1
|
Gottlieb SM, Kim PW, Chang CW, Hanke SJ, Hayer RJ, Rockwell NC, Martin SS, Lagarias JC, Larsen DS. Conservation and Diversity in the Primary Forward Photodynamics of Red/Green Cyanobacteriochromes. Biochemistry 2015; 54:1028-42. [DOI: 10.1021/bi5012755] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sean M. Gottlieb
- Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Peter W. Kim
- Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Che-Wei Chang
- Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Samuel J. Hanke
- Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Randeep J. Hayer
- Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Nathan C. Rockwell
- Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Shelley S. Martin
- Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - J. Clark Lagarias
- Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Delmar S. Larsen
- Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
2
|
Spillane KM, Dasgupta J, Mathies RA. Conformational homogeneity and excited-state isomerization dynamics of the bilin chromophore in phytochrome Cph1 from resonance Raman intensities. Biophys J 2012; 102:709-17. [PMID: 22325295 DOI: 10.1016/j.bpj.2011.11.4019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/23/2011] [Accepted: 11/28/2011] [Indexed: 11/30/2022] Open
Abstract
The ground-state structure and excited-state isomerization dynamics of the P(r) and P(fr) forms of phytochrome Cph1 are investigated using resonance Raman intensity analysis. Electronic absorption and stimulated resonance Raman spectra of P(r) and P(fr) are presented; vibronic analysis of the Raman intensities and absorption spectra reveals that both conformers exist as a single, homogeneous population of molecules in the ground state. The homogeneous and inhomogeneous contributions to the overall electronic broadening are determined, and it is found that the broadening is largely homogeneous in nature, pointing to fast excited-state decay. Franck-Condon displacements derived from the Raman intensity analysis reveal the initial atomic motions in the excited state, including the highly displaced, nontotally symmetric torsional and C(15)-H HOOP modes that appear because of symmetry-reducing distortions about the C(14)-C(15) and C(15)=C(16) bonds. P(fr) is especially well primed for ultrafast isomerization and torsional Franck-Condon analysis predicts a <200 fs P(fr) → P(r) isomerization. This time is significantly faster than the observed 700 fs reaction time, indicating that the P(fr) S(1) surface has a D-ring rotational barrier caused by steric interactions with the protein.
Collapse
Affiliation(s)
- Katelyn M Spillane
- Department of Chemistry, University of California, Berkeley, California, USA
| | | | | |
Collapse
|
3
|
Kim PW, Freer LH, Rockwell NC, Martin SS, Lagarias JC, Larsen DS. Femtosecond Photodynamics of the Red/Green Cyanobacteriochrome NpR6012g4 from Nostoc punctiforme. 1. Forward Dynamics. Biochemistry 2012; 51:608-18. [DOI: 10.1021/bi201507k] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter W. Kim
- Department
of Chemistry and ‡Department of Molecular and Cell Biology, University of California, One Shields Avenue, Davis,
California
95616, United States
| | - Lucy H. Freer
- Department
of Chemistry and ‡Department of Molecular and Cell Biology, University of California, One Shields Avenue, Davis,
California
95616, United States
| | - Nathan C. Rockwell
- Department
of Chemistry and ‡Department of Molecular and Cell Biology, University of California, One Shields Avenue, Davis,
California
95616, United States
| | - Shelley S. Martin
- Department
of Chemistry and ‡Department of Molecular and Cell Biology, University of California, One Shields Avenue, Davis,
California
95616, United States
| | - J. Clark Lagarias
- Department
of Chemistry and ‡Department of Molecular and Cell Biology, University of California, One Shields Avenue, Davis,
California
95616, United States
| | - Delmar S. Larsen
- Department
of Chemistry and ‡Department of Molecular and Cell Biology, University of California, One Shields Avenue, Davis,
California
95616, United States
| |
Collapse
|
4
|
Inomata K. Syntheses of Bilin Chromophores Toward the Investigation of Structure and Function of Phytochromes. HETEROCYCLES 2012. [DOI: 10.3987/rev-12-750] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Altoè P, Climent T, De Fusco GC, Stenta M, Bottoni A, Serrano-Andrés L, Merchán M, Orlandi G, Garavelli M. Deciphering Intrinsic Deactivation/Isomerization Routes in a Phytochrome Chromophore Model. J Phys Chem B 2009; 113:15067-73. [DOI: 10.1021/jp904669x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Piero Altoè
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, Bologna I-40126, Italy, Instituto de Ciencia Molecular, Universitat de València, ES-46071 Valencia, Spain, and Department of Chemistry, Thomas Young Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Teresa Climent
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, Bologna I-40126, Italy, Instituto de Ciencia Molecular, Universitat de València, ES-46071 Valencia, Spain, and Department of Chemistry, Thomas Young Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Giulia C. De Fusco
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, Bologna I-40126, Italy, Instituto de Ciencia Molecular, Universitat de València, ES-46071 Valencia, Spain, and Department of Chemistry, Thomas Young Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Marco Stenta
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, Bologna I-40126, Italy, Instituto de Ciencia Molecular, Universitat de València, ES-46071 Valencia, Spain, and Department of Chemistry, Thomas Young Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Andrea Bottoni
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, Bologna I-40126, Italy, Instituto de Ciencia Molecular, Universitat de València, ES-46071 Valencia, Spain, and Department of Chemistry, Thomas Young Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Luis Serrano-Andrés
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, Bologna I-40126, Italy, Instituto de Ciencia Molecular, Universitat de València, ES-46071 Valencia, Spain, and Department of Chemistry, Thomas Young Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Manuela Merchán
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, Bologna I-40126, Italy, Instituto de Ciencia Molecular, Universitat de València, ES-46071 Valencia, Spain, and Department of Chemistry, Thomas Young Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Giorgio Orlandi
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, Bologna I-40126, Italy, Instituto de Ciencia Molecular, Universitat de València, ES-46071 Valencia, Spain, and Department of Chemistry, Thomas Young Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Marco Garavelli
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, Bologna I-40126, Italy, Instituto de Ciencia Molecular, Universitat de València, ES-46071 Valencia, Spain, and Department of Chemistry, Thomas Young Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| |
Collapse
|
6
|
Femtosecond kinetics of photoconversion of the higher plant photoreceptor phytochrome carrying native and modified chromophores. Biophys J 2008; 94:4370-82. [PMID: 18199671 DOI: 10.1529/biophysj.106.091652] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The photoprocesses of native (phyA of oat), and of C-terminally truncated recombinant phytochromes, assembled instead of the native phytochromobilin with phycocyanobilin (PCB-65 kDa-phy) and iso-phycocyanobilin (iso-PCB-65 kDa-phy) chromophores, have been studied by femtosecond transient absorption spectroscopy in both their red absorbing phytochrome (P(r)) and far-red absorbing phytochrome (P(fr)) forms. Native P(r) phytochrome shows an excitation wavelength dependence of the kinetics with three main picosecond components. The formation kinetics of the first ground-state intermediate I(700), absorbing at approximately 690 nm, is mainly described by 28 ps or 40 ps components in native and PCB phytochrome, respectively, whereas additional approximately 15 and 50 ps components describe conformational dynamics and equilibria among different local minima on the excited-state hypersurface. No significant amount of I(700) formation can be observed on our timescale for iso-PCB phytochrome. We suggest that iso-PCB-65 kDa-phy either interacts with the protein differently leading to a more twisted and/or less protonated configuration, or undergoes P(r) to P(fr) isomerization primarily via a different configurational pathway, largely circumventing I(700) as an intermediate. The isomerization process is accompanied by strong coherent oscillations due to wavepacket motion on the excited-state surface for both phytochrome forms. The femto- to (sub-)nanosecond kinetics of the P(fr) forms is again quite similar for the native and the PCB phytochromes. After an ultrafast excited-state relaxation within approximately 150 fs, the chromophores return to the first ground-state intermediate in 400-800 fs followed by two additional ground-state intermediates which are formed with 2-3 ps and approximately 400 ps lifetimes. We call the first ground-state intermediate in native phytochrome I(fr 750), due to its pronounced absorption at that wavelength. The other intermediates are termed I(fr 675) and pseudo-P(r). The absorption spectrum of the latter already closely resembles the absorption of the P(r) chromophore. PCB-65 kDa-phy shows a very similar kinetics, although many of the detailed spectral features in the transients seen in native phy are blurred, presumably due to wider inhomogeneous distribution of the chromophore conformation. Iso-PCB-65 kDa-phy shows similar features to the PCB-65 kDa-phy, with some additional blue-shift of the transient spectra of approximately 10 nm. The sub-200 fs component is, however, absent, and the picosecond lifetimes are somewhat longer than in 124 kDa phytochrome or in PCB-65 kDa-phy. We interpret the data within the framework of two- and three-dimensional potential energy surface diagrams for the photoisomerization processes and the ground-state intermediates involved in the two photoconversions.
Collapse
|
7
|
Inomata K. Studies on the Structure and Function of Phytochromes as Photoreceptors Based on Synthetic Organic Chemistry. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2008. [DOI: 10.1246/bcsj.81.25] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Subpicosecond midinfrared spectroscopy of the Pfr reaction of phytochrome Agp1 from Agrobacterium tumefaciens. Biophys J 2008; 94:3189-97. [PMID: 18192363 DOI: 10.1529/biophysj.107.119297] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phytochromes are light-sensing pigments found in plants and bacteria. For the first time, the P(fr) photoreaction of a phytochrome has been subject to ultrafast infrared vibrational spectroscopy. Three time constants of 0.3 ps, 1.3 ps, and 4.0 ps were derived from the kinetics of structurally specific marker bands of the biliverdin chromophore of Agp1-BV from Agrobacterium tumefaciens after excitation at 765 nm. VIS-pump-VIS-probe experiments yield time constants of 0.44 ps and 3.3 ps for the underlying electronic-state dynamics. A reaction scheme is proposed including two kinetic steps on the S(1) excited-state surface and the cooling of a vibrationally hot P(fr) ground state. It is concluded that the upper limit of the E-Z isomerization of the C(15) = C(16) methine bridge is given by the intermediate time constant of 1.3 ps. The reaction scheme is reminiscent of that of the corresponding P(r) reaction of Agp1-BV as published earlier.
Collapse
|
9
|
Schumann C, Gross R, Michael N, Lamparter T, Diller R. Sub-picosecond mid-infrared spectroscopy of phytochrome Agp1 from Agrobacterium tumefaciens. Chemphyschem 2007; 8:1657-63. [PMID: 17614346 DOI: 10.1002/cphc.200700210] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The photoinduced primary reaction of the biliverdin binding phytochrome Agp1 (Agp1-BV) from Agrobacterium tumefaciens was investigated by sub-picosecond time-resolved Vis pump-IR probe spectroscopy. Three time constants of tau(1)=0.7+/-0.05 ps, tau(2)=3.3+/-0.2 ps and tau(3)=33.3+/-1.5 ps could be isolated from the dynamics of structurally specific marker bands of the BV chromophore. These results together with those of accompanying sub-picosecond Vis pump-Vis probe spectroscopy allow the extension of the reaction scheme for the primary process by a vibrationally excited electronic ground state. The isomerization at the C15=C16 bond occurs within the lifetime of the excited electronic state. A quantum yield of 0.094 for the primary reaction is determined, suggesting that the quantum yield of formation of the P(fr) far-red-absorbing form is already established in the primary photoreaction of the P(r) (red-absorbing) form.
Collapse
Affiliation(s)
- Christian Schumann
- Technische Universität Kaiserslautern, Fachbereich Physik, 67653 Kaiserslautern, Germany
| | | | | | | | | |
Collapse
|
10
|
Inomata K, Noack S, Hammam MAS, Khawn H, Kinoshita H, Murata Y, Michael N, Scheerer P, Krauss N, Lamparter T. Assembly of synthetic locked chromophores with agrobacterium phytochromes Agp1 and Agp2. J Biol Chem 2006; 281:28162-73. [PMID: 16803878 DOI: 10.1074/jbc.m603983200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phytochromes are photoreceptors with a bilin chromophore in which light triggers the conversion between the red-absorbing form Pr and the far-red-absorbing form Pfr. Agrobacterium tumefaciens has two phytochromes, Agp1 and Agp2, with antagonistic properties: in darkness, Agp1 converts slowly from Pfr to Pr, whereas Agp2 converts slowly from Pr to Pfr. In a previous study, we have assembled Agp1 with synthetic locked chromophores 15Za, 15Zs, 15Ea, and 15Es in which the C15=C16 double bond is fixed in either the E or Z configuration and the C14-C15 single bond is fixed in either the syn (s) or anti (a) conformation. In the present study, the locked chromophores 5Za and 5Zs were used for assembly with Agp1; in these chromophores, the C4=C5 double bond is fixed in the Z configuration, and the C5-C6 single bond is fixed in either the syn or anti conformation. All locked chromophores were also assembled with Agp2. The data showed that in both phytochromes the Pr chromophore adopts a C4=C5 Z C5-C6 syn C15=C16 Z C14-C15 anti stereochemistry and that in the Pfr chromophore the C15=C16 double bond has isomerized to the E configuration, whereas the C14-C15 single bond remains in the anti conformation. Photoconversion shifted the absorption maxima of the 5Zs adducts to shorter wavelengths, whereas the 5Za adducts were shifted to longer wavelengths. Thus, the C5-C6 single bond of the Pfr chromophore is rather in an anti conformation, supporting the previous suggestion that during photoconversion of phytochromes, a rotation around the ring A-B connecting single bond occurs.
Collapse
Affiliation(s)
- Katsuhiko Inomata
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Ishikawa 920-1192, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dugave C, Demange L. Cis-trans isomerization of organic molecules and biomolecules: implications and applications. Chem Rev 2003; 103:2475-532. [PMID: 12848578 DOI: 10.1021/cr0104375] [Citation(s) in RCA: 763] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Christophe Dugave
- CEA/Saclay, Département d'Ingénierie et d'Etudes des Protéines (DIEP), Bâtiment 152, 91191 Gif-sur-Yvette, France.
| | | |
Collapse
|
12
|
Gryczynski I, Piszczek G, Lakowicz JR, Lagarias JC. Two-photon excitation of a phytofluor protein. J Photochem Photobiol A Chem 2002; 150:13-19. [PMID: 31824128 DOI: 10.1016/s1010-6030(02)00021-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phytofluors are highly fluorescent proteins in which the chromophore in a phytochrome is replaced with phycoerythrobilin (PEB), the pigment precursor of the cyanobacterial light harvesting protein phycoerythrin. We examined the fluorescence spectra of the N-terminal region of the cyanobacterial phytochrome 1 from cyanobacterium Synechocystis sp. Pcc 6803 bound to PEB. This protein, Cph1(N514)-PEB, displayed a good two-photon cross-section of 20-30 GM for excitation at 792 nm. This phytofluor also exhibits a high fundamental anisotropy at most practical two-photon excitation (2PE) wavelengths from 700 to 900 nm. Identical lifetimes and correlation times with one and 2PE indicates that the phytofluor is not adversely affected by the intensities needed for 2PE. The one-photon absorption extends well beyond the absorption spectrum and even beyond the emission spectrum to 700 nm. The phytofluor thus appears to be a suitable probe for 2PE and/or cellular imaging.
Collapse
Affiliation(s)
- Ignacy Gryczynski
- Department of Biochemistry and Molecular Biology, Center for Fluorescence Spectroscopy, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Gregorz Piszczek
- Department of Biochemistry and Molecular Biology, Center for Fluorescence Spectroscopy, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Joseph R Lakowicz
- Department of Biochemistry and Molecular Biology, Center for Fluorescence Spectroscopy, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - J Clark Lagarias
- University of California, Section of Molecular and Cellular Biology, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
13
|
Heyne K, Herbst J, Stehlik D, Esteban B, Lamparter T, Hughes J, Diller R. Ultrafast dynamics of phytochrome from the cyanobacterium synechocystis, reconstituted with phycocyanobilin and phycoerythrobilin. Biophys J 2002; 82:1004-16. [PMID: 11806940 PMCID: PMC1301907 DOI: 10.1016/s0006-3495(02)75460-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Femtosecond time-resolved transient absorption spectroscopy was employed to characterize for the first time the primary photoisomerization dynamics of a bacterial phytochrome system in the two thermally stable states of the photocycle. The 85-kDa phytochrome Cph1 from the cyanobacterium Synechocystis PCC 6803 expressed in Escherichia coli was reconstituted with phycocyanobilin (Cph1-PCB) and phycoerythrobilin (Cph1-PEB). The red-light-absorbing form Pr of Cph1-PCB shows an approximately 150 fs relaxation in the S(1) state after photoexcitation at 650 nm. The subsequent Z-E isomerization between rings C and D of the linear tetrapyrrole-chromophore is best described by a distribution of rate constants with the first moment at (16 ps)(-1). Excitation at 615 nm leads to a slightly broadened distribution. The reverse E-Z isomerization, starting from the far-red-absorbing form Pfr, is characterized by two shorter time constants of 0.54 and 3.2 ps. In the case of Cph1-PEB, double-bond isomerization does not take place, and the excited-state lifetime extends into the nanosecond regime. Besides a stimulated emission rise time between 40 and 150 fs, no fast relaxation processes are observed. This suggests that the chromophore-protein interaction along rings A, B, and C does not contribute much to the picosecond dynamics observed in Cph1-PCB but rather the region around ring D near the isomerizing C(15) [double bond] C(16) double bond. The primary reaction dynamics of Cph1-PCB at ambient temperature is found to exhibit very similar features as those described for plant type A phytochrome, i.e., a relatively slow Pr, and a fast Pfr, photoreaction. This suggests that the initial reactions were established already before evolution of plant phytochromes began.
Collapse
Affiliation(s)
- Karsten Heyne
- Institut für Experimentalphysik, Freie Universität Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Bischoff M, Hermann G, Rentsch S, Strehlow D, Winter S, Chosrowjan H. Excited-State Processes in Phycocyanobilin Studied by Femtosecond Spectroscopy. J Phys Chem B 2000. [DOI: 10.1021/jp992083f] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mark Bischoff
- Institute for Optics and Quantumelectronics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, D-07743 Jena, Germany, Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Philosophenweg 12, D-07743 Jena, Germany, Institute of Molecular Biotechnology, Beutenbergstrasse 11, D-07745 Jena, Germany, and Institute for Laser Technology, Utsubo-Hommachi 1-8-4, Osaka 550-0004, Japan
| | - Gudrun Hermann
- Institute for Optics and Quantumelectronics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, D-07743 Jena, Germany, Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Philosophenweg 12, D-07743 Jena, Germany, Institute of Molecular Biotechnology, Beutenbergstrasse 11, D-07745 Jena, Germany, and Institute for Laser Technology, Utsubo-Hommachi 1-8-4, Osaka 550-0004, Japan
| | - Sabine Rentsch
- Institute for Optics and Quantumelectronics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, D-07743 Jena, Germany, Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Philosophenweg 12, D-07743 Jena, Germany, Institute of Molecular Biotechnology, Beutenbergstrasse 11, D-07745 Jena, Germany, and Institute for Laser Technology, Utsubo-Hommachi 1-8-4, Osaka 550-0004, Japan
| | - Dietmar Strehlow
- Institute for Optics and Quantumelectronics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, D-07743 Jena, Germany, Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Philosophenweg 12, D-07743 Jena, Germany, Institute of Molecular Biotechnology, Beutenbergstrasse 11, D-07745 Jena, Germany, and Institute for Laser Technology, Utsubo-Hommachi 1-8-4, Osaka 550-0004, Japan
| | - Stefan Winter
- Institute for Optics and Quantumelectronics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, D-07743 Jena, Germany, Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Philosophenweg 12, D-07743 Jena, Germany, Institute of Molecular Biotechnology, Beutenbergstrasse 11, D-07745 Jena, Germany, and Institute for Laser Technology, Utsubo-Hommachi 1-8-4, Osaka 550-0004, Japan
| | - Haik Chosrowjan
- Institute for Optics and Quantumelectronics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, D-07743 Jena, Germany, Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Philosophenweg 12, D-07743 Jena, Germany, Institute of Molecular Biotechnology, Beutenbergstrasse 11, D-07745 Jena, Germany, and Institute for Laser Technology, Utsubo-Hommachi 1-8-4, Osaka 550-0004, Japan
| |
Collapse
|
15
|
Teuchner K, Schulz-Evers M, Stiel H, Strehlow D, Rüdiger W. Excited-state properties of biliproteins: I. Phytochrome Pr. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 1999. [DOI: 10.1016/s1011-1344(99)00136-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Affiliation(s)
- Michael Stanek
- Institut für Chemie, Johannes Kepler Universität Linz, Altenbergerstrasse 69, A‐4040 Linz (Austria), Fax: (+43) 732–2468–747
| | - Karl Grubmayr
- Institut für Chemie, Johannes Kepler Universität Linz, Altenbergerstrasse 69, A‐4040 Linz (Austria), Fax: (+43) 732–2468–747
| |
Collapse
|
17
|
Bischoff M, Hermann G, Rentsch S, Strehlow D. Ultrashort Processes of Native Phytochrome: Femtosecond Kinetics of the Far-Red-Absorbing Form Pfr. J Phys Chem A 1998. [DOI: 10.1021/jp973197z] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. Bischoff
- Institute for Optics and Quantum Electronics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, D-07743 Jena, Germany, and Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Philosophenweg 12, D-07743 Jena, Germany
| | - G. Hermann
- Institute for Optics and Quantum Electronics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, D-07743 Jena, Germany, and Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Philosophenweg 12, D-07743 Jena, Germany
| | - S. Rentsch
- Institute for Optics and Quantum Electronics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, D-07743 Jena, Germany, and Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Philosophenweg 12, D-07743 Jena, Germany
| | - D. Strehlow
- Institute for Optics and Quantum Electronics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, D-07743 Jena, Germany, and Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Philosophenweg 12, D-07743 Jena, Germany
| |
Collapse
|
18
|
|