1
|
Hippler M, Nelson N. The Plasticity of Photosystem I. PLANT & CELL PHYSIOLOGY 2021; 62:1073-1081. [PMID: 33768246 DOI: 10.1093/pcp/pcab046] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Most of life's energy comes from sunlight, and thus, photosynthesis underpins the survival of virtually all life forms. The light-driven electron transfer at photosystem I (PSI) is certainly the most important generator of reducing power at the cellular level and thereby largely determines the global amount of enthalpy in living systems (Nelson 2011). The PSI is a light-driven plastocyanin:ferredoxin oxidoreductase, which is embedded into thylakoid membranes of cyanobacteria and chloroplasts of eukaryotic photosynthetic organism. Structural determination of complexes of the photosynthetic machinery is vital for the understanding of its mode of action. Here, we describe new structural and functional insights into PSI and associated light-harvesting proteins, with a focus on the plasticity of PSI.
Collapse
Affiliation(s)
- Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nathan Nelson
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| |
Collapse
|
2
|
Chen JH, Wu H, Xu C, Liu XC, Huang Z, Chang S, Wang W, Han G, Kuang T, Shen JR, Zhang X. Architecture of the photosynthetic complex from a green sulfur bacterium. Science 2021; 370:370/6519/eabb6350. [PMID: 33214250 DOI: 10.1126/science.abb6350] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/09/2020] [Indexed: 01/09/2023]
Abstract
The photosynthetic apparatus of green sulfur bacteria (GSB) contains a peripheral antenna chlorosome, light-harvesting Fenna-Matthews-Olson proteins (FMO), and a reaction center (GsbRC). We used cryo-electron microscopy to determine a 2.7-angstrom structure of the FMO-GsbRC supercomplex from Chlorobaculum tepidum The GsbRC binds considerably fewer (bacterio)chlorophylls [(B)Chls] than other known type I RCs do, and the organization of (B)Chls is similar to that in photosystem II. Two BChl layers in GsbRC are not connected by Chls, as seen in other RCs, but associate with two carotenoid derivatives. Relatively long distances of 22 to 33 angstroms were observed between BChls of FMO and GsbRC, consistent with the inefficient energy transfer between these entities. The structure contains common features of both type I and type II RCs and provides insight into the evolution of photosynthetic RCs.
Collapse
Affiliation(s)
- Jing-Hua Chen
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China.,Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Hangjun Wu
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China.,Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Caihuang Xu
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China
| | - Xiao-Chi Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
| | - Zihui Huang
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China
| | - Shenghai Chang
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China.,Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China.
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China. .,Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 700-8530 Okayama, Japan
| | - Xing Zhang
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China. .,Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, 310058 Zhejiang, China.,Zhejiang Laboratory for System and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121 Zhejiang, China
| |
Collapse
|
3
|
Structure of the plant photosystem I. Biochem Soc Trans 2018; 46:285-294. [PMID: 29487228 DOI: 10.1042/bst20170299] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/16/2018] [Accepted: 01/22/2018] [Indexed: 11/17/2022]
Abstract
Plant photosystem I (PSI) is one of the most intricate membrane complexes in nature. It comprises two complexes, a reaction center and light-harvesting complex (LHC), which together form the PSI-LHC supercomplex. The crystal structure of plant PSI was solved with two distinct crystal forms. The first, crystallized at pH 6.5, exhibited P21 symmetry; the second, crystallized at pH 8.5, exhibited P212121 symmetry. The surfaces involved in binding plastocyanin and ferredoxin are identical in both forms. The crystal structure at 2.6 Å resolution revealed 16 subunits, 45 transmembrane helices, and 232 prosthetic groups, including 143 chlorophyll a, 13 chlorophyll b, 27 β-carotene, 7 lutein, 2 xanthophyll, 1 zeaxanthin, 20 monogalactosyl diglyceride, 7 phosphatidyl diglyceride, 5 digalactosyl diglyceride, 2 calcium ions, 2 phylloquinone, and 3 iron sulfur clusters. The model reveals detailed interactions, providing mechanisms for excitation energy transfer and its modulation in one of nature's most efficient photochemical machine.
Collapse
|
4
|
Photobiological hydrogen production: Bioenergetics and challenges for its practical application. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2013. [DOI: 10.1016/j.jphotochemrev.2013.05.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Jagannathan B, Shen G, Golbeck JH. The Evolution of Type I Reaction Centers: The Response to Oxygenic Photosynthesis. FUNCTIONAL GENOMICS AND EVOLUTION OF PHOTOSYNTHETIC SYSTEMS 2012. [DOI: 10.1007/978-94-007-1533-2_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Ohashi S, Iemura T, Okada N, Itoh S, Furukawa H, Okuda M, Ohnishi-Kameyama M, Ogawa T, Miyashita H, Watanabe T, Itoh S, Oh-oka H, Inoue K, Kobayashi M. An overview on chlorophylls and quinones in the photosystem I-type reaction centers. PHOTOSYNTHESIS RESEARCH 2010; 104:305-19. [PMID: 20165917 DOI: 10.1007/s11120-010-9530-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 01/16/2010] [Indexed: 05/08/2023]
Abstract
Minor but key chlorophylls (Chls) and quinones in photosystem (PS) I-type reaction centers (RCs) are overviewed in regard to their molecular structures. In the PS I-type RCs, the prime-type chlorophylls, namely, bacteriochlorophyll (BChl) a' in green sulfur bacteria, BChl g' in heliobacteria, Chl a' in Chl a-type PS I, and Chl d' in Chl d-type PS I, function as the special pairs, either as homodimers, (BChl a')(2) and (BChl g')(2) in anoxygenic organisms, or heterodimers, Chl a/a' and Chl d/d' in oxygenic photosynthesis. Conversions of BChl g to Chl a and Chl a to Chl d take place spontaneously under mild condition in vitro. The primary electron acceptors, A (0), are Chl a-derivatives even in anoxygenic PS I-type RCs. The secondary electron acceptors are naphthoquinones, whereas the side chains may have been modified after the birth of cyanobacteria, leading to succession from menaquinone to phylloquinone in oxygenic PS I.
Collapse
Affiliation(s)
- Shunsuke Ohashi
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Roy E, Gast P, van Gorkom H, de Groot HJM, Jeschke G, Matysik J. Photochemically induced dynamic nuclear polarization in the reaction center of the green sulphur bacterium Chlorobium tepidum observed by 13C MAS NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:610-5. [PMID: 17292850 DOI: 10.1016/j.bbabio.2006.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 12/21/2006] [Accepted: 12/29/2006] [Indexed: 11/30/2022]
Abstract
Photochemically induced dynamic nuclear polarization has been observed in reaction centres of the green sulphur bacterium Chlorobium tepidum by (13)C magic-angle spinning solid-state NMR under continuous illumination with white light. An almost complete set of chemical shifts of the aromatic ring carbons of a BChl a molecule has been obtained. All light-induced (13)C NMR signals appear to be emissive, which is similar to the pattern observed in the reaction centers of plant photosystem I and purple bacterial reaction centres of Rhodobacter sphaeroides wild type. The donor in RCs of green sulfur bacteria clearly differs from the substantially asymmetric special pair of purple bacteria and appears to be similar to the more symmetric donor of photosystem I.
Collapse
Affiliation(s)
- Esha Roy
- Leiden Institute of Chemistry, Gorlaeus Laboratoria, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
8
|
Hohmann-Marriott MF, Blankenship RE. Variable fluorescence in green sulfur bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:106-13. [PMID: 17189610 DOI: 10.1016/j.bbabio.2006.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 11/01/2006] [Accepted: 11/07/2006] [Indexed: 11/22/2022]
Abstract
Green sulfur bacteria possess a complex photosynthetic machinery. The dominant light harvesting systems are chlorosomes, which consist of bacteriochlorophyll c, d or e oligomers with small amounts of protein. The chlorosomes are energetically coupled to the membrane-embedded iron sulfur-type reaction center via a bacteriochlorophyll a-containing baseplate protein and the Fenna-Matthews-Olson (FMO) antenna protein. The fluorescence yield and spectral properties of these photosynthetic complexes were investigated in intact cells of several species of green sulfur bacteria under physiological, anaerobic conditions. Surprisingly, green sulfur bacteria show a complex modulation of fluorescence yield upon illumination that is very similar to that observed in oxygenic phototrophs. Within a few seconds of illumination, the fluorescence reaches a maximum, which decreases within a minute of illumination to a lower steady state. Fluorescence spectroscopy reveals that the fluorescence yield during both processes is primarily modulated on the FMO-protein level, while the emission from chlorosomes remains mostly unchanged. The two most likely candidates that modulate bacteriochlorophyll fluorescence are (1) direct excitation quenching at the FMO-protein level and (2) indirect modulation of FMO-protein fluorescence by the reduction state of electron carriers that are part of the reaction center.
Collapse
|
9
|
Miyamoto R, Iwaki M, Mino H, Harada J, Itoh S, Oh-Oka H. ESR Signal of the Iron−Sulfur Center FX and Its Function in the Homodimeric Reaction Center of Heliobacterium modesticaldum,. Biochemistry 2006; 45:6306-16. [PMID: 16700542 DOI: 10.1021/bi0519710] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electron transfer in the membranes and the type I reaction center (RC) core protein complex isolated from Heliobacterium modesticaldum was studied by optical and ESR spectroscopy. The RC is a homodimer of PshA proteins. In the isolated membranes, illumination at 14 K led to accumulation of a stable ESR signal of the reduced iron-sulfur center F(B)(-) in the presence of dithiothreitol, and an additional 20 min illumination at 230 K induced the spin-interacting F(A)(-)/F(B)(-) signal at 14 K. During illumination at 5 K in the presence of dithionite, we detected a new transient signal with the following values: g(z)= 2.040, g(y)= 1.911, and g(x)= 1.896. The signal decayed rapidly with a 10 ms time constant after the flash excitation at 5 K and was attributed to the F(X)(-)-type center, although the signal shape was more symmetrical than that of F(X)(-) in photosystem I. In the purified RC core protein, laser excitation induced the absorption change of a special pair, P800. The flash-induced P800(+) signal recovered with a fast 2-5 ms time constant below 150 K, suggesting charge recombination with F(X)(-). Partial destruction of the RC core protein complex by a brief exposure to air increased the level of the P800(+)A(0)(-) state that gave a lifetime (t(1/2)) of 100 ns at 77 K. The reactions of F(X) and quinone were discussed on the basis of the three-dimensional structural model of RC that predicts the conserved F(X)-binding site and the quinone-binding site, which is more hydrophilic than that in the photosystem I RC.
Collapse
Affiliation(s)
- Ryo Miyamoto
- Division of Material Science, Graduate School of Science, Nagoya University, Nagoya 456-8602, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Hauska G, Schoedl T, Remigy H, Tsiotis G. The reaction center of green sulfur bacteria(1). BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1507:260-77. [PMID: 11687219 DOI: 10.1016/s0005-2728(01)00200-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The composition of the P840-reaction center complex (RC), energy and electron transfer within the RC, as well as its topographical organization and interaction with other components in the membrane of green sulfur bacteria are presented, and compared to the FeS-type reaction centers of Photosystem I and of Heliobacteria. The core of the RC is homodimeric, since pscA is the only gene found in the genome of Chlorobium tepidum which resembles the genes psaA and -B for the heterodimeric core of Photosystem I. Functionally intact RC can be isolated from several species of green sulfur bacteria. It is generally composed of five subunits, PscA-D plus the BChl a-protein FMO. Functional cores, with PscA and PscB only, can be isolated from Prostecochloris aestuarii. The PscA-dimer binds P840, a special pair of BChl a-molecules, the primary electron acceptor A(0), which is a Chl a-derivative and FeS-center F(X). An equivalent to the electron acceptor A(1) in Photosystem I, which is tightly bound phylloquinone acting between A(0) and F(X), is not required for forward electron transfer in the RC of green sulfur bacteria. This difference is reflected by different rates of electron transfer between A(0) and F(X) in the two systems. The subunit PscB contains the two FeS-centers F(A) and F(B). STEM particle analysis suggests that the core of the RC with PscA and PscB resembles the PsaAB/PsaC-core of the P700-reaction center in Photosystem I. PscB may form a protrusion into the cytoplasmic space where reduction of ferredoxin occurs, with FMO trimers bound on both sides of this protrusion. Thus the subunit composition of the RC in vivo should be 2(FMO)(3)(PscA)(2)PscB(PscC)(2)PscD. Only 16 BChl a-, four Chl a-molecules and two carotenoids are bound to the RC-core, which is substantially less than its counterpart of Photosystem I, with 85 Chl a-molecules and 22 carotenoids. A total of 58 BChl a/RC are present in the membranes of green sulfur bacteria outside the chlorosomes, corresponding to two trimers of FMO (42 Bchl a) per RC (16 BChl a). The question whether the homodimeric RC is totally symmetric is still open. Furthermore, it is still unclear which cytochrome c is the physiological electron donor to P840(+). Also the way of NAD(+)-reduction is unknown, since a gene equivalent to ferredoxin-NADP(+) reductase is not present in the genome.
Collapse
Affiliation(s)
- G Hauska
- Lehstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, Germany.
| | | | | | | |
Collapse
|
11
|
Neerken S, Amesz J. The antenna reaction center complex of heliobacteria: composition, energy conversion and electron transfer. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1507:278-90. [PMID: 11687220 DOI: 10.1016/s0005-2728(01)00207-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A survey is given of various aspects of the photosynthetic processes in heliobacteria. The review mainly refers to results obtained since 1995, which had not been covered earlier. It first discusses the antenna organization and pigmentation. The pigments of heliobacteria include some unusual species: bacteriochlorophyll (BChl) g, the main pigment, 8(1) hydroxy chlorophyll a, which acts as primary electron acceptor, and 4,4'-diaponeurosporene, a carotenoid with 30 carbon atoms. Energy conversion within the antenna is very fast: at room temperature thermal equilibrium among the approx. 35 BChls g of the antenna is largely completed within a few ps. This is then followed by primary charge separation, involving a dimer of BChl g (P798) as donor, but recent evidence indicates that excitation of the acceptor pigment 8(1) hydroxy chlorophyll a gives rise to an alternative primary reaction not involving excited P798. The final section of the review concerns secondary electron transfer, an area that is relatively poorly known in heliobacteria.
Collapse
Affiliation(s)
- S Neerken
- Department of Biophysics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA, Leiden, The Netherlands.
| | | |
Collapse
|
12
|
Schmidt KA, Neerken S, Permentier HP, Hager-Braun C, Amesz J. Electron transfer in reaction center core complexes from the green sulfur bacteria Prosthecochloris aestuarii and Chlorobium tepidum. Biochemistry 2000; 39:7212-20. [PMID: 10852720 DOI: 10.1021/bi992861u] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electron transfer in reaction center core (RCC) complexes from the green sulfur bacteria Prosthecochloris aestuarii and Chlorobium tepidum was studied by measuring flash-induced absorbance changes. The first preparation contained approximately three iron-sulfur centers, indicating that the three putative electron acceptors F(X), F(A), and F(B) were present; the Chl. tepidum complex contained on the average only one. In the RCC complex of Ptc. aestuarii at 277 K essentially all of the oxidized primary donor (P840(+)) created by a flash was rereduced in several seconds by N-methylphenazonium methosulfate. In RCC complexes of Chl. tepidum two decay components, one of 0.7 ms and a smaller one of about 2 s, with identical absorbance difference spectra were observed. The fast component might be due to a back reaction of P840(+) with a reduced electron acceptor, in agreement with the notion that the terminal electron acceptors, F(A) and F(B), were lost in most of the Chl. tepidum complexes. In both complexes the terminal electron acceptor (F(A) or F(B)) could be reduced by dithionite, yielding a back reaction of 170 ms with P840(+). At 10 K in the RCC complexes of both species P840(+) was rereduced in 40 ms, presumably by a back reaction with F(X)(-). In addition, a 350 micros component occurred that can be ascribed to decay of the triplet of P840, formed in part of the complexes. For P840(+) rereduction a pronounced temperature dependence was observed, indicating that electron transfer is blocked after F(X) at temperatures below 200 K.
Collapse
Affiliation(s)
- K A Schmidt
- Department of Biophysics, Huygens Laboratory, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
13
|
Kusumoto N, Sétif P, Brettel K, Seo D, Sakurai H. Electron transfer kinetics in purified reaction centers from the green sulfur bacterium Chlorobium tepidum studied by multiple-flash excitation. Biochemistry 1999; 38:12124-37. [PMID: 10508417 DOI: 10.1021/bi990452s] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reaction center preparations from the green sulfur bacterium Chlorobium tepidum, which contain monoheme cytochrome c, were studied by flash-absorption spectroscopy in the near-UV, visible, and near-infrared regions. The decay kinetics of the photooxidized primary donor P840(+), together with the amount of photooxidized cytochrome c, were analyzed along a series of four flashes spaced by 1 ms: 95% of the P840(+) was reduced by cytochrome c with a t(1/2) of approximately 65 micros after the first flash, 80% with a t(1/2) of approximately 100 micros after the second flash, and 23% with a t(1/2) of approximately 100 micros after the third flash; after the fourth flash, almost no cytochrome c oxidation occurred. The observed rates, the establishment of redox equilibrium after each flash, and the total amount of photooxidizable cytochrome c are consistent with the presence of two equivalent cytochrome c molecules per photooxidizable P840. The data are well fitted assuming a standard free energy change DeltaG degrees of -53 meV for electron transfer from one cytochrome c to P840(+), DeltaG degrees being independent of the oxidation state of the other cytochrome c. These observations support a model with two monoheme cytochromes c which are symmetrically arranged around the reaction center core. From the ratio of menaquinone-7 to the bacteriochlorophyll pigment absorbing at 663 nm, it was estimated that our preparations contain 0.6-1.2 menaquinone-7 molecules per reaction center. However, no transient signal due to menaquinone could be observed between 360 and 450 nm in the time window from 10 ns to 4 micros. No recombination reaction between the primary partners P840(+) and A(0)(-) could be detected under normal conditions. Such a recombination was observed (t(1/2) approximately 19 ns) under highly reducing conditions or after accumulation of three electrons on the acceptor side during a series of flashes, showing that the secondary acceptors can stabilize three electrons. From our data, there is no evidence for involvement of menaquinone in charge separation in the reaction center of green sulfur bacteria.
Collapse
Affiliation(s)
- N Kusumoto
- Department of Biology, School of Education, Waseda University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
14
|
Rémigy HW, Stahlberg H, Fotiadis D, Müller SA, Wolpensinger B, Engel A, Hauska G, Tsiotis G. The reaction center complex from the green sulfur bacterium Chlorobium tepidum: a structural analysis by scanning transmission electron microscopy. J Mol Biol 1999; 290:851-8. [PMID: 10398586 DOI: 10.1006/jmbi.1999.2925] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The three-dimensional (3D) structure of the reaction center (RC) complex isolated from the green sulfur bacterium Chlorobium tepidum was determined from projections of negatively stained preparations by angular reconstitution. The purified complex contained the PscA, PscC, PscB, PscD subunits and the Fenna-Matthews-Olson (FMO) protein. Its mass was found to be 454 kDa by scanning transmission electron microscopy (STEM), indicating the presence of two copies of the PscA subunit, one copy of the PscB and PscD subunits, three FMO proteins and at least one copy of the PscC subunit. An additional mass peak at 183 kDa suggested that FMO trimers copurify with the RC complexes. Images of negatively stained RC complexes were recorded by STEM and aligned and classified by multivariate statistical analysis. Averages of the major classes indicated that different morphologies of the elongated particles (length=19 nm, width=8 nm) resulted from a rotation around the long axis. The 3D map reconstructed from these projections allowed visualization of the RC complex associated with one FMO trimer. A second FMO trimer could be correspondingly accommodated to yield a symmetric complex, a structure observed in a small number of side views and proposed to be the intact form of the RC complex.
Collapse
Affiliation(s)
- H W Rémigy
- University of Basel, Klingelbergstr. 70, Basel, CH-4056, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Muhiuddin IP, Rigby SE, Evans MC, Amesz J, Heathcote P. ENDOR and special TRIPLE resonance spectroscopy of photoaccumulated semiquinone electron acceptors in the reaction centers of green sulfur bacteria and heliobacteria. Biochemistry 1999; 38:7159-67. [PMID: 10353826 DOI: 10.1021/bi982042u] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photoaccumulation at 205 K in the presence of dithionite produces EPR signals in anaerobically prepared membranes from Chlorobium limicola and Heliobacterium chlorum that resemble the EPR spectrum of phyllosemiquinone (A1*-) photoaccumulated in photosystem I. We have used ENDOR and special TRIPLE resonance spectroscopy to demonstrate conclusively that these signals arise from menasemiquinone electron acceptors reduced by photoaccumulation. Hyperfine couplings to two protons H-bonded to the semiquinone oxygens have been identified by exchange of H. chlorum into D2O, and hyperfine couplings to the methyl group, and the methylene group of the phytyl side chain, of the semiquinone have also been assigned. The electronic structure of these menasemiquinones in these reaction centers is very similar to that of phyllosemiquinone in PSI, and shows a distorted electron spin density distribution relative to that of phyllosemiquinone in vitro. Special TRIPLE resonance spectrometry has been used to investigate the effect of detergents and oxygen on membranes of C. limicola. Triton X-100 and oxygen affect the menaquinone binding site, but n-dodecyl beta-D-maltoside preparations exhibit a relatively unaltered special TRIPLE spectrum for the photoaccumulated menasemiquinone.
Collapse
Affiliation(s)
- I P Muhiuddin
- School of Biological Sciences, Queen Mary and Westfield College, University of London, Mile End Road, London E1 4NS, UK
| | | | | | | | | |
Collapse
|
16
|
van der Est A, Hager-Braun C, Leibl W, Hauska G, Stehlik D. Transient electron paramagnetic resonance spectroscopy on green-sulfur bacteria and heliobacteria at two microwave frequencies. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1409:87-98. [PMID: 9838060 DOI: 10.1016/s0005-2728(98)00152-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Spin polarized transient EPR spectra taken at X-band (9 GHz) and K-band (24 GHz) of membrane fragments of Chlorobium tepidum and Heliobacillus mobilis are presented along with the spectra of two fractions obtained in the purification of reaction centers (RC) from C. tepidum. The lifetime of P+. is determined by measuring the decay of the EPR signals following relaxation of the initial spin polarization. All samples except one of the RC fractions show evidence of light induced charge separation and formation of chlorophyll triplet states. The lifetime of P+. is found to be biexponential with components of 1.5 ms and 30 ms for C. tepidum and 1.0 and 4.5 ms for Hc. mobilis at 100 K. In both cases, the rates are assigned to recombination from F-X. The spin polarized radical pair spectra for both species are similar and those from Hc. mobilis at room temperature and 100 K are identical. In all cases, an emission/absorption polarization pattern with a net absorption is observed. A slight narrowing of the spectra and a larger absorptive net polarization is found at K-band. No out-of-phase echo modulation is observed. Taken together, the recombination kinetics, the frequency dependence of the spin polarization and the absence of an out-of-phase echo signal lead to the assignment of the spectra to the contribution from P+. to the state P+.F-X. The origin of the net polarization and its frequency dependence are discussed in terms of singlet-triplet mixing in the precursor. It is shown that the field-dependent polarization expected to develop during the 600-700 ps lifetime of P+.A-.0 is in qualitative agreement with the observed spectra. The identity that the acceptor preceding FX and the conflicting evidence from EPR, optical methods and chemical analyses of the samples are discussed.
Collapse
Affiliation(s)
- A van der Est
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
17
|
Kjaer B, Frigaard NU, Yang F, Zybailov B, Miller M, Golbeck JH, Scheller HV. Menaquinone-7 in the reaction center complex of the green sulfur bacterium Chlorobium vibrioforme functions as the electron acceptor A1. Biochemistry 1998; 37:3237-42. [PMID: 9536963 DOI: 10.1021/bi973121t] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Photosynthetically active reaction center complexes were prepared from the green sulfur bacterium Chlorobium vibrioforme NCIMB 8327, and the content of quinones was determined by extraction and high-performance liquid chromatography. The analysis showed a stoichiometry of 1.7 molecules of menaquinone-7/reaction center. No other quinones were detected in the isolated reaction centers, whereas membrane preparations also contained chlorobiumquinone. The possible involvement of quinones in electron transport was investigated by electron paramagnetic resonance (EPR) spectroscopy. A highly anisotropic radical was detected by Q-band EPR spectroscopy in both membranes and isolated reaction centers following dark reduction with sodium dithionite and photoaccumulation at 205 K. At 34 GHz, the EPR spectrum is characterized by a g tensor with gxx = 2.0063, gyy = 2.0052, gzz = 2.0020 and delta B of 0.7 mT, consistent with its identification as a quinone. This spectrum is highly similar in terms of g values and line widths to photoaccumulated A1- in photosystem I of Synechococcus sp. PCC 7002. The results indicate that menaquinone-7 in the green sulfur bacterial reaction center is analogous to phylloquinone in photosystem I.
Collapse
Affiliation(s)
- B Kjaer
- Department of Plant Biology, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark
| | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Tsiotis G, Hager-Braun C, Wolpensinger B, Engel A, Hauska G. Structural analysis of the photosynthetic reaction center from the green sulfur bacterium Chlorobium tepidum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1997. [DOI: 10.1016/s0005-2728(97)00073-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Oh-oka H, Iwaki M, Itoh S. Viscosity dependence of the electron transfer rate from bound cytochrome c to P840 in the photosynthetic reaction center of the green sulfur bacterium Chlorobium tepidum. Biochemistry 1997; 36:9267-72. [PMID: 9230061 DOI: 10.1021/bi9701787] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Anomalous high viscosity dependence was found in the rate of reaction between the bound cytochrome c and the primary donor bacteriochlorophyll dimer (P840) of the reaction center complex purified from the green sulfur bacterium Chlorobium tepidum. The cytochrome has a primary structure with the N-terminal three membrane-spanning helices connected to the extended C-terminal heme-containing hydrophilic moiety. The rate constant of the reaction decreased from 5.0 x 10(3) s-1 to 1.0 x 10 s-1 as the glycerol concentration increased from 0 to 60% (v/v) at 295 K, showing a linear dependence on the -2.4th power of the specific viscosity. The glycerol effect was fully reversible. The extraordinary high viscosity dependence cannot be explained by the simple diffusive Brownian fluctuation model and suggests that the electron transfer mechanism is dependent on the unique conformational fluctuations of the heme-containing moiety of cytochrome c.
Collapse
Affiliation(s)
- H Oh-oka
- Department of Biology, Graduate School of Science, Osaka University, Osaka 560, Japan.
| | | | | |
Collapse
|
21
|
|