1
|
Sarin KY, Kincaid J, Sell B, Shahryari J, Duncton MAJ, Morefield E, Sun W, Prieto K, Chavez-Chiang O, de Moran Segura C, Nguyen J, Bronson RT, Plotkin SR, Kochendoerfer GG, Fenn P, Wootton MA, Powala C, de Souza MP, Tsai KY. Development of a MEK inhibitor, NFX-179, as a chemoprevention agent for squamous cell carcinoma. Sci Transl Med 2023; 15:eade1844. [PMID: 37820007 DOI: 10.1126/scitranslmed.ade1844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer. Although cSCC contributes to substantial morbidity and mortality in high-risk individuals, deployment of otherwise effective chemoprevention of cSCC is limited by toxicities. Our systematic computational drug repurposing screen predicted that selumetinib, a MAPK (mitogen-activated protein kinase) kinase inhibitor (MEKi), would reverse transcriptional signatures associated with cSCC development, consistent with our genomic analysis implicating MEK as a chemoprevention target. Although systemic MEKi suppresses the formation of cSCC in mice, systemic MEKi can cause severe adverse effects. Here, we report the development of a metabolically labile MEKi, NFX-179, designed to potently and selectively suppress the MAPK pathway in the skin before rapid metabolism in the systemic circulation. NFX-179 was identified on the basis of its biochemical and cellular potency, selectivity, and rapid metabolism upon systemic absorption. In our ultraviolet-induced cSCC mouse model, topical application of NFX-179 gel reduced the formation of new cSCCs by an average of 60% at doses of 0.1% and greater at 28 days. We further confirmed the localized nature of these effects in an additional split-mouse randomized controlled study where suppression of cSCC was observed only in drug-treated areas. No toxicities were observed. NFX-179 inhibits the growth of human SCC cell lines in a dose-dependent manner, and topical NFX-179 application penetrates human skin and inhibits MAPK signaling in human cSCC explants. Together, our data provide a compelling rationale for using topical MEK inhibition through the application of NFX-179 gel as an effective strategy for cSCC chemoprevention.
Collapse
Affiliation(s)
- Kavita Y Sarin
- Department of Dermatology, Stanford University Medical Center, Stanford, CA 94063, USA
| | | | - Brittney Sell
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | | | | | | | - Wenchao Sun
- Department of Dermatology, Stanford University Medical Center, Stanford, CA 94063, USA
| | - Karol Prieto
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Omar Chavez-Chiang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Carlos de Moran Segura
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jonathan Nguyen
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Roderick T Bronson
- Department of Immunology, Rodent Histopathology Core, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Peter Fenn
- NFlection Therapeutics, Boston, MA 02116, USA
| | | | | | | | - Kenneth Y Tsai
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
2
|
Ge L, Chen L, Mo Q, Zhou G, Meng X, Wang Y. Total phenylethanoid glycosides and magnoloside IafromMagnolia officinalisvar.bilobafruits inhibit ultraviolet B-induced phototoxicity and inflammation through MAPK/NF-κB signaling pathways. RSC Adv 2018. [DOI: 10.1039/c7ra13033c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Magnolia officinalisvar.bilobais used as a traditional medicine in China and as a food additive in the United Kingdom and the European Union.
Collapse
Affiliation(s)
- Lanlan Ge
- Institute of TCM and Natural Products
- School of Pharmaceutical Sciences
- Wuhan University
- Wuhan 430071
- P. R. China
| | - Ling Chen
- Institute of TCM and Natural Products
- School of Pharmaceutical Sciences
- Wuhan University
- Wuhan 430071
- P. R. China
| | - Qigui Mo
- Institute of TCM and Natural Products
- School of Pharmaceutical Sciences
- Wuhan University
- Wuhan 430071
- P. R. China
| | - Gao Zhou
- Institute of TCM and Natural Products
- School of Pharmaceutical Sciences
- Wuhan University
- Wuhan 430071
- P. R. China
| | - Xiaoshan Meng
- Institute of TCM and Natural Products
- School of Pharmaceutical Sciences
- Wuhan University
- Wuhan 430071
- P. R. China
| | - Youwei Wang
- Institute of TCM and Natural Products
- School of Pharmaceutical Sciences
- Wuhan University
- Wuhan 430071
- P. R. China
| |
Collapse
|
3
|
Protein activation mapping of human sun-protected epidermis after an acute dose of erythemic solar simulated light. NPJ Precis Oncol 2017; 1. [PMID: 29167824 PMCID: PMC5695572 DOI: 10.1038/s41698-017-0037-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ultraviolet radiation is an important etiologic factor in skin cancer and a better understanding of how solar stimulated light (SSL) affects signal transduction pathways in human skin which is needed in further understanding activated networks that could be targeted for skin cancer prevention. We utilized Reverse Phase Protein Microarray Analysis (RPPA), a powerful technology that allows for broad-scale and quantitative measurement of the activation/phosphorylation state of hundreds of key signaling proteins and protein pathways in sun-protected skin after an acute dose of two minimal erythema dose (MED) of SSL. RPPA analysis was used to map the altered cell signaling networks resulting from acute doses of solar simulated radiation (SSL). To that end, we exposed sun-protected skin in volunteers to acute doses of two MED of SSL and collected biopsies pre-SSL and post-SSL irradiation. Frozen biopsies were subjected to laser capture microdissection (LCM) and then assessed by RPPA. The activation/phosphorylation or total levels of 128 key signaling proteins and drug targets were selected for statistical analysis. Coordinate network-based analysis was performed on specific signaling pathways that included the PI3k/Akt/mTOR and Ras/Raf/MEK/ERK pathways. Overall, we found early and sustained activation of the PI3K-AKT-mTOR and MAPK pathways. Cell death and apoptosis-related proteins were activated at 5 and 24 h. Ultimately, expression profile patterns of phosphorylated proteins in the epidermal growth factor receptor(EGFR), AKT, mTOR, and other relevant pathways may be used to determine pharmacodynamic activity of new and selective topical chemoprevention agents administered in a test area exposed to SSL to determine drug-induced attenuation or reversal of skin carcinogenesis pathways. Skin exposure to ultraviolet radiation leads to the activation of proteins involved in carcinogenic pathways. Janine Einspahr and Clara Curiel-Lewandrowski of the Arizona Cancer Center and colleagues in the US exposed normally ultraviolet protected skin of 12 individuals to two times the dose of solar-simulated light needed to induce redness. Skin biopsies were taken before and after exposure and 128 proteins known to be involved in key cancer signaling pathways were examined using ‘reverse phase protein microarray analysis’. They found early and sustained activation of multiple signaling pathways, in addition to activation of cell death and apoptosis-related proteins. The study may serve as a model for investigating the pathways involved in chronic or ultraviolet-induced carcinogenesis, which may ultimately lead to the development of targeted therapies to attenuate or reverse skin cancer pathways.
Collapse
|
4
|
Lenain C, Gamboa B, Perrin A, Séraïdaris A, Bertino B, Rival Y, Bernardi M, Piwnica D, Méhul B. Monitoring UV-induced signalling pathways in an ex vivo skin organ culture model using phospho-antibody array. Exp Dermatol 2017; 27:470-472. [PMID: 28887818 DOI: 10.1111/exd.13440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2017] [Indexed: 11/27/2022]
Abstract
We investigated UV-induced signalling in an ex vivo skin organ culture model using phospho-antibody array. Phosphorylation modulations were analysed in time-course experiments following exposure to solar-simulated UV and validated by Western blot analyses. We found that UV induced P-p38 and its substrates, P-ERK1/2 and P-AKT, which were previously shown to be upregulated by UV in cultured keratinocytes and in vivo human skin. This indicates that phospho-antibody array applied to ex vivo skin organ culture is a relevant experimental system to investigate signalling events following perturbations. As the identified proteins are components of pathways implicated in skin tumorigenesis, UV-exposed skin organ culture model could be used to investigate the effect on these pathways of NMSC cancer drug candidates. In addition, we found that phospho-HCK is induced upon UV exposure, producing a new candidate for future studies investigating its role in the skin response to UV and UV-induced carcinogenesis.
Collapse
Affiliation(s)
| | | | - Agnes Perrin
- Nestlé Skin Health R&D, Sophia Antipolis, France
| | | | | | - Yves Rival
- Nestlé Skin Health R&D, Sophia Antipolis, France
| | | | | | - Bruno Méhul
- Nestlé Skin Health R&D, Sophia Antipolis, France
| |
Collapse
|
5
|
Ainger SA, Yong XL, Wong SS, Skalamera D, Gabrielli B, Leonard JH, Sturm RA. DCT protects human melanocytic cells from UVR and ROS damage and increases cell viability. Exp Dermatol 2015; 23:916-21. [PMID: 25346513 DOI: 10.1111/exd.12574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2014] [Indexed: 12/25/2022]
Abstract
Dopachrome tautomerase (DCT) is involved in the formation of the photoprotective skin pigment eumelanin and has also been shown to have a role in response to apoptotic stimuli and oxidative stress. The effect of DCT on UVR DNA damage responses and survival pathways in human melanocytic cells was examined by knockdown experiments using melanoma cells, neonatal foreskin melanoblasts (MB) in monoculture and in co-culture with human keratinocytes. MB cell strains genotyped as either MC1R WT or MC1R RHC homozygotes, which are known to be deficient in DCT, were transduced with lentivirus vectors for either DCT knockdown or overexpression. We found melanoma cell survival was reduced by DCT depletion and by UVR over time. UVR-induced p53 and pp53-Ser15 levels were reduced with DCT depletion. Knockdown of DCT in MC1R WT and MC1R RHC MB cells reduced their survival after UVR exposure, whereas increased DCT protein levels enhanced survival. DCT depletion reduced p53 and pp53-Ser15 levels in WM266-4 melanoma and MC1R WT MB cells, while MC1R RHC MB cells displayed variable levels. Both MC1R WT and RHC genotypes of MB cells were responsive to UVR at 3 h with increases in both p53 and pp53-Ser15 proteins. MC1R WT MB cell strains in coculture with keratinocytes have an increased cell survival after UVR exposure when compared to those in monoculture, a protective effect which appears to be conferred by the keratinocytes.
Collapse
Affiliation(s)
- Stephen A Ainger
- Institute for Molecular Bioscience, Melanogenix Group, The University of Queensland, Brisbane, Qld, Australia
| | | | | | | | | | | | | |
Collapse
|
6
|
Bermudez Y, Stratton SP, Curiel-Lewandrowski C, Warneke J, Hu C, Bowden GT, Dickinson SE, Dong Z, Bode AM, Saboda K, Brooks CA, Petricoin EF, Hurst CA, Alberts DS, Einspahr JG. Activation of the PI3K/Akt/mTOR and MAPK Signaling Pathways in Response to Acute Solar-Simulated Light Exposure of Human Skin. Cancer Prev Res (Phila) 2015; 8:720-8. [PMID: 26031292 DOI: 10.1158/1940-6207.capr-14-0407] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/06/2015] [Indexed: 12/14/2022]
Abstract
The incidence of skin cancer is higher than all other cancers and continues to increase, with an average annual cost over $8 billion in the United States. As a result, identifying molecular pathway alterations that occur with UV exposure to strategize more effective preventive and therapeutic approaches is essential. To that end, we evaluated phosphorylation of proteins within the PI3K/Akt and MAPK pathways by immunohistochemistry in sun-protected skin after acute doses of physiologically relevant solar-simulated ultraviolet light (SSL) in 24 volunteers. Biopsies were performed at baseline, 5 minutes, 1, 5, and 24 hours after SSL irradiation. Within the PI3K/Akt pathway, we found activation of Akt (serine 473) to be significantly increased at 5 hours while mTOR (serine 2448) was strongly activated early and was sustained over 24 hours after SSL. Downstream, we observed a marked and sustained increase in phospho-S6 (serine 235/S236), whereas phospho-4E-BP1 (threonines 37/46) was increased only at 24 hours. Within the MAPK pathway, SSL-induced expression of phospho-p38 (threonine 180/tyrosine 182) peaked at 1 to 5 hours. ERK 1/2 was observed to be immediate and sustained after SSL irradiation. Phosphorylation of histone H3 (serine 10), a core structural protein of the nucleosome, peaked at 5 hours after SSL irradiation. The expression of both p53 and COX-2 was increased at 5 hours and was maximal at 24 hours after SSL irradiation. Apoptosis was significantly increased at 24 hours as expected and indicative of a sunburn-type response to SSL. Understanding the timing of key protein expression changes in response to SSL will aid in development of mechanistic-based approaches for the prevention and control of skin cancers.
Collapse
Affiliation(s)
- Yira Bermudez
- College of Medicine, University of Arizona, Tucson, Arizona. The University of Arizona Cancer Center, Tucson, Arizona
| | - Steven P Stratton
- College of Medicine, University of Arizona, Tucson, Arizona. The University of Arizona Cancer Center, Tucson, Arizona
| | - Clara Curiel-Lewandrowski
- College of Medicine, University of Arizona, Tucson, Arizona. The University of Arizona Cancer Center, Tucson, Arizona
| | - James Warneke
- College of Medicine, University of Arizona, Tucson, Arizona. The University of Arizona Cancer Center, Tucson, Arizona. Department of Surgery, University of Arizona, Tucson, Arizona
| | - Chengcheng Hu
- The University of Arizona Cancer Center, Tucson, Arizona
| | | | | | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | | | | | | | - Craig A Hurst
- College of Medicine, University of Arizona, Tucson, Arizona. Department of Surgery, University of Arizona, Tucson, Arizona
| | - David S Alberts
- College of Medicine, University of Arizona, Tucson, Arizona. The University of Arizona Cancer Center, Tucson, Arizona
| | - Janine G Einspahr
- College of Medicine, University of Arizona, Tucson, Arizona. The University of Arizona Cancer Center, Tucson, Arizona.
| |
Collapse
|
7
|
Divya SP, Wang X, Pratheeshkumar P, Son YO, Roy RV, Kim D, Dai J, Hitron JA, Wang L, Asha P, Shi X, Zhang Z. Blackberry extract inhibits UVB-induced oxidative damage and inflammation through MAP kinases and NF-κB signaling pathways in SKH-1 mice skin. Toxicol Appl Pharmacol 2015; 284:92-99. [PMID: 25680589 PMCID: PMC4374016 DOI: 10.1016/j.taap.2015.02.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/29/2015] [Accepted: 02/04/2015] [Indexed: 12/17/2022]
Abstract
Extensive exposure of solar ultraviolet-B (UVB) radiation to skin induces oxidative stress and inflammation that play a crucial role in the induction of skin cancer. Photochemoprevention with natural products represents a simple but very effective strategy for the management of cutaneous neoplasia. In this study, we investigated whether blackberry extract (BBE) reduces chronic inflammatory responses induced by UVB irradiation in SKH-1 hairless mice skin. Mice were exposed to UVB radiation (100 mJ/cm(2)) on alternate days for 10 weeks, and BBE (10% and 20%) was applied topically a day before UVB exposure. Our results show that BBE suppressed UVB-induced hyperplasia and reduced infiltration of inflammatory cells in the SKH-1 hairless mice skin. BBE treatment reduced glutathione (GSH) depletion, lipid peroxidation (LPO), and myeloperoxidase (MPO) in mouse skin by chronic UVB exposure. BBE significantly decreased the level of pro-inflammatory cytokines IL-6 and TNF-α in UVB-exposed skin. Likewise, UVB-induced inflammatory responses were diminished by BBE as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, BBE also reduced inflammatory mediators such as cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and inducible nitric oxide synthase (iNOS) levels in UVB-exposed skin. Treatment with BBE inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mouse skin. Immunohistochemistry analysis revealed that topical application of BBE inhibited the expression of 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodG), cyclobutane pyrimidine dimers (CPD), proliferating cell nuclear antigen (PCNA), and cyclin D1 in UVB-exposed skin. Collectively, these data indicate that BBE protects from UVB-induced oxidative damage and inflammation by modulating MAP kinase and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Sasidharan Padmaja Divya
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Xin Wang
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Poyil Pratheeshkumar
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Young-Ok Son
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Ram Vinod Roy
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Donghern Kim
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Jin Dai
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - John Andrew Hitron
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Lei Wang
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Padmaja Asha
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, India
| | - Xianglin Shi
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Zhuo Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| |
Collapse
|
8
|
Pratheeshkumar P, Son YO, Divya SP, Roy RV, Hitron JA, Wang L, Kim D, Dai J, Asha P, Zhang Z, Wang Y, Shi X. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways. Toxicol Appl Pharmacol 2014; 281:230-41. [PMID: 25448439 DOI: 10.1016/j.taap.2014.10.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/22/2014] [Accepted: 10/14/2014] [Indexed: 12/27/2022]
Abstract
Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with the incidence of lung cancer. Inhibition of metal induced carcinogenesis by a dietary antioxidant is a novel approach. Luteolin, a natural dietary flavonoid found in fruits and vegetables, possesses potent antioxidant and anti-inflammatory activity. We found that short term exposure of human bronchial epithelial cells (BEAS-2B) to Cr(VI) (5μM) showed a drastic increase in ROS generation, NADPH oxidase (NOX) activation, lipid peroxidation, and glutathione depletion, which were significantly inhibited by the treatment with luteolin in a dose dependent manner. Treatment with luteolin decreased AP-1, HIF-1α, COX-2, and iNOS promoter activity induced by Cr(VI) in BEAS-2B cells. In addition, luteolin protected BEAS-2B cells from malignant transformation induced by chronic Cr(VI) exposure. Moreover, luteolin also inhibited the production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and VEGF in chronic Cr(VI) exposed BEAS-2B cells. Western blot analysis showed that luteolin inhibited multiple gene products linked to survival (Akt, Fak, Bcl-2, Bcl-xL), inflammation (MAPK, NF-κB, COX-2, STAT-3, iNOS, TNF-α) and angiogenesis (HIF-1α, VEGF, MMP-9) in chronic Cr(VI) exposed BEAS-2B cells. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of luteolin showed reduced tumor incidence compared to Cr(VI) alone treated group. Overexpression of catalase (CAT) or SOD2, eliminated Cr(VI)-induced malignant transformation. Overall, our results indicate that luteolin protects BEAS-2B cells from Cr(VI)-induced carcinogenesis by scavenging ROS and modulating multiple cell signaling mechanisms that are linked to ROS. Luteolin, therefore, serves as a potential chemopreventive agent against Cr(VI)-induced carcinogenesis.
Collapse
Affiliation(s)
- Poyil Pratheeshkumar
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Young-Ok Son
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Sasidharan Padmaja Divya
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Ram Vinod Roy
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - John Andrew Hitron
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Lei Wang
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Donghern Kim
- Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Jin Dai
- Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Padmaja Asha
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, India
| | - Zhuo Zhang
- Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xianglin Shi
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA.
| |
Collapse
|
9
|
Pratheeshkumar P, Son YO, Wang X, Divya SP, Joseph B, Hitron JA, Wang L, Kim D, Yin Y, Roy RV, Lu J, Zhang Z, Wang Y, Shi X. Cyanidin-3-glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-κB signaling pathways in SKH-1 hairless mice skin. Toxicol Appl Pharmacol 2014; 280:127-37. [PMID: 25062774 PMCID: PMC4330564 DOI: 10.1016/j.taap.2014.06.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/24/2014] [Accepted: 06/29/2014] [Indexed: 12/17/2022]
Abstract
Skin cancer is one of the most commonly diagnosed cancers in the United States. Exposure to ultraviolet-B (UVB) radiation induces inflammation and photocarcinogenesis in mammalian skin. Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is present in various vegetables and fruits especially in edible berries, and displays potent antioxidant and anticarcinogenic properties. In this study, we have assessed the in vivo effects of C3G on UVB irradiation induced chronic inflammatory responses in SKH-1 hairless mice, a well-established model for UVB-induced skin carcinogenesis. Here, we show that C3G inhibited UVB-induced skin damage and inflammation in SKH-1 hairless mice. Our results indicate that C3G inhibited glutathione depletion, lipid peroxidation and myeloperoxidation in mouse skin by chronic UVB exposure. C3G significantly decreased the production of UVB-induced pro-inflammatory cytokines, such as IL-6 and TNF-α, associated with cutaneous inflammation. Likewise, UVB-induced inflammatory responses were diminished by C3G as observed by a remarkable reduction in the levels of phosphorylated MAP kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, C3G also decreased UVB-induced cyclooxygenase-2 (COX-2), PGE2 and iNOS levels, which are well-known key mediators of inflammation and cancer. Treatment with C3G inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mice skin. Immunofluorescence assay revealed that topical application of C3G inhibited the expression of 8-hydroxy-2'-deoxyguanosine, proliferating cell nuclear antigen, and cyclin D1 in chronic UVB exposed mouse skin. Collectively, these data indicates that C3G can provide substantial protection against the adverse effects of UVB radiation by modulating UVB-induced MAP kinase and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Poyil Pratheeshkumar
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Young-Ok Son
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Xin Wang
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Sasidharan Padmaja Divya
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Binoy Joseph
- Spinal Cord and Brain Injury Research Center and Department of Physiology, University of Kentucky, Lexington, KY 40536-0509, USA
| | - John Andrew Hitron
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Lei Wang
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Donghern Kim
- Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Yuanqin Yin
- Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Cancer Institute, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Ram Vinod Roy
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Jian Lu
- Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhuo Zhang
- Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xianglin Shi
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA.
| |
Collapse
|
10
|
Williams JD, Bermudez Y, Park SL, Stratton SP, Uchida K, Hurst CA, Wondrak GT. Malondialdehyde-derived epitopes in human skin result from acute exposure to solar UV and occur in nonmelanoma skin cancer tissue. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2014; 132:56-65. [PMID: 24584085 PMCID: PMC3973651 DOI: 10.1016/j.jphotobiol.2014.01.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/14/2014] [Accepted: 01/28/2014] [Indexed: 01/08/2023]
Abstract
Cutaneous exposure to solar ultraviolet radiation (UVR) is a causative factor in photoaging and photocarcinogenesis. In human skin, oxidative stress is widely considered a key mechanism underlying the detrimental effects of acute and chronic UVR exposure. The lipid peroxidation product malondialdehyde (MDA) accumulates in tissue under conditions of increased oxidative stress, and the occurrence of MDA-derived protein epitopes, including dihydropyridine-lysine (DHP), has recently been substantiated in human skin. Here we demonstrate for the first time that acute exposure to sub-apoptogenic doses of solar simulated UV light (SSL) causes the formation of free MDA and protein-bound MDA-derived epitopes in cultured human HaCaT keratinocytes and healthy human skin. Immunohistochemical staining revealed that acute exposure to SSL is sufficient to cause an almost twenty-fold increase in general MDA- and specific DHP-epitope content in human skin. When compared to dose-matched solar simulated UVA, complete SSL was more efficient generating both free MDA and MDA-derived epitopes. Subsequent tissue microarray (TMA) analysis revealed the prevalence of MDA- and DHP-epitopes in nonmelanoma skin cancer (NMSC). In squamous cell carcinoma tissue, both MDA- and DHP-epitopes were increased more than threefold as compared to adjacent normal tissue. Taken together, these date demonstrate the occurrence of MDA-derived epitopes in both solar UVR-exposed healthy human skin and NMSC TMA tissue; however, the potential utility of these epitopes as novel biomarkers of cutaneous photodamage and a functional role in the process of skin photocarcinogenesis remain to be explored.
Collapse
Affiliation(s)
- Joshua D Williams
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ, USA
| | - Yira Bermudez
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA; Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Sophia L Park
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA; Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Steven P Stratton
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA; Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Koji Uchida
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Craig A Hurst
- Department of Surgery, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Georg T Wondrak
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA; Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
11
|
Nubile M, Curcio C, Lanzini M, Calienno R, Iezzi M, Mastropasqua A, Di Nicola M, Mastropasqua L. Expression of CREB in primary pterygium and correlation with cyclin D1, ki-67, MMP7, p53, p63, Survivin and Vimentin. Ophthalmic Res 2013; 50:99-107. [PMID: 23838680 DOI: 10.1159/000347124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 12/14/2012] [Indexed: 11/19/2022]
Abstract
AIM Ultraviolet (UV) B irradiation induces gene expression that leads to skin cancer. Among the transcription factors induced by UVB radiation exposure, the cyclic AMP response element-binding protein (CREB) is significant. Since several factors downstream of CREB signaling are known to be involved in pterygium pathogenesis, we investigated CREB expression in pterygial and human conjunctival tissues to evaluate if a similar expression pattern is present. Moreover, we analyzed the correlation with CREB expression and other known pterygium markers. METHODS Primary pterygium samples and normal bulbar conjunctivas surgically removed were analyzed. Formalin-fixed, paraffin-embedded tissues were stained by immunohistochemistry with anti-CREB, anti-vimentin, anti-ki-67, anti-survivin, anti-MMP7, anti-p63, anti-cyclin D1, or anti-p53 antibodies. RESULTS 94.4% of pterygium samples were positive for CREB with a significant difference compared to the control group (p = 0.002). The staining was localized in the epithelium and absent in the stroma. An increased expression was found for cyclin D1 (p = 0.019), ki-67 (p = 0.005), vimentin (p = 0.003), survivin (p < 0.001), p63 (p = 0.003), and MMP7 (p = 0.002). CREB expression showed a significant correlation with cyclin D1 (ρ = 0.49; p = 0.035), ki-67 (ρ = 0.61; p = 0.007), and p53 (ρ = 0.57; p = 0.013) in pterygium. CONCLUSIONS These results permit to hypothesize that CREB is involved in pterygium pathogenesis. Since various molecules have been discovered to inhibit CREB, these data could be of interest for pterygium treatment.
Collapse
Affiliation(s)
- Mario Nubile
- Department of Medicine and Ageing Science, Opthalmology Clinic, University 'G. d'Annunzio' of Chieti-Pescara, Chieti/Pescara, Italy
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Einspahr JG, Calvert V, Alberts DS, Curiel-Lewandrowski C, Warneke J, Krouse R, Stratton SP, Liotta L, Longo C, Pellacani G, Pellicani G, Prasad A, Sagerman P, Bermudez Y, Deng J, Bowden GT, Petricoin EF. Functional protein pathway activation mapping of the progression of normal skin to squamous cell carcinoma. Cancer Prev Res (Phila) 2012; 5:403-13. [PMID: 22389437 PMCID: PMC3297971 DOI: 10.1158/1940-6207.capr-11-0427] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reverse phase protein microarray analysis was used to identify cell signaling derangements in squamous cell carcinoma (SCC) compared with actinic keratosis (AK) and upper inner arm (UIA). We analyzed two independent tissue sets with isolation and enrichment of epithelial cells by laser capture microdissection. Set 1 served as a pilot and a means to identify protein pathway activation alterations that could be further validated in a second independent set. Set 1 was comprised of 4 AK, 13 SCC, and 20 UIA. Set 2 included 15 AK, 9 SCCs, and 20 UIAs. Activation of 51 signaling proteins, known to be involved in tumorigenesis, were assessed for set 1 and showed that the MEK-ERK [mitogen-activated protein (MAP)/extracellular signal-regulated (ERK; MEK)] pathway was activated in SCC compared with AK and UIA, and that epidermal growth factor receptor (EGFR) and mTOR pathways were aberrantly activated in SCC. Unsupervised two-way hierarchical clustering revealed that AK and UIA shared a common signaling network activation architecture while SCC was dramatically different. Statistical analysis found that prosurvival signaling through phosphorylation of ASK and 4EBP1 as well as increased Bax and Bak expression was higher in AK compared with UIA. We expanded pathway network activation mapping in set 2 to 101 key signaling proteins, which corroborated activation of MEK-ERK, EGFR, and mTOR pathways through discovery of a number of upstream and downstream signaling molecules within these pathways to conclude that SCC is indeed a pathway activation-driven disease. Pathway activation mapping of SCC compared with AK revealed several interconnected networks that could be targeted with drug therapy for potential chemoprevention and therapeutic applications.
Collapse
Affiliation(s)
- Janine G Einspahr
- University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, AZ 85724, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Khan N, Syed DN, Pal HC, Mukhtar H, Afaq F. Pomegranate fruit extract inhibits UVB-induced inflammation and proliferation by modulating NF-κB and MAPK signaling pathways in mouse skin. Photochem Photobiol 2012; 88:1126-34. [PMID: 22181855 DOI: 10.1111/j.1751-1097.2011.01063.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
There is considerable interest in the identification of natural agents capable of affording protection to skin from the adverse effects of solar ultraviolet B (UVB) radiation. Pomegranate (Punica granatum L.) fruit possesses as strong antioxidant, anti-inflammatory and antiproliferative properties. Recently, we have shown that oral feeding of pomegranate fruit extract (PFE) to mice afforded substantial protection from the adverse effects of single UVB radiation via modulation in early biomarkers of photocarcinogenesis. This study was designed to investigate the photochemopreventive effects of PFE (0.2%, wt/vol) after multiple UVB irradiations (180 mJ cm(-2), on alternative day, for a total of seven treatments) to the skin of SKH-1 hairless mice. Oral feeding of PFE to SKH-1 mice inhibited UVB-induced epidermal hyperplasia, infiltration of leukocytes, protein oxidation and lipid peroxidation. Immunoblot analysis demonstrated that oral feeding of PFE to mice inhibited UVB-induced (1) nuclear translocation and phosphorylation of nuclear factor kappa B/p65, (2) phosphorylation and degradation of IκBα, (3) activation of IKKα/ΙΚΚβ and (4) phosphorylation of mitogen-activated protein kinase proteins and c-Jun. PFE consumption also inhibited UVB-induced protein expression of (1) COX-2 and iNOS, (2) PCNA and cyclin D1 and (3) matrix metalloproteinases-2,-3 and -9 in mouse skin. Taken together, these data show that PFE consumption afforded protection to mouse skin against the adverse effects of UVB radiation by modulating UVB-induced signaling pathways.
Collapse
Affiliation(s)
- Naghma Khan
- Department of Dermatology, University of Wisconsin, Madison, WI, USA
| | | | | | | | | |
Collapse
|
14
|
Zhang J, Bowden GT. Activation of p38 MAP kinase and JNK pathways by UVA irradiation. Photochem Photobiol Sci 2011; 11:54-61. [PMID: 21858326 DOI: 10.1039/c1pp05133d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There are more than two million new cases of non-melanoma skin cancers (NMSCs) diagnosed each year in the United States of America. The clear etiological factor is chronic exposure to solar radiation from the sun. The wavelengths of solar light that reach the earth's surface include UVB (280-320 nm), which accounts for 1-10%, and UVA (320-400 nm), which accounts for 90-99% of the radiation. While most published research has focused on the effects of UVB, little is known concerning UVA-mediated signal transduction pathways, and their role in skin tumor promotion and progression, giving rise to squamous cell carcinomas (SCCs). Here, we focus on UVA-mediated activation of p38 MAP kinase and c-Jun N-terminal kinase (JNK), and their roles in activator protein-1 (AP-1) mediated transcription, cyclooxygenase-2 (COX-2) and Bcl-XL expression. Since p38 MAP kinase and JNK play major roles in the expression of UVA-induced AP-1, COX-2 and Bcl-XL, pharmacological inhibitors of these kinases may be useful in the chemoprevention of SCC skin cancer.
Collapse
Affiliation(s)
- Jack Zhang
- Department of Medical Pharmacology, University of Arizona, Tucson, Arizona, USA
| | | |
Collapse
|
15
|
Black AT, Gordon MK, Heck DE, Gallo MA, Laskin DL, Laskin JD. UVB light regulates expression of antioxidants and inflammatory mediators in human corneal epithelial cells. Biochem Pharmacol 2011; 81:873-80. [PMID: 21300015 DOI: 10.1016/j.bcp.2011.01.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/14/2011] [Accepted: 01/19/2011] [Indexed: 10/18/2022]
Abstract
The cornea is highly sensitive to ultraviolet B (UVB) light-induced oxidative stress, a process that results in the production of inflammatory mediators which have been implicated in tissue injury. In the present studies, we characterized the inflammatory response of human corneal epithelial cells to UVB (2.5-25mJ/cm(2)). UVB caused a dose-dependent increase in the generation of reactive oxygen species in the cells. This was associated with increases in mRNA expression of the antioxidants Cu,Zn superoxide dismutase (SOD), Mn-SOD, catalase and heme oxygenase-1 (HO-1), as well as the glutathione S-transferases (GST), GSTA1-2, GSTA3, GSTA4, GSTM1, and mGST2. UVB also upregulated expression of the proinflammatory cytokines, IFNγ, IL-1β, TGFβ and TNFα, and enzymes important in prostaglandin (PG) biosynthesis including cyclooxygenase-2 (COX-2) and the PG synthases mPGES-2, PGDS, PGFS and thromboxane synthase, and in leukotriene biosynthesis including 5-lipoxygenase (5-LOX), 15-LOX-2, and the epidermal and platelet forms of 12-LOX. UVB was found to activate JNK and p38 MAP kinases in corneal epithelial cells; ERK1/2 MAP kinase was found to be constitutively active, and its activity increased following UVB treatment. Inhibition of p38 blocked UVB-induced expression of TNFα, COX-2, PGDS and 15-LOX-2, while JNK inhibition suppressed TNFα and HO-1. These data indicate that UVB modulates corneal epithelial cell expression of antioxidants and proinflammatory mediators by distinct mechanisms. Alterations in expression of these mediators are likely to be important in regulating inflammation and protecting the cornea from UVB-induced oxidative stress.
Collapse
Affiliation(s)
- Adrienne T Black
- Pharmacology and Toxicology, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Elmets CA, Viner JL, Pentland AP, Cantrell W, Lin HY, Bailey H, Kang S, Linden KG, Heffernan M, Duvic M, Richmond E, Elewski BE, Umar A, Bell W, Gordon GB. Chemoprevention of nonmelanoma skin cancer with celecoxib: a randomized, double-blind, placebo-controlled trial. J Natl Cancer Inst 2010; 102:1835-44. [PMID: 21115882 PMCID: PMC3001966 DOI: 10.1093/jnci/djq442] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background Preclinical studies indicate that the enzyme cyclooxygenase 2 plays an important role in ultraviolet-induced skin cancers. We evaluated the efficacy and safety of celecoxib, a cyclooxygenase 2 inhibitor, as a chemopreventive agent for actinic keratoses, the premalignant precursor of nonmelanoma skin cancers, and for nonmelanoma skin cancers, including cutaneous squamous cell carcinomas (SCCs) and basal cell carcinomas (BCCs). Methods A double-blind placebo-controlled randomized trial involving 240 subjects aged 37–87 years with 10–40 actinic keratoses was conducted at eight US academic medical centers. Patients were randomly assigned to receive 200 mg of celecoxib or placebo administered orally twice daily for 9 months. Subjects were evaluated at 3, 6, 9 (ie, completion of treatment), and 11 months after randomization. The primary endpoint was the number of new actinic keratoses at the 9-month visit as a percentage of the number at the time of randomization. In an intent-to-treat analysis, the incidence of actinic keratoses was compared between the two groups using t tests. In exploratory analyses, we evaluated the number of nonmelanoma skin cancers combined and SCCs and BCCs separately per patient at 11 months after randomization using Poisson regression, after adjustment for patient characteristics and time on study. The numbers of adverse events in the two treatment arms were compared using χ2 or Fisher exact tests. All statistical tests were two-sided. Results There was no difference in the incidence of actinic keratoses between the two groups at 9 months after randomization. However, at 11 months after randomization, there were fewer nonmelanoma skin cancers in the celecoxib arm than in the placebo arm (mean cumulative tumor number per patient 0.14 vs 0.35; rate ratio [RR] = .43, 95% confidence interval [CI] = 0.24 to 0.75; P = .003). After adjusting for age, sex, Fitzpatrick skin type, history of actinic keratosis at randomization, nonmelanoma skin cancer history, and patient time on study, the number of nonmelanoma skin cancers was lower in the celecoxib arm than in the placebo arm (RR = 0.41, 95% CI = 0.23 to 0.72, P = .002) as were the numbers of BCCs (RR = 0.40, 95% CI = 0.18 to 0.93, P = .032) and SCCs (RR = 0.42, 95% CI = 0.19 to 0.93, P = .032). Serious and cardiovascular adverse events were similar in the two groups. Conclusions Celecoxib may be effective for prevention of SCCs and BCCs in individuals who have extensive actinic damage and are at high risk for development of nonmelanoma skin cancers.
Collapse
Affiliation(s)
- Craig A Elmets
- Department of Dermatology, 1530 3rd Ave South, EFH 414, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Judson BL, Miyaki A, Kekatpure VD, Du B, Gilleaudeau P, Sullivan-Whalen M, Mohebati A, Nair S, Boyle JO, Granstein RD, Subbaramaiah K, Krueger JG, Dannenberg AJ. UV radiation inhibits 15-hydroxyprostaglandin dehydrogenase levels in human skin: evidence of transcriptional suppression. Cancer Prev Res (Phila) 2010; 3:1104-11. [PMID: 20643784 DOI: 10.1158/1940-6207.capr-10-0089] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Elevated levels of prostaglandins (PG) have been detected in the skin following UV radiation (UVR). PGs play an important role in mediating both the acute and the chronic consequences of UVR exposure. UVR-mediated induction of cyclooxygenase-2 (COX-2) contributes to increased PG synthesis. In theory, reduced catabolism might also contribute to increased PG levels. 15-Hydroxyprostaglandin deyhdrogenase (15-PGDH), a tumor suppressor gene, plays a major role in PG catabolism. In this study, we investigated whether UVR exposure suppressed 15-PGDH while inducing COX-2 in keratinocytes and in human skin. UVR exposure caused dose-dependent induction of COX-2, suppression of 15-PGDH, and increased prostaglandin E(2) (PGE(2)) production in HaCaT cells. Exposure to UVR suppressed the transcription of 15-PGDH, resulting in reduced 15-PGDH mRNA, protein, and enzyme activities. UVR exposure induced Slug, a repressive transcription factor that bound to the 15-PGDH promoter. Silencing Slug blocked UVR-mediated downregulation of 15-PGDH. The effects of UVR were also evaluated in the EpiDerm skin model, a three-dimensional model of human epidermis. Here too, COX-2 levels were induced and 15-PGDH levels suppressed following UVR exposure. Next, the effects of UVR were evaluated in human subjects. UVR treatment induced COX-2 while suppressing 15-PGDH mRNA in the skin of 9 of 10 subjects. Collectively, these data suggest that reduced expression of 15-PGDH contributes to the elevated levels of PGs found in the skin following UVR exposure. Possibly, agents that prevent UVR-mediated downregulation of 15-PGDH will affect the acute or the long-term consequences of UVR exposure, including nonmelanoma skin cancer.
Collapse
Affiliation(s)
- Benjamin L Judson
- Department of Medicine and Weill Cornell Cancer Center, 525 East 68th Street, Room F-206, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hudson LG, Gale JM, Padilla RS, Pickett G, Alexander BE, Wang J, Kusewitt DF. Microarray analysis of cutaneous squamous cell carcinomas reveals enhanced expression of epidermal differentiation complex genes. Mol Carcinog 2010; 49:619-29. [PMID: 20564339 DOI: 10.1002/mc.20636] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gene expression profiles were determined for 12 cutaneous squamous cell carcinomas (SCC) removed from sun-exposed sites on nonimmunosuppressed patients. Gene expression in each SCC was compared to that in sun-exposed skin from the same patient using the Affymetrix HGU133 2.0 PlusGeneChip. We identified 440 genes with increased expression in SCC and 738 with decreased expression; overall we identified a large number of small changes in gene expression rather than a few marked changes that distinguished SCC from sun-exposed skin. Analyzing this robust data set according to biofunctional pathways using DAVID, transcriptional control elements using oPOSSUM, and chromosomal location using GSEA suggested genetic and epigenetic mechanisms of gene expression regulation in SCC. Some altered patterns of gene expression in SCC were consistent with regulation of spatially separated genes by a number of developmentally important transcription factors (forkhead, HMG, and homeo factors) that negatively regulated gene expression and to a few factors that positively regulated expression (Creb-1, NFkappaB, RelA, and Sp-1). We also found that coordinately enhanced expression of epidermal differentiation complex genes on chromosome 1q21 was a hallmark of SCC. A novel finding in our study was enhanced expression of keratin 13 in SCC, a result validated by immunohistochemical staining of an SCC tumor tissue array.
Collapse
Affiliation(s)
- Laurie G Hudson
- University of New Mexico College of Pharmacy, Albuquerque, New Mexico, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
PKCepsilon overexpression, irrespective of genetic background, sensitizes skin to UVR-induced development of squamous-cell carcinomas. J Invest Dermatol 2010; 130:270-7. [PMID: 19626035 DOI: 10.1038/jid.2009.212] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chronic exposure to UVR is the major etiologic factor in the development of human skin cancers including squamous-cell carcinoma (SCC). We have previously shown that protein Kinase C epsilon (PKCepsilon) transgenic mice on FVB/N background, which overexpress PKCepsilon protein approximately eightfold over endogenous levels in epidermis, exhibit about threefold more sensitivity than wild-type littermates to UVR-induced development of SCC. To determine whether it is PKCepsilon and not the mouse genetic background that determines susceptibility to UVR carcinogenesis, we cross-bred PKCepsilon FVB/N transgenic mice with SKH-1 hairless mice to generate PKCepsilon-overexpressing SKH-1 hairless mice. To evaluate the susceptibility of PKCepsilon SKH-1 hairless transgenic mice to UVR carcinogenesis, the mice were exposed to UVR (1-2 KJ m(-2)) three times weekly from a bank of six kodacel-filtered FS40 sunlamps. As compared with the wild-type hairless mice, PKCepsilon overexpression in SKH-1 hairless mice decreased the latency (12 weeks), whereas it increased the incidence (twofold) and multiplicity (fourfold) of SCC. The SKH hairless transgenic mice were observed to be as sensitive as FVB/N transgenic mice to UVR-induced development of SCC and expression of proliferative markers (proliferating cell nuclear antigen, signal transducers and activators of transcription 3, and extracellular signal-regulated kinase 1/2). The results indicate that PKCepsilon level dictates susceptibility, irrespective of genetic background, to UVR carcinogenesis.
Collapse
|
20
|
|
21
|
Olson ER, Melton T, Dong Z, Bowden GT. Stabilization of quercetin paradoxically reduces its proapoptotic effect on UVB-irradiated human keratinocytes. Cancer Prev Res (Phila) 2009; 1:362-8. [PMID: 19138980 DOI: 10.1158/1940-6207.capr-08-0101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
UVB light promotes survival of initiated keratinocytes, in part, by the direct activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Novel chemopreventative agents targeting UVB-induced signaling pathways are needed to reduce the incidence of nonmelanoma skin cancer. Quercetin (Qu) is a dietary flavonoid and a known inhibitor of PI3K. We determined that Qu degrades rapidly when diluted in DMEM and incubated under normal cell culture conditions. Degradation was delayed by supplementing the medium with 1 mmol/L ascorbic acid (AA), and as expected, stabilization actually increased the effectiveness of Qu as a PI3K inhibitor because basal and UVB-induced Akt phosphorylation were reduced compared with Qu treatment in the absence of AA. Although AA stabilization increased Qu-induced apoptosis in mock-irradiated HaCaT cells, consistent with it acting as a PI3K inhibitor (13.4% Annexin V-positive cells for AA-stabilized Qu versus 6.3% for Qu), AA stabilization of Qu actually reduced the ability of the compound to induce apoptosis of UVB-irradiated HaCaTs (29.7% of Qu-treated cells versus 15.5% of AA + Qu-treated cells). Similar trends were seen in the analysis of caspase-3 and poly(ADP-ribose) polymerase cleavage. Qu is known to oxidize to form reactive products, and we found that dihydroethidium is oxidized by Qu regardless of whether or not it was stabilized. Although redox cycling occurs even in the presence of AA, stabilization reduces the accumulation of reactive Qu products that contribute to the proapoptotic effect of the compound, and thus reduces the ability of the compound to induce apoptosis of UVB-irradiated HaCaT cells.
Collapse
|
22
|
Mena S, Ortega A, Estrela JM. Oxidative stress in environmental-induced carcinogenesis. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2009; 674:36-44. [DOI: 10.1016/j.mrgentox.2008.09.017] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 09/23/2008] [Indexed: 12/17/2022]
|