In addition to tissue damage caused directly by light absorption, light toxicity can be produced by the presence of photosensitizing agents. Drugs excited to reactive states by ultraviolet (UV) or visible light produce damage by type I (free radical) and type II (oxygen dependent) mechanisms. Some commonly used drugs, such as certain antibiotics, nonsteroidal anti-inflammatory drugs (NSAIDs), and psychotherapeutic agents, as well as some popular herbal medicines, can produce ocular phototoxicity. Specific cellular effects and damage end points characteristic of light damage mechanisms are described.
Collapse
Affiliation(s)
- Randolph D Glickman
- Department of Ophthalmology, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA.
| |
Collapse
|
11
|
Kessel L, Kalinin S, Nagaraj RH, Larsen M, Johansson LBA. Time-resolved and steady-state fluorescence spectroscopic studies of the human lens with comparison to argpyrimidine, pentosidine and 3-OH-kynurenine. Photochem Photobiol 2002; 76:549-54. [PMID: 12462652 DOI: 10.1562/0031-8655(2002)076<0549:trassf>2.0.co;2] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The intrinsic fluorescence from the human lens on excitation in the UV region, referred to as blue lens autofluorescence, increases with age or in the presence of diabetes. The present study reveals that the relative contribution of compounds responsible for the blue autofluorescence appears to be a constant with age. Three potential candidates for the blue fluorescence were also studied with respect to fluorescence spectroscopic properties. These were argpyrimidine and pentosidine, both advanced glycation end products, and 3-hydroxykynurenine (3-OH-kynurenine), a photooxidative derivative of tryptophan. It was shown that the spectral properties of argpyrimidine and pentosidine are compatible with the observed blue fluorescence of the human lens, whereas the fluorescence from 3-OH-kynurenine is negligible.
Collapse
Affiliation(s)
- Line Kessel
- Department of Ophthalmology, Herlev Hospital, University of Copenhagen, Herlev, Denmark.
| | | | | | | | | |
Collapse
|
12
|
Linetsky M, James HL, Ortwerth BJ. Spontaneous generation of superoxide anion by human lens proteins and by calf lens proteins ascorbylated in vitro. Exp Eye Res 1999; 69:239-48. [PMID: 10433859 DOI: 10.1006/exer.1999.0710] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proteins isolated from aged human lenses and brunescent cataracts exhibit extensive disulfide bond formation. Diabetic rat lenses similarly contain disulfide-bonded protein aggregates. These observations are consistent with the known link between diabetes, glycation and oxidative damage, and suggest a role for reactive oxygen species (ROS) in this process. To assess whether the glycation-related modifications in human lens proteins spontaneously generate ROS, superoxide anion formation was measured using both cataractous lens proteins and calf lens proteins glycated in vitro with ascorbic acid (ascorbylated). The water-insoluble fraction from aged normal human lenses generated 0.3-0.6 nmol superoxide h(-1)mg protein(-1), whereas the activity increased to 0.5-1.8 nmol h(-1)mg protein(-1)with the WI fraction from brunescent cataracts, and 2.3 nmol h(-1)mg protein(-1)with calf lens proteins ascorbylated for 4 weeks in vitro. The activity in the human lens proteins was observed in both the water-soluble and water-insoluble fractions, and was completely dependent upon the presence of oxygen. The pH optimum curve for superoxide formation increased from pH 6.5 to 10 with both the cataract and ascorbylated proteins. The superoxide-generating activity in human lens was completely bound to a boronate affinity column, but only partially bound with the ascorbylated proteins. The superoxide anion produced by a 5 m m solution of purified N(epsilon)-fructosyl-lysine was barely detectable, and therefore, could not account for the superoxide formed by any of the lens protein preparations. Also, superoxide formation increased 10-fold at pH 8.8 with fructosyl-lysine, but only 1.3-1.8-fold with human lens proteins. The addition of copper-stimulated superoxide formation with glycated bovine serum albumin, but no stimulation was seen with cataractous proteins. Assays of specific compounds showed that catechol, hydroquinone, 3-OH kynurenine and 3-OH anthranylic acid exhibited the greatest activity for superoxide generation, but had a very short halflife. 2,3-Dihydroxypyridine and 4,5 dihydroxynaphthalene were one and two orders of magnitude less reactive. In long-term incubations at 37 degrees, cataractous proteins retained the potential to produce superoxide anion, losing only half of the initial activity after 6-7 days. Therefore, the water-insoluble fraction from aged human lenses and dark brown cataracts are potentially capable of generating >100 nmol mg protein(-1)and >170 nmol mg protein(-1)of superoxide anion respectively, likely due to the presence of advanced glycation endproducts in human lens proteins. This spontaneous generation of superoxide anion in vivo could account for a major portion of the oxidation of sulfur amino acids seen during aging and cataract formation.
Collapse
Affiliation(s)
- M Linetsky
- Mason Eye Institute, University of Missouri, Columbia, MO, 65212, USA
| | | | | |
Collapse
|
13
|
Reszka KJ, Bilski P, Chignell CF, Dillon J. Free radical reactions photosensitized by the human lens component, kynurenine: an EPR and spin trapping investigation. Free Radic Biol Med 1996; 20:23-34. [PMID: 8903676 DOI: 10.1016/0891-5849(95)02018-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have undertaken electron paramagnetic resonance and spin trapping investigations of the photochemistry of kynurenine (KN), a natural component of the human eye and close analog of the principal chromophore in the young human lens 3-OH-kynurenine O-glucoside (3HKG). 5,5-Dimethyl-1-pyrroline N-oxide (DMPO) was employed as a spin trap. We found that upon UV irradiation (> 300 nm) KN photoreduces oxygen to superoxide radical (in DMSO) and nitromethane (CH3NO2) to a nitromethane radical anion (CH3NO2.-) (in air-free buffers, pH 7 and 9.5). KN also sensitized photooxidation of cysteine, NADH, EDTA, azide, and ascorbate; oxygen greatly accelerated this process. Oxidation of cysteine, NADH, and EDTA was accompanied by superoxide radical formation. Cysteinyl and azidyl radicals were detected as DMPO adducts. We also observed that KN undergoes photodegradation to a product(s) whose photosensitizing capacity is greater than that of KN itself. We postulate that: (i) 3HKG may be able to photoinitiate free radical reactions in vivo, and (ii) oxygen is an important factor determining the yields of free radical processes initiated by lenticular chromophores.
Collapse
Affiliation(s)
- K J Reszka
- Laboratory of Molecular Biophysics, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC, USA.
| | | | | | | |
Collapse
|
14
|
Linetsky M, Ortwerth BJ. The generation of hydrogen peroxide by the UVA irradiation of human lens proteins. Photochem Photobiol 1995; 62:87-93. [PMID: 7638274 DOI: 10.1111/j.1751-1097.1995.tb05243.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The water-insoluble proteins from aged human lens are known to contain protein-bound chromophores that act as UVA senisitizers. The irradiation of a sonication-solubilized, water-insoluble fraction from human lenses (55-75 years) with UVA light (1.5 kJ/cm2, gamma > 338nm) caused an oxygen-dependent photolysis of tryptophan, not seen when either alpha-crystallin or lysozyme were irradiated. The suggested requirement for active oxygen species was consistent with a linear increase in hydrogen peroxide formation, which was also observed. A final concentration of 55 microM H2O2 was attained, with no H2O2 being detected in either dark-incubated controls or in irradiated samples of native proteins. The UVA-dependent H2O2 formation was increased 50% by superoxide dismutase (SOD) and abolished by catalase, arguing for the initial generation of superoxide anion. A linear photolysis of histidine and tryptophan was also seen; however, the addition of SOD or SOD and catalase had no effect on the photolytic destruction of either amino acid. Superoxide dismutase increased the oxidation of protein SH groups implicating H2O2, but SOD and catalase caused a decrease in SH oxidation only at later time periods. The direct addition of H2O2 to a water-insoluble sonicate supernatant fraction caused only a slight oxidation of SH groups, but this was increased four- to eight-fold when the protein was denatured in 4.0 M guanidine hydrochloride. Overall, the data suggest a UVA-dependent oxidation of protein SH groups via H2O2 generated within the large protein aggregates of the water-insoluble fraction. These data also provide a mechanism for oxidation of the sulfur-containing amino acids in vivo--a process that is known to accompany the formation of age-onset cataracts.
Collapse
Affiliation(s)
- M Linetsky
- Mason Institute of Ophthalmology, University of Missouri, Columbia 65212, USA
| | | |
Collapse
|